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Motivation

 Wide range of scales
— Inviscid: Low Mach to Hypersonic
— Viscous: Low to high Reynolds numbers
— Unsteady: Low to high frequencies

— Source terms: turbulence, chemistry and phase change

* Wide range of equations of state
— Perfect gas
— Liquids
— Real gases
— Multi-component gases
— Multiple phases



Approach
Time-Marching or Density-Based Methods

— Numerics related to unsteady physics & mathematics

— Errors handled by convection and diffusion processes
Characteristics:

— Well suited to transonic and supersonic flows

— Unsuited to low Mach flows because of wave stiffness
Preconditioning

— Pseudo-acoustic waves by altering time-derivatives
— Inspired by Chorin’s artificial compressibility (1967)

Use Asymptotic Theory

— Proper choice can account for all relevant limits



Fluids Equations

e Dual-Time Form:
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e Pseudo-time term introduced purely for numerics:
— To derive proper discrete form
— To act as an agency for non-linear relaxation
— To enhance convergence of the linear solver

e Pseudo-Time Definition:

— Ill-posed for certain equations of state (I.e., constant P)



Generalized Fluids Equations

* Change of Variables:
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Generalized Equation of State

e General State Relations
p=p(p, T) h=h(p, T)

e System is well-posed for time-marching solutions
— All variables can be updated for general fluids

— Can be extended to multi-component gases and liquids

e But, it not necessarily well-conditioned:
— Different time-scales control the physical processes
— A *good” numerical scheme requires good conditioning

— Use asymptotic theory to understand behavior and to
devise appropriate preconditioning scaling



Asymptotic Analysis

Well-established mathematical analysis tool

Applied to CFD algorithm analysis by:

— Guerra and Gustaffsson (1986)

— Merkle and Choi (1987)
Original Motivation:

— Derive preconditioning for low Mach limit

— Assess discrete accuracy (Guillard and Viozat, 1999)
Contributions of the present authors (1999):

— Analyze Euler, Navier-Stokes and unsteady scales
— Derive appropriate preconditioning in these limits

— Ensure discrete accuracy and convergence efficiency



Asymptotic Expansion

e Momentum Equation:
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where po = Constant
and € is a small parameter to be defined later.
e Continuity Equation:
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Perturbation Parameter

Definition:

— Balance the pressure gradient with the dominant term in
the momentum equation for various limits

Inviscid Low Mach Limit:
Viscous Low Re Limit:
High Fr Limat:

Unsteady High Str Limit:
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Dispersion Analysis

* Linearized Perturbation Equations:
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e Solution:
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e Dispersion Relation:
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Dispersion Analysis

 Complex Phase Speeds:
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Characteristics

e Inviscid Limiat:
— Wave speeds are ~ u,u =t c
— Stiff at low Mach numbers

e Viscous Limit:
— Wave speeds are = iu/Re,u+c
— Two acoustic modes and one viscous damping mode
— Can be stiff at low-Re

 Unsteady High Frequency Limit:
— Wave speeds are =~ iu Str,u(1+iu Str)
— Two acoustic modes and one sink-like damping mode
— For very high Str, three sink-like damping modes



Preconditioning

e Stiffness 1s due to:

— Scaling of the first-order pressure time-derivative in
continuity equation
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* Preconditioning:
— Rescale pressure-time derivative
— Render pressure corrections to be order one
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Preconditioning Scaling 53

Inviscid Low Mach Limit:

Viscous Low Re Limit;

High Fr Limit:

Unsteady High Str Limit:
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Preconditioned Equations

* Change of Variables:
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Convergence Enhancement

e Dispersion Analysis
— Complex wave speeds can again be obtained
— Combination of particle and pseudo-acoustic modes

— All relevant limits are seen to be well-conditioned
e System Characteristics are optimized

— Inviscid limit: acoustic speed and particle speed

— Viscous limit: acoustic speed and diffusion scale

— Unsteady limit: acoustic speed and physical time scale
e Relationship to Other Preconditioners:

— Inviscid limit similar to Turkel, van Leer, Weiss-Smith

— Asymptotic derivation enables extension to all limits



Asymptotic Analysis of Discrete System

e Extension to Discrete Form:
— Apply asymptotic expansions to the discrete version
— Express scheme as central flux + artificial dissipation
* Requirements on Artificial Viscosity:
— At most the same order as the dominant physical terms
— All fields must have adequate dissipation

— Use von Neumann stability analysis to verify

e Different Formulations

— Scalar Dissipation (Jameson, Turkel)
— Flux-Difference (Roe) or Matrix-Dissipation (Turkel)
— AUSM- or CUSP-like (Liou, Jameson)



Different Dissipation Schemes

e Scalar Dissipation:
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e Flux-Difference or Matrix Dissipation
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e AUSM- or CUSP-like Schemes
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Inviscid Limait
Scalar/Matrix Dissipation

e Without Preconditioning
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e Inviscid Preconditioning insures proper scaling



Viscous Limit

Scalar/Matrix Dissipation

e With Inviscid Preconditioning
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e Viscous preconditioning insures proper scaling



Unsteady Limit

Scalar/Matrix Dissipation

* With Preconditioning
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e Unsteady preconditioning does not scale correctly



Unsteady Limit
AUSM-/CUSP-like Form

e Formulation:
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 With Unsteady Preconditioning
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 Now, the dissipation terms are scaled correctly



Robustness Issues

* Preconditioning has robustness difficulties:

— Presence of stagnation regions
— Influence of large pressure changes

e Stagnation Regions
— Global cut-off (Turkel and others)
— We employ a “local” maximum definition
e Large-Scale Pressure Changes at Low Mach
— Linearly stable only for errors in the dynamic pressure

— Non-linear instability caused by “fast” waves

— Due to changes 1n the thermodynamic/acoustic pressure



Remedy

e Note:

— Preconditioning necessary for efficiency and accuracy
— Robustness demands are different

e Standard Approaches
— Use physical system until “fast” waves are eliminated
— Use “unsteady” form until “fast” waves are eliminated

— Need to devise a clean framework for “switching”

 Multiple Pseudo Time Framework:

— Use preconditioning for discretization
— Do not use for non-linear time-marching

— Use preconditioning for linear solver iterations



Multiple-Time Formulation
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e Qutermost Time: Accuracy

— Choose preconditioning for accurate flux formulation

e Intermediate Time: Robustness
— For non-linear time-marching to maintain robustness
— Use physical time-derivatives

e Innermost Time: Efficiency

— Choose preconditioning to optimize linear convergence



Properties

o Artificial Dissipation Time-Step
— Set to infinity
* Non-linear Time-Step
— Start at small values and ramp up to infinity
— Not limited by linear solver stability restrictions
e Linear Solver
— Start at infinity and reduce to optimal value for scheme
— Inner iterations can be done at each non-linear step

— Similar to unsteady computations
— LU decomposition of matrix inverse may be stored



Summary

e Derived a preconditioning approach:

— Suitable for all Mach, Re, Str, Fr, etc.

— Enables accurate discrete formulation at all limits

— Enables efficient linear solver convergence

— Preferable not to introduce at non-linear iteration level
e Asymptotic Analysis

— Derivation of preconditioning

— Assessment of accuracy
e Time-Marching:

— Provides a link between numerics and physics



