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Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid 
dynamics problem. Ostensibly this apparently trivial flow could be solved using the 
incompressible Navier-Stokes equations, universally believed to be adequate for such 
problems. Most researchers would, however, simply use the incompressible flow 
assumption to estimate the velocity as a function of radius and the incompressible 
Bernoulli equation to compute the pressure gradient. 
 
Because this approach does not dynamically determine the velocity, it is fair to ask 
whether the solution exactly represents such flow or whether the actual laminar velocity 
will be greater or less than the incompressible velocity. To answer this, it is eminently 
appropriate to solve the more rigorous compressible problem. If the incompressible flow 
assumption is robust, it will show that in the limit of zero velocity any compressible 
contribution decreases more rapidly in importance than incompressible contribution, 
leading to the incompressible flow limit. 
 
A Lagrangian compressible-flow analysis is used to obtain an analytical solution to the 
problem. The exact solution shows that for the most natural flow, adiabatic flow, and 
isothermal and other flows, the true velocity is different from the incompressible velocity, 
even at the limit of zero velocity. Thermodynamically speaking, only for the very special 
incompressible case is this untrue. However, it is not difficult to show that assuring 
incompressible flow would require extraordinary efforts to develop the techniques to 
precisely modify the flow by adding or extracting heat from the system. Free flow, of 
which adiabatic flow is the most representative, will not maintain constant density. In 
fact, in the radial flow problem it can be shown that for adiabatic flow between two 
parallel plates the pressure gradient is proportional to the divergence of the velocity and 
there cannot be a pressure gradient without it. 
 
The analytical solution is based on applying Newton’s second law of motion, not the 
Navier-Stokes equations. A robust Navier-Stokes approach must be able to duplicate this 
result given the same laminar flow assumptions. What it shows is that pressure and 
density remain linked at low velocity through the equation of state. There is no 
uncoupling between pressure and density at low velocity. The analytical solution does not 
contain an incompressible term that becomes large compared to the compressible term at 
the limit of zero velocity. Given the thermodynamic constraint (adiabatic, isothermal or 
other flows), or temperature, solving the density problem is equivalent to solving the 
pressure problem, and vice versa. However, in many instances, density, not pressure, is 
the independent variable. 
 
Finding a single low-velocity flow phenomenon that cannot be derived from the 
incompressible paradigm will prove this is more than an academic argument. Invoking 
the low-velocity Mach number criterion, one frequently finds claims in the literature that 
the incompressible Navier-Stokes equations adequately represent insect flight. But the 



compressible model suggests that hovering insects use compression-decompression 
cycles to gain lift on the downstroke and an assist on the upstroke. This work examines 
insect flight and offers a glimpse of the future of fluid dynamics after incompressible 
theory assumes a subordinate role as a special case of compressible flow theory. 
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