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 The present paper describes a methodology for constructing and numerically resolving a 
reduced model for isothermal biphasic incompressible flows. The incompressibility constraint is 
handled through a two-phase preconditioning technique that requires consistent modifications of the 
standard one-phase preconditioning techniques. 
 The main flow features considered are: incompressible flow in the dense phase (liquid), low 
Mach number or incompressible flow in the light phase (gas) and an interface confined in thin regions 
where the dense and light fluids are mixed. 
 Several challenges have to be handled. The first challenge is connected to the numerical 
scheme which should prevent the interface smearing during its evolution characterized by gross 
topological changes. The second challenge looks for the appropriate modeling of the physics associated 
to the interface. The third the challenge is related to the difficulty of the numerical handling of the 
incompressibility constraint and the computation of the pressure field in density based algorithms, in 
presence of very large density variations over a moving interface. 
 The Eulerian capturing techniques, such as Level Set (LVS) or Volume of Fluid (VOF) 
methods offer the framework for handling successfully these challenges. Our experience with LVS and 
VOF methods combined with a preconditioning technique showed that new insights in the pressure 
wave propagation over the interface, called here acoustic phenomena, should be gained. 
 Indeed, because the preconditioning technique recovers the pressure field by employing an 
advection equation for pressure the effect on the speed of pressure waves, induced by the homogeneous 
mixture contained in the interface, has to be quantified. This quantification, in the form of the speed λ  
of the pressure waves over the moving interface, is retrieved in the formulation of the pseudo-sound 

speed mβ , the key parameter of any preconditioning technique. 

 In order to devise our two-phase preconditioning technique the following 3-steps methodology 
was employed: 

• work out an expression for the speed of the pressure waves propagating through a stationary 

interface also known as mixture sound speed ma ; 

• work out an expression for the speed of the pressure waves λ  propagating through a moving 
interface. 

• construct an advection equation for pressure and precondition it in order to have the same 
order of magnitude for the sound speeds and the convective velocities. 

The first two steps are handled with a homogenization technique also known as multiple scale 
asymptotic technique (Kevorkian and Bosley (1998), Lurie (1997)) applied to a 1D layered periodic 
structure, modeling the interface, in the space domain x  and space-time domain ( tx, ) respectively. 

The outcomes of these steps are closed formulas for ma : 
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where C  is the VOF fraction of the dense phase, k a2ρ=  the bulk modulus and ∧  denotes the 

following average for a variable ω : 
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 The preconditioned form of the governing system of our model is: 
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The pseudo-sound speed of the mixture mβ  is defined by a Turkel-like formula: 
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The refuα  is a flow dependent cutoff value and the min function allows using the formula also for 

“supersonic” regimes in the interface region. The last ratio measures the kinematical effects induced by 
the interface movement. It is found that this ratio is critical for the robustness of two-phase 
preconditioning technique. 
 Separate temporal and spatial discretizations are used for the governing system of the reduced 
model. A dual-time stepping technique is employed to advance the solution in the physical time. At 
each physical time step a steady state problem is solved in the pseudo-time and acceleration techniques 
can be applied to speed up the convergence. 
The discretization process is as follows: 

• the spatial discretization uses the central scheme stabilized