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M
otivation

•
W

ide range of scales
–

Inviscid: Low
 M

ach to H
ypersonic

–
V

iscous: Low
 to high Reynolds num

bers
–

U
nsteady: Low

 to high frequencies
–

Source term
s: turbulence, chem

istry and phase change
•

W
ide range of equations of state

–
Perfect gas

–
Liquids

–
Real gases

–
M

ulti-com
ponent gases

–
M

ultiple phases



A
pproach

•
Tim

e-M
arching or D

ensity-Based M
ethods

–
N

um
erics related to unsteady physics &

 m
athem

atics
–

Errors handled by convection and diffusion processes
•

Characteristics:
–

W
ell suited to transonic and supersonic flow

s
–

U
nsuited to low

 M
ach flow

s because of w
ave stiffness

•
Preconditioning
–

Pseudo-acoustic w
aves by altering tim

e-derivatives
–

Inspired by Chorin’s artificial com
pressibility (1967)

•
U

se A
sym

ptotic Theory
–

Proper choice can account for all relevant lim
its



Fluids Equations

•
D

ual-Tim
e Form

:

w
here

•
Pseudo-tim

e term
 introduced purely for num

erics:
–

To derive proper discrete form
–

To act as an agency for non-linear relaxation
–

To enhance convergence of the linear solver
•

Pseudo-Tim
e D

efinition:
–

Ill-posed for certain equations of state (I.e., constant    )



G
eneralized Fluids Equations

•
Change of V

ariables:

w
here

•
D

efinition:



G
eneralized Equation of State

•
G

eneral State Relations

•
System

 is w
ell-posed for tim

e-m
arching solutions

–
A

ll variables can be updated for general fluids
–

Can be extended to m
ulti-com

ponent gases and liquids
•

But, it not necessarily w
ell-conditioned:

–
D

ifferent tim
e-scales control the physical processes

–
A

 “good” num
erical schem

e requires good conditioning
–

U
se asym

ptotic theory to understand behavior and to
devise appropriate preconditioning scaling



A
sym

ptotic A
nalysis

•
W

ell-established m
athem

atical analysis tool
•

A
pplied to CFD

 algorithm
 analysis by:

–
G

uerra and G
ustaffsson (1986)

–
M

erkle and Choi (1987)
•

O
riginal M

otivation:
–

D
erive preconditioning for low

 M
ach lim

it
–

A
ssess discrete accuracy (G

uillard and V
iozat, 1999)

•
Contributions of the present authors (1999):
–

A
nalyze Euler, N

avier-Stokes and unsteady scales
–

D
erive appropriate preconditioning in these lim

its
–

Ensure discrete accuracy and convergence efficiency



A
sym

ptotic Expansion

•
M

om
entum

 Equation:

w
here

and     is a sm
all param

eter to be defined later.

•
Continuity Equation:



Perturbation Param
eter

•
D

efinition:
–

Balance the pressure gradient w
ith the dom

inant term
 in

the m
om

entum
 equation for various lim

its

•
Inviscid Low

 M
ach Lim

it:

•
V

iscous Low
 Re Lim

it:

•
H

igh Fr Lim
it:

•
U

nsteady H
igh Str Lim

it:



D
ispersion A

nalysis

•
Linearized Perturbation Equations:

•
Solution:

•
D

ispersion Relation:



D
ispersion A

nalysis

•
Com

plex Phase Speeds:

w
here



Characteristics

•
Inviscid Lim

it:
–

W
ave speeds are

–
Stiff at low

 M
ach num

bers
•

V
iscous Lim

it:
–

W
ave speeds are

–
Tw

o acoustic m
odes and one viscous dam

ping m
ode

–
Can be stiff at low

-Re
•

U
nsteady H

igh Frequency Lim
it:

–
W

ave speeds are
–

Tw
o acoustic m

odes and one sink-like dam
ping m

ode
–

For very high Str, three sink-like dam
ping m

odes



Preconditioning

•
Stiffness is due to:
–

Scaling of the first-order pressure tim
e-derivative in

continuity equation

•
Preconditioning:
–

Rescale pressure-tim
e derivative

–
Render pressure corrections to be order one



Preconditioning Scaling

•
Inviscid Low

 M
ach Lim

it:

•
V

iscous Low
 Re Lim

it:

•
H

igh Fr Lim
it:

•
U

nsteady H
igh Str Lim

it:



Preconditioned Equations

•
Change of V

ariables:

•
Preconditioning M

atrix:



