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This study focuses on natural convection flows of air in a two-dimensional differentially heated
cavity under large temperature gradients with the fluid viscosity a nonlinear function of tempera-
ture. The transition to time-dependence appears to be subcritical and numerical simulations in the
vicinity of transition exhibit intriguing time-dependent solutions. These solutions are intermittent
with periodic bursts separating quasi-steady states. To understand these observations we perform
a linear stability analysis of steady and time-dependent base solutions.

The model equations are the low Mach approximation equations obtained by Paolucci [1] allow-
ing for filtering of sound waves. We integrate these using a finite volume method with fractional
time stepping derived from the projection method used to compute incompressible flows. To under-
stand the intermittent bursting dynamics, we have developed a pseudo-linearization method which
allows us to compute linearized solutions using only the original nonlinear time stepping code. The
pseudo-linearization is combined with Arnoldi method to allow us to compute efficiently leading
eigenmodes of both steady and unsteady states.

The computations are performed using the configuration previously described [2], corresponding
to a relative horizontal temperature difference (with respect to the mean temperature) of 120%,
in a cavity of vertical aspect ratio 4. The Prandtl number is constant equal to 0.71, the Rayleigh
number is Ra = 2.3 x 10, and the viscosity coefficient is given by Sutherland’s law. Horizontal
boundaries are adiabatic. The computational mesh is 128 x 256.

Figure 1 shows a time series with two bursts of the intermittent dynamics found near onset.
Figure 2 shows a snapshot of the fluctuation of temperature with respect to the mean temperature
field within a burst. Our linear computations of flows at points P1 - P5 along the quiescent part of
the solution reveal that the real part of the leading eigenvalue varies from negative (P1 and P2) to
positive (P3, P4, and P5). The eigenvalues are complex with imaginary part corresponding closely
with the burst frequency. Figure 3 shows the temperature component (real and imaginary parts) of
the leading eigenmode computed at time labeled P3. This locally unstable eigenmode of the slow
flow has the form of the fast bursting phase of the dynamics. This can be understood in terms of
a slow passage through a Hopf bifurcation [3].

In addition, our method is used to determine leading eigenvalues of steady flows prior to onset
and from these the critical Ra for transition Ra = 2.43 x 10°. This verifies that the transition is
subcritical.
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