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Need for unified methods

Objective: Mach-uniform accuracy and efficiency

Non-standard example: Cyclic sheet cavitation: 0.001 < Mach < 25

Approach to Mach-uniformity:

Generalize incompressible scheme to compressible case

Incompressible scheme: MAC scheme (staggered)
Harlow & Welch 1965

Harlow & Welch 1965
On Cartesian grids this scheme is
best.

P. Wesseling 3 – p.3/??



Delft University of Technology

Unification of governing equations

Compressible Incompressible

ρt + (uρ)x = 0 | ρt + (uρ)x = 0

mt + (um+ p)x = 0 | mt + (um+ p)x = 0

(ρE)t + (ρuH)x = 0 | divu = 0

U =




ρ

m

ρE




|
|
|

U =




ρ

m

p




m = ρu, E = e+ 1
2u

2 | Discr. in space⇒ DAE !
H = γe+ 1

2u
2, p = p(ρ, e) | - Projection methods

| - Distributive iteration methods
| - Regularization (Rhie-Chow)
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Unification: pressure-based energy equation

U =




ρ

m

p




Pressure-based energy equation:

[p+ (γ − 1)ρq]t + [u(γp+ (γ − 1)ρq)]x = 0, q ≡ 1
2u

2

Units: ur, ρr, Tr
Low Mach asymptotics, no acoustics: ε = γM2

r

p = p0(t) + εp1(t, x) +O(ε2)

p1(t, x) is the quantity to be computed.
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Unification: pressure-based energy equation

This motivates the following choice for the dimensionless pressure:

p̃ =
p− pr
ρru2

r

, pr = RρrTr

Mach-unified equations:

ρt + (uρ)x = 0

mt + (um+ p)x = 0

M2
r [(p+ (γ − 1)ρq)t + (u(γp+ (γ − 1)ρq))x] + divu = 0
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Unification: pressure-based energy equation

Full equations are used; no use of asymptotics.
As Mr ↓ 0, incompressible form of equations is recovered.
This makes incompressible solution methods (pressure correction,
distributive iteration, ...) applicable.

As Mr ↓ 0, accuracy and efficiency of incompressible case is obtained.
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Colocated scheme

Hyperbolic system: Ut + f(U)x = 0
Colocated scheme:

dUj
dt

+
1

h
(Fj+1/2 − Fj−1/2) = 0

Fj+1/2 = f(Uj−p, · · · , Uj+q)

Scalar case: solution of monotone conservative scheme converges to
entropy solution.
Systems, colocated, flux splitting: (“upwind")

Fj+1/2 = F+
j + F−j+1

j+1j
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Staggered scheme

Staggered scheme for compressible flows:
Harlow & Amsden 1968, 1971
Issa, Gosman & Watkins 1986
Karki & Patankar 1989
Shyy & Braaten 1988
Shyy, Chen & Sun 1992
Shuen, Chen & Choi 1993
Bijl & W JCP 141 1998

p pm
j j+1/2 j+1

Mach-uniform:

lim
M↓0
{scheme} = classical incompressible scheme
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Unified scheme for (in)compressible flow

p pm
j j+1/2 j+1

Flux splitting not possible.
Upwind bias for “monotonicity"?
Convergence for compressible flow?

First test case: barotropic Euler equations
Arbitrary ρ = ρ(p) (as in HEM model for cavitation)

mt + (um+ p)x = 0, u ≡ m/ρ
ρt + (uρ)x = 0

P. Wesseling 10 – p.10/??



Delft University of Technology

Unified scheme for (in)compressible flow

1D staggered grid: · · ·mj−1/2 ρj mj+1/2 ρj+1 · · ·

(mn+1−mn)j+1/2+λ(unmn+1)|j+1/2
j−1/2+λpn+1|j+1

j = dnj+1/2, λ = δt/δx

Deferred correction: dj+1/2 = λ[(um)|j+1/2
j−1/2 − (ũm)|j+1

j ]

φ̃j = φ̃j−1/2 + 1
2ψ(rj−1/2)(φ̃j+1/2 − φ̃j−1/2)

rj−1/2 =
φj−1/2 − φj−3/2

φj+1/2 − φj−1/2

Matrix-free scheme.

