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Introduction

e Two Families of CFD schemes

— Density-based
— Pressure-based

* Density-Based Methods
— Time-marching (optionally with preconditioning)
— Flux-difference and Flux-Vector schemes

— Fully-coupled solution framework
e Pressure-Based Methods

— Usually use under-relaxation for non-linear iterations
— Staggered or co-located pressure-velocity coupling

— Segregated solution procedure



Time-Marching Framework

e Steady Euler Equations:
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e Convergence contrrolled by time-scales:
— Eigenvalues of inviscid Jacobian
— Expressed as non-dimensional CFL numbers
— Preconditioned system employs pseudo-acoustic speeds
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Implicit Solution

e Delta Form in 2D:
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* ADI Approximate Factorization:

n

B *
Iy

ok JF
+

ox  dy

I+ At

T + At
ox

%T_

Tm = At

e Approximate Factorization Error:
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Von-Neumann Stability Results
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= Direct Scheme 1s unconditionally stable
» Approximate factorization causes CFL Limit (5-10)
* Preconditioning insures all CFL numbers are optimum



Grid Aspect Ratio Effects

 Traditional Time-Step Definition:

CFL
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3&i:+n,<+mv
Ax Ay

e Correct Time-Step Definition:
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— Implicit schemes allow min-CFL choice in 2D

— Some Iimitations remain in 3D



High Aspect Ratio Convergence
Line-Gauss-Seidel Scheme/AR=1000
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Steady Navier-Stokes Equations

e Preconditioned Equations:
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e Time Scales
— Include the von Neumann Numbers (VNN)
— However, acoustic-CFL’s continue to be important
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Optimizing Navier-Stokes Solutions

 Low Reynolds Number Limit

— Time scales due to damping (VNN) and acoustics (CFL)
— Preconditioning rescales acoustic-CFL and VNN
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e Optimal convergence performance



Grid Aspect Ratio Effects
 High Reynolds Number Boundary Layers

— Relevant scales are acoustics in the flow direction and
viscous damping in the wall normal direction

— Proper preconditioning and time-step necessary
— Optimize min-CFL and max-VNN in the cell

 High Aspect Ratio Preconditioning Choice:
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e Optimal convergence for all 2D and some 3D cases



Pressure-Based Methods
e FLUENT Algorithm as Example:

— Most commercial CFD codes are similar

— Belongs to family of pressure-correction methods
 Non-Linear Under-Relaxation
— Relationship to time-marching

e Segregated Solution:
— SIMPLE and SIMPLE-C algorithms
— Von Neumann stability analysis

e Pressure-Poisson Solution:
— Relationship to preconditioning

e Discretization:
— Rhie-Chow co-located procedure



Under-Relaxation and Time-Step

e Discretized Equation with Under-Relaxation
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SIMPLE as Fractional Time-Stepping

e Predictor:
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e Current study limited to incompressible limit



SIMPLE-C in Delta Form

e Notation:
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SIMPLE-C: Approximate Factorization

e Combining Predictor and Corrector:
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Pressure-Poisson Equation

e Corrector Continuity Equation
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e Substituting Corrector Momentum
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e Pressure Under-Relaxation
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Discrete Form using Rhie-Chow

e Interfacial Velocity
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Note viscosity coefficient has inviscid & viscous scales



Rhie-Chow and PPE

e Discrete PPE without Rhie-Chow
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SIMPLE Stability Results
Direct PPE Solution

W urS@ =] 0] uo.@wﬁb =0.8

u

240 -
240 +

120 A
1.20 A

1.0

UNSTABLE

00 T T A

T T T T T
00 120 240
2.40 .
00 120 .

* Unconditionally unstable without pressure under-relaxation

= Conditionally stable when pressure 1s under-relaxed



SIMPLE-C Stability Results

Direct PPE Solution
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= Unconditionally stable but stiff without under-relaxation

= Optimal convergence when momentum 1s under-relaxed



PPE Linear Solver

e PPE Direct Solution

— Not necessary to introduce time-step in continuity/PPE
e Iterative PPE Solution

— Introduce pseudo-time step similar to preconditioning

e Continuity Equation
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PPE Time-Step Choice

* Finite-Time Step
— Required for explicit schemes
— Required for non-diagonally dominant schemes (ADI)

— Not required for line relaxation or point-Gauss-Seidel
e Time-Step Definition
CFL = Min(CFL .,CFL',)
e Definition of Preconditioning Parameter
— High-Reynolds number, 1/M?

_ Low-Reynolds number, Re’/M’
— High aspect ratio grids, Re’/M*AR’



Comparative Study

e Choice of Primary Dependent Variable

— Both methods use pressure for all speed performance

* Non-Linear Iterative Framework

— Under-Relaxation equivalent to time-step

— Time-step definition similar to explicit time-step

— Potential limitations for high aspect ratio problems
e Discrete Formulation

— Rhie-Chow adds artificial viscosity to continuity

— Similar to scalar artificial dissipation schemes
— Similar to AUSM- and CUSP-like schemes



Comparative Study (Contd)

e Solution Procedure
— Both methods use a form of approximate factorization

— Segregated scheme has an AF error that requires an explicit-
like time-step restriction on the transport equations

— Under-relaxation of pressure for optimal convergence
e Pressure-Poisson Solution
— Finite time-step for explicit & some implicit (ADI) schemes

— Scaling of the time-step identical to preconditioning
— Other implicit methods do not require finite time-step



Conclusions

* Not really two distinct families

— Non-linear iterative framework
— Discrete formulation

— Linear system solution

e Jterative Framework
— Both under-relaxation and time-marching do the job
— But, time-stepping is crucial for insight

e Discrete Formulation

— Many approaches to obtaining correct discretizations
— Asymptotic analysis provides crucial insight



Conclusions

e Coupled or Segregated Solutions
— Implicit non-linear framework is attractive
— Linear Solver: coupled and segregated are competetive

e Potential Limitations of Segregated
— Limit on the transport equation time-step
— High aspect ratio problems
— Strong compressible effects
— Combustion introduces additional transport eqns

e General Conclusion
— Not really distinct methods
— Each approach enhances understanding



Is Preconditioning Essential?



e NO

Is Preconditioning Essential?



Is Preconditioning Essential?

e NO
* But, the view 1s great!



