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Introduction

B Analysis of interaction between chemical kinetics and turbulent flow
in the simplest conditions as possible

@ ideal geometry: periodic box

= spectral method for calculation and Fourier data analysis

@ real physics: Direct Numerical Simulation (DNS)

= All the scales are correctly simulated

-  The interaction is exactly described



Statistical steadiness

» Homogeneity and isotropy implies:
» Independence of statistics from rotation or position
@ Simple scale-by-scale analysis
P Statistical steady state
» Ensemble averages are replaced by spatial-temporal averages

* Time independent energy budget

P How to do this? —= Forcing on the largest scales

s Advances in turbulence have been achieved by homogeneous and
1sotropic conditions (e.g. K-41 theory)



Typical conditions and simplifying assumptions

®» Main properties of a turbulent deflagrative flame:

@

@

Flow velocity is lower than the sound speed because of high temperature

The essential feature of turbulent combustion is the variation of density
and of molecular diffusions with temperature

P Single scale low Mach asymptotic set of equations:

@

@

@

It permits to calculate variable density flows
There is not a cancellation error to evaluate the pressure gradient

It avoids the numerical stiffness related to the time step of a fully
compressible scheme



Governing equations

P After a single scale asymptotic expansion on low Mach number, the
set of non dimensional equations become:

o0p,
ot

+v'(puu)0:Riev'To_va

o(pY,) 1
+V-(puY )=
ot Vlout.y Re Sc,

dp Y
d_t()‘l'ypov'uo:mv'(kovTo)‘F(y_I)Za Da,Ce,w,,

+V-(pu)0=0

o(pu),
ot

V'(“vY(J)O—'_Daaa')ao

_Po

T
op0
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Integration technique

» Pseudo-spectral method with dealiasing techniques is used for spatial
discretization

@ Excellent accuracy with regular functions

@ No wavenumber modification or phase error

P Time integration is performed by an explicit Runge-Kutta method

@ Fourth order time accuracy

@ Low-storage scheme



Pressure evaluation

P State of art:

@ Projection methods
@ Pressure correction methods
@ Semi-implicit methods
P Method requirements:
@ Stability for large density differences which occurs in combustion
@ Accuracy to preserve global forth order scheme in time
P Present projection iterative technique:
@ Possibility to control the iteration error
@ Fast and accurate for periodic geometry and for combustion conditions

@ Fully integrated in the low-storage Runge-Kutta scheme



Iterative technique (1)

P Decompose the momentum as: (pou)=(pv)+V¢ hence

the equation for (pv) follows:
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@ Through comparison between momentum and (o v) equations:
b= fﬁt p,dt+c

P The equation for ¢ is obtained by enforcing the value of V-u**' given
by the energy equation
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P All r.h.s. terms are known except «**'



Iterative technique

P The semi-discrete set of equations evolved by Runge-Kutta:




Iterative technique (2)

P The iterative algorithm for ¢**' :

first iteration:
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P When |«—u'|<e, the iterative procedure is stopped giving the
momentum field:
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Test for 1terative technique

P Two plane flame front propagating in the periodic box

The initial momentum field 1s null

One-step reaction with three chemical species namely rF+o-p

Reactants are fully premixed
1-D Gaussian heat source 1s used to start chemical reactions

After the 'spark’ the temperature ratio is about 20
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Iterative procedure convergence

P To evaluate the error decay as function of iteration the infinity norm is
adopted: err’=|lu’ —u’ ||, s=2..N
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P Error decays as: err(s)=A¢ ™™, where B=03:15, Z2=4:20
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Physics of the simulated box

o= s

P Turbulent kinetic energy is introduced at the largest scales

P The large scale vortices transports chemical species and related
enthalpy inside or outside the box



Statistically steadiness in the periodic box

P The energy injection is simulated by a random forcing in the
momentum equation:

pfi:\/;[A(t)ij sin(x;)+B(t),; cos(xj)]
= Acts on the largest scales
= Only rotational component of kinetic energy is stirred
= A(t),, B(t); are random function with gaussian distribution in time

P Large scale species mixing and injection is simulated via random
forcing in the equation of chemical species:
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= Provides reactants and remove products

= The large scale mixing is guaranteed by the random phase 0(7)

P Finally the mean value of internal energy is kept constant
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Steady state combustion (1)

P Two simulations are performed with almost the same fluid dynamics
parameters but with different chemical kinetics
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Steady state combustion (2)

P The chemical kinetics parameters show different mean values
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Characteristic non dimensional parameters

» Turbulence times: fy=—" p =

P Chemical kinetics time: =22 :
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Flow field

—» S simulation

2D cut of reaction 2D cut of témperature
rate field
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P Simulation S shows distributed reactions without 'flame fronts'

» Simulation F shows some propagating 'flame fronts'



Scale-by-scale energy budget (1)

» The momentum equation may be written in terms of the variable: w=vpu
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P Using the decomposition: w=w,+w,

such that: VXxw,=0, V-w,=0

1s possible to write the equations for the rotational and compressive
components of kinetics energy in Fourier space:
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Scale-by-scale scalar budget (1)

P As far as for kinetic energy equation, a budget is done for scalar
equation:
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Scale-by-scale scalar budget (2)
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Final Remarks

P Accurate iterative pressure solver for low Mach number flows

P In statistically steady state combustion we have discussed:

@ Scale-by-scale budget for compressive and rotational kinetic energy

@ Scale-by-scale budget for scalar fields

P Future work

»  Multiple scale expansion to take into account acoustical effects
* Detailed chemical kinetics

» Benchmarking for LES calculation



