A Mach-uniform pressure correction algorithm

Krista Nerinckx, J. Vierendeels and E. Dick

Dept. of Flow, Heat and Combustion Mechanics GHENT UNIVERSITY Belgium

Mach-uniform algorithm

- Mach-uniform accuracy
- Mach-uniform efficiency
- For any level of Mach number
- Segregated algorithm: pressure-correction method

Discretization

- Finite Volume Method (conservative)
- Flux: AUSM+
- OK for high speed flow
- Low speed flow: scaling + pressure-velocity coupling

Convergence rate

- Low Mach: stiffness problem
- Highly disparate values of u and c
- Acoustic CFL-limit: $\frac{(u+c)\Delta t}{\Delta x} \leq CFL_{u+c}^{MAX}$

breakdown of convergence

Remedy stiffness problem:

- Remove acoustic CFL-limit
- Treat acoustic information implicitly

Acoustic terms ?

• **Consider Euler equations** (1D, conservative) :

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$
$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u u}{\partial x} + \frac{\partial p}{\partial x} = 0$$
$$\frac{\partial \rho E}{\partial t} + \frac{\partial \rho H u}{\partial x} = 0$$

- Expand to variables p, u, T
- Introduce fluid properties : ρ=ρ(p,T)
 e=e(T) or ρe=ρe(p,T)

$$\rho_{p}\left(\frac{\partial p}{\partial t}+u\frac{\partial p}{\partial x}\right)+\rho_{T}\left(\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}\right)+\rho\frac{\partial u}{\partial x}=0$$

$$\rho\frac{\partial u}{\partial t}+\rho u\frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0$$

$$\left(\rho e\right)_{p}\left(\frac{\partial p}{\partial t}+u\frac{\partial p}{\partial x}\right)+\left(\rho e\right)_{T}\left(\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}\right)+\left(\rho e+p\right)\frac{\partial u}{\partial x}=0$$

• Construct equation for pressure and for temperature from equations 1 and 3:

$$\begin{bmatrix} \frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho c^2 \frac{\partial u}{\partial x} = 0\\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0\\ \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + \frac{p}{\rho e_T} \frac{\partial u}{\partial x} = 0 \end{bmatrix} \xrightarrow{\bullet} \text{ quasi-linear system in p, u, T}$$

with
$$c^2 = \left(1 - \frac{\rho_T p}{\rho e_T}\right) \frac{1}{\rho_p}$$
 c: speed of sound (general fluid)

• Identify acoustic terms:

$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho c^2 \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$
$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + \frac{p}{\rho e_T} \frac{\partial u}{\partial x} = 0$$

• Go back to conservative equations to see where these terms come from:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$

$$\underline{\text{momentum eq.}}$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u u}{\partial x} + \frac{\partial p}{\partial x} = 0$$

- Special cases:
 - constant density: ρ=cte

- perfect gas:
$$\rho e = \frac{p}{\gamma - 1}$$

$$(\rho e)_T \rho \frac{\partial u}{\partial x} - \rho_T (\rho e + p) \frac{\partial u}{\partial x}$$

continuity equation contains no acoustic information

```
energy eq.
determines pressure
```


- perfect gas, with heat conduction:

- \rightarrow conductive terms in energy equation
- → energy and continuity eq. together determine pressure and temperature
- → treat conductive terms implicitly to avoid diffusive time step limit

Successive steps:

- Predictor (convective step):
 - continuity eq.: ρ^*
 - momentum eq.: ρu*
- Corrector (acoustic / thermodynamic step):

$$p^{n+1} = p^n + p'$$

 $(\rho u)^{n+1} = (\rho u)^* + (\rho u)'$
 $T^{n+1} = T^* + T'$

• Momentum eq. :

$$(\rho u)' = f(p')$$

• Continuity eq. :

$$\rho_i^{n+1} = \rho^* + \rho_T T' + \rho_p p'$$

$$(\rho u)_{i+\frac{1}{2}}^{n+1} = (\rho u)^* + (\rho u)'$$

$$\rightarrow p' - T' \text{ equation}$$

• energy eq.:
$$(\rho E)_{i}^{n+1} = (\rho E)^{*} + (\rho e)_{p} p' + (\rho e)_{T} T'$$

 $(\rho H u)_{i+\frac{1}{2}}^{n+1} = (\rho e + p)^{*} (u^{*} + u') + \frac{1}{2} \rho^{*} u^{*^{2}} u^{*}$
 $q_{i+\frac{1}{2}}^{n+1} = K \frac{\partial (T^{*} + T')}{\partial x}$
 $\rightarrow p'-T'$ equation

- coupled solution of the 2 p'-T' equations
- special case: perfect gas AND adiabatic
 - \rightarrow energy eq. becomes p'-equation
 - \rightarrow no coupled solution needed

Test cases

(perfect gas)

1. Adiabatic flow

→ p'-eq. based on the energy eq. (NOT continuity eq.)

Low speed:

- Subsonic converging-diverging nozzle
- Throat Mach number: 0.001
- Mach number and relative pressure:

UNIVERSITEIT

GENI

High speed:

- Transonic converging-diverging nozzle
- Normal shock
- Mach number and pressure:

2. non-adiabatic flow

- if p'-eq. based on the energy eq.
 - → explicit treatment of conductive terms
 - → diffusive time step limit: $Ne = \frac{\kappa \Delta t}{\Lambda r^2} \le \frac{1}{2}$
- if coupled solution of p' and T' from continuity and energy eq.

\rightarrow no diffusive time step limit

1D nozzle flow

NOZZLE			stable?		timesteps		calc time	
	κ	Ne	exp	coup	exp	coup	exp	coup
Subsonic	10^{-5}	10^{-3}	yes	yes	220	208	19.6	23.5
$M_t = 0.01$	0.01	1	yes	yes	259	224	22.3	24.5
$Ne \approx \kappa \frac{CFL_u}{0.01}$	0.1	10	no	yes	-	337	-	36.8
	1	100	no	yes	-	646	-	70.4
	10	1000	no	yes	-	222	-	24.5
Subsonic	10^{-5}	10^{-4}	yes	yes	1186	1180	101.2	128.8
$M_t = 0.1$	0.1	1	yes	yes	1182	1176	101.1	128.4
$Ne \approx \kappa \frac{CFL_u}{0.1}$	1	10	no	yes	-	1211	-	132.2
	10	100	no	yes	-	2019	-	228.7
Transsonic	10^{-5}	10^{-5}	yes	yes	3280	3309	290.0	372.9
$Ne \approx \kappa \frac{CFL_u}{1}$	1	1	yes	yes	3169	3200	279.9	359.0
Â	10	10	no	yes	-	4850	-	549.7
	100	100	no	yes	-	3696	-	413.3

Thermal driven cavity

- Ra = 10³
- E = 0.6
- very low speed: M_{max}=O(10⁻⁷)
 → no acoustic CFL-limit allowed
- diffusion >> convection

 in wall vicinity: very high ∆T
 → no diffusive Ne-limit allowed

Temperature distribution:

Streamlines:

Conclusions:

- Pressure-correction algorithm with
 - Mach-uniform accuracy
 - Mach-uniform efficiency
- Essential:

convection (predictor) separated from acoustics/thermodynamics (corrector)

- General case: coupled solution of
 - energy and continuity eq. for p'-T'
- Perfect gas, adiabatic: p' from energy eq.
- Results confirm the developed theory