Convergence Enhancem
ent

•
D

ispersion A
nalysis

–
Com

plex w
ave speeds can again be obtained

–
Com

bination of particle and pseudo-acoustic m
odes

–
A

ll relevant lim
its are seen to be w

ell-conditioned
•

System
 Characteristics are optim

ized
–

Inviscid lim
it: acoustic speed and particle speed

–
V

iscous lim
it: acoustic speed and diffusion scale

–
U

nsteady lim
it: acoustic speed and physical tim

e scale
•

Relationship to O
ther Preconditioners:

–
Inviscid lim

it sim
ilar to Turkel, van Leer, W

eiss-Sm
ith

–
A

sym
ptotic derivation enables extension to all lim

its



A
sym

ptotic A
nalysis of D

iscrete System
•

Extension to D
iscrete Form

:
–

A
pply asym

ptotic expansions to the discrete version
–

Express schem
e as central flux + artificial dissipation

•
Requirem

ents on A
rtificial V

iscosity:
–

A
t m

ost the sam
e order as the dom

inant physical term
s

–
A

ll fields m
ust have adequate dissipation

–
U

se von N
eum

ann stability analysis to verify
•

D
ifferent Form

ulations
–

Scalar D
issipation (Jam

eson, Turkel)
–

Flux-D
ifference (Roe) or M

atrix-D
issipation (Turkel)

–
A

U
SM

- or CU
SP-like (Liou, Jam

eson)



D
ifferent D

issipation Schem
es

•
Scalar D

issipation:

•
Flux-D

ifference or M
atrix D

issipation

•
A

U
SM

- or CU
SP-like Schem

es

w
here
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Inviscid Lim
it

Scalar/M
atrix D

issipation
•

W
ithout Preconditioning

•
W

ith Preconditioning

•
Inviscid Preconditioning insures proper scaling
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V
iscous Lim

it
Scalar/M

atrix D
issipation

•
W

ith Inviscid Preconditioning

•
W

ith Preconditioning

•
V

iscous preconditioning insures proper scaling
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U
nsteady Lim

it
Scalar/M

atrix D
issipation

•
W

ith Preconditioning

•
W

ith Preconditioning

•
U

nsteady preconditioning does not scale correctly

†
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U
nsteady Lim

it
A

U
SM

-/CU
SP-like Form

•
Form

ulation:

•
W

ith U
nsteady Preconditioning

•
N

ow
, the dissipation term

s are scaled correctly
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Robustness Issues
•

Preconditioning has robustness difficulties:
–

Presence of stagnation regions
–

Influence of large pressure changes
•

Stagnation Regions
–

G
lobal cut-off (Turkel and others)

–
W

e em
ploy a “local” m

axim
um

 definition
•

Large-Scale Pressure Changes at Low
 M

ach
–

Linearly stable only for errors in the dynam
ic pressure

–
N

on-linear instability caused by “fast” w
aves

–
D

ue to changes in the therm
odynam

ic/acoustic pressure



Rem
edy

•
N

ote:
–

Preconditioning necessary for efficiency and accuracy
–

Robustness dem
ands are different

•
Standard A

pproaches
–

U
se physical system

 until “fast” w
aves are elim

inated
–

U
se “unsteady” form

 until “fast” w
aves are elim

inated
–

N
eed to devise a clean fram

ew
ork for “sw

itching”
•

M
ultiple Pseudo Tim

e Fram
ew

ork:
–

U
se preconditioning for discretization

–
D

o not use for non-linear tim
e-m

arching
–

U
se preconditioning for linear solver iterations



M
ultiple-Tim

e Form
ulation

•
O

uterm
ost Tim

e: A
ccuracy

–
Choose preconditioning for accurate flux form

ulation
•

Interm
ediate Tim

e: Robustness
–

For non-linear tim
e-m

arching to m
aintain robustness

–
U

se physical tim
e-derivatives

•
Innerm

ost Tim
e: Efficiency

–
Choose preconditioning to optim

ize linear convergence
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Properties
•

A
rtificial D

issipation Tim
e-Step

–
Set to infinity

•
N

on-linear Tim
e-Step

–
Start at sm

all values and ram
p up to infinity

–
N

ot lim
ited by linear solver stability restrictions

•
Linear Solver
–

Start at infinity and reduce to optim
al value for schem

e
–

Inner iterations can be done at each non-linear step
–

Sim
ilar to unsteady com

putations
–

LU
 decom

position of m
atrix inverse m

ay be stored



Sum
m

ary

•
D

erived a preconditioning approach:
–

Suitable for all M
ach, Re, Str, Fr, etc.

–
Enables accurate discrete form

ulation at all lim
its

–
Enables efficient linear solver convergence

–
Preferable not to introduce at non-linear iteration level

•
A

sym
ptotic A

nalysis
–

D
erivation of preconditioning

–
A

ssessm
ent of accuracy

•
Tim

e-M
arching:

–
Provides a link betw

een num
erics and physics