Flux Jacobian or approximate Riemann solver not used
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Unified scheme for (in)compressible flow

ρn+1
j − ρnj + λ(uβj+1/2ρ

n+1
j − uβj−1/2ρ

n+1
j−1 ) = dnj

uβ = βun+1 + (1− β)un

Upwind to satisfy entropy condition
β is tuned for stability:

Ψ ≤ 0 ⇒ β = 1/2

Ψ > 0





0 < M ≤ 1/2 : β = 1

1/2 < M ≤ 8 : β = 1/2

M > 8 : β = 1/8
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Unified scheme for (in)compressible flow

Incompressible limit (M ↓ 0):

mt + (uαm),α +∇p = 0

div m = 0

Differential algebraic system (after semi-discretization)
⇒ Advantage of staggered grid

Pressure-correction method for efficiency as M ↓ 0

m∗ −mn + τ(unαm∗),α + τ∇pn = 0

mn+1 −m∗ + τ∇δp = 0, δp = pn+1 − pn

Mass conservation equation gives pressure-correction equation:

ρ(pn + δp)− ρ(pn) + τdiv (m∗ − τ∇δp) = 0
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Unified scheme for (in)compressible flow

Handling of nonlinearity:

Aδp+Bρ(pn + δp) = b

Combination of nonlinear Gauss-Seidel and ILU-GMRES for
robustness and efficiency:

GS⇒ δp1/2 δp = δp1/2 + δp1

[
A+B

(
dρ

dp

)

pn+δp1/2

]
δp1 = −Aδp1/2 −Bρ(pn + δp1/2)

10 GMRES steps suffice

Convergence in 10 iterations
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Validation: Riemann problem with nonconvex equation of state

Barotropic Euler in Lagrangian coordinates:

Vt − uy = 0, V = 1/ρ

ut + p(V )y = 0

This is the well-known p-system.

Riemann problem can be solved for arbitrary p(V ) using Oleinik’s en-

tropy condition
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Validation: Riemann problem with nonconvex equation of state
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Homogeneous equilibrium model

HEM model for hydrodynamic cavitation:
Barotropic Euler equations:

ρt + div m = 0, ρ = ρ(p)

mt + (uαm),α +∇p = 0, u = m/ρ

Difficulty: strongly nonlinear nonconvex equation of state ρ = ρ(p).
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Homogeneous equilibrium model
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Nonconvex barotropic equation of state

p < p1 : vapor; p > p2 : liquid.
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Hydrodynamic cavitation

Homogeneous equilibrium model:

Delannoy (1989)
Merkle, Feng & Buelow (1998)
Shin & Ikohagi (1998)
Song & He (1998)
Ventikos & Tzabiras (2000)

Difficulties: 10−3 < M < 25
Strong nonlinearity of ρ = ρ(p)

Cyclic sheet cavitation
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Accuracy of staggered schemes on rough curvilinear grids

Boundary-fitted coordinate mapping xj = xj(ξj)
Piecewise trilinear in cells

2
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ξ
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41

ξ
2

ξ 3

ξ1
ξ1

ξ

Cell faces are doubly ruled. Exact formula for cell volume:

|Ωj | = 1
3{b1 · (s1265 + s4378) + b2 · (s1584 + s2673) + b3 · (s1432 + s8765)}
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Accuracy of staggered schemes on rough curvilinear grids

Coordinate-invariant scheme required. Covariant derivative:

Uα,β =
∂Uα

∂ξβ
+
{ α
βγ

}
Uγ ,

{ α
βγ

}
=
∂ξα

∂xσ
∂2xσ

∂ξβ∂ξγ
,

In general, coordinate mapping x(ξ) not twice differentiable⇒
schemes using Christoffel symbols {} are inaccurate on rough grids.
Staggered schemes can be accurate, if lack of smoothness of x(ξ) is
taken into account properly.
Coordinate-invariant staggered scheme without Christoffel symbols:

PW: Principles of CFD, Springer 2001
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Coordinate-invariant scheme without Christoffel symbols

Define coordinate mapping x = x(ξ) uniquely by trilinear interpolation.
Take nonsmoothness of x = x(ξ) carefully into account

Basic idea for avoiding
{ α
βγ

}
: first step: transform only coordinates ,

not components. Example: inertia term:

N(ρ,u) ≡ ∂uαm

∂xα
=

1√
g

∂V αm

∂ξα
,
√
g ≡ det

(∂x

∂ξ

)

V αdξβdξγ is volume flux through dξβdξγ : contravariant flux.
Primitive staggered velocity variables: V α

Finite volume integration over staggered volumes.
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Coordinate-invariant scheme without Christoffel symbols

∫

Ωj+e1

1√
g

∂

∂ξ1
(uV 1)dΩ =

∫

Gj+e1

∂

∂ξ1
(uV 1)dξ1dξ2dξ3 ∼= ∆ξ2∆ξ3(uV 1)|j+2e1

j

Interpolation inside cell (x(ξ) smooth!):

V αj
∼= 1

2 (V αj−eα + V αj+eα), uj =

(
∂x

∂ξα
V α/
√
g

)

j
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Coordinate-invariant scheme without Christoffel symbols

Accuracy requirement on interpolations: u⇒ V α ⇒ u exactly for
constant u on arbitrary nonsmooth grids
Other terms similarly
Last step: take inner product with normal face vector:

(
√
ga(α))j+eα ·

∫

Ωj+eα

N(u, p)dΩ = 0 (no summation)

Result: equation for
dV αj+eα
dt

(no summation)

Scheme is coordinate invariant.

Accurate staggered schemes on rough grids: He & Salcudean (1994),

Karki & Patankar (1988), Melaaen (1992), Wesseling, Segal & Kassels

(1999).
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Coordinate-invariant scheme without Christoffel symbols

Detailed inspection shows that discrete approximations to finite volume

integrals of Christoffel symbols can be recognized.
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Accuracy of staggered schemes on rough curvilinear grids

 

Grid for Poiseuille flow

 

Isobars for staggered scheme

 

Isobars for finite element method

Isobars for commercial
colocated scheme
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Unstructured staggered scheme
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Isobars for different Mach numbers
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Isobars for different Mach numbers
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Mach-uniform formulation

Dimensionless pressure:

p =
p̂− p̂0

ρ̂rû2
r

.

Pressure-based governing equations:

ρt + divm = 0 ,

mt +
∂

∂xα
(uαm) + gradp = 0 ,

M2
0

{ ∂
∂t

[
p+ (γ − 1)ρq

]
+ div

[
u(γp+ (γ − 1)ρq

]}
+ div u = 0
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Mach-uniform time stepping scheme

lim
M↓0

scheme = incompressible staggered scheme.

Therefore some terms must be implicit:

(ρn+1 − ρn)/∆t+ div (ρn+1un) = 0 ,

(mn+1
α −mn

α)/∆t+ divh (mn+1
α un) +∇hpn+1 = 0 ,

M2
0

{ 1

∆t

[
p+ (γ − 1)ρq

]n+1

n
+ divh

[
un+1

(
γpn+1 + (γ − 1)ρn+1qn+1

)]}

+divh un+1 = 0 .
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Pressure-correction method

Mach ↓ 0 ⇒ Differential-algebraic system (stiffness→∞)
Computing work Mach-uniform⇒ Use pressure-correction method:

(ρn+1 − ρn)/∆t+ divh (ρn+1un) = 0 ,

(m∗α −mn
α)/∆t+ divh (m∗αun) + pn,α = 0 ,

mn+1 = m∗ −∆t∇h(pn+1 − pn) .

Substitute un+1 in energy equation⇒ pressure-correction equation.

Sequential update (ρn+1, m∗, pn+1, mn+1) allows efficient iterative
methods.
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Unstructured staggered scheme

Cells: arbitrary triangles.
(triangles greater challenge than quads for staggered schemes).
Staggered: store only normal components.
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∂t
+ div (umi) = −∇p ·Ni.

∫

CV

div (umi) ≈
∑

e

ue(me ·Ni)l̄e .
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Unstructured staggered scheme
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(uk ·Nk) = mk/ρk

ρk =
Ω3

Ω1 + Ω3
ρ1 +

Ω1

Ω1 + Ω3
ρ3 .

Approximation of (mk ·Ni):

Ni = ηvNv + ηwNw

mk ·Ni ≈ ηvmv + ηwmv .

Upwind: mk ·Ni = ηvmv + ηwmv if uk l̄k < 0 ;

= mi if uk l̄k > 0 .
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Unstructured staggered scheme
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Pressure gradient:
path integral method:

p2 − p1
∼= ∇pi · (x2 − x1) ,

p3−p6 +p4−p5
∼= ∇pi ·(x3−x6 +x4−x5) .

Solve for ∇pi:

(∇p ·N)i =
6∑

j=1

γjpj .
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Unstructured staggered scheme

Viscous term: velocity gradients by bilinear interpolation:

y

x

η
ξ

w

v
j

k

v i

j
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i

Tangential components by interpo-
lation from neighbors. Resulting
viscous stencil:
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Mass conservation

j

i

1k4

2

3

l o

Ω1

∆t
(ρn+1

1 − ρn1 ) +
∑

e(1)

ρn+1
e une le = 0 .

Central: ρi = (ρ1 + ρ2)/2 ,

Upwind: ρi = ρ1 or ρ2.
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Energy conservation

Energy equation: δp ≡ pn+1 − pn .

M2
0

{
δp

∆t
+
γ − 1

2∆t

(
ρn+1|u∗ − ∆t

ρn+1
∇δp|2 − ρn|un|2

)

+divh
[
(u∗ − ∆t

ρn
∇δp)(γ(pn + δp) +

γ − 1

2
ρn+1|u∗|2)

]}

+divh (u∗ − δt

ρn
∇δp) = 0 .

Convection-diffusion equation for δp. Upwind scheme.
Downstream influence by convection term,
upstream influence by diffusion term.
Linearized in δp and solved for δp with ILU-preconditioned GMRES.
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Kinetic energy

1

i

jk

Evaluation of m1: Least squares.
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Euler solutions

NACA 0012, 9610 cells, 5002 vertices
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Mach-uniform efficiency

M∞ 0 0.1 0.63 0.8 1.2
∆t 0.08 0.08 0.09 0.08 0.08
CFL 800 233 180 150
Tend 4.7 3.0 17 50 53
CPU/step 4.7 4.5 3.5 3.3 2.6
CPU/tot 279 165 668 2021 1645

0 0.2 0.4 0.6 0.8 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 x 

 −
c p V = 5002 

V = 15787
AGARD    

Pressure distribution for M∞ = 1.2.
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Transonic accuracy
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Mach number distribution. Second order scheme required.
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Shocktube problem
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Incompressible Navier-Stokes

Driven cavity.

 

P. Wesseling 44 – p.44/??



Delft University of Technology

Driven cavity
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Comparison of horizontal
velocities along the verti-
cal centerline for several
Reynolds numbers.
n = 30 (· · · ); n = 60 (- -);
n = 120 (—); Ghia et al. (◦).
n is no. of cells per wall.
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Driven cavity

 

Streamlines for Re = 10, 000
obtained on grid with n =
120.
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Conclusions

Generalization of classical staggered scheme to unstructured triangles
and all speeds.
Mach-uniform method.
Accuracy similar to structured first order colocated for compressible
flows.
For transonic flow, second order upwind required.
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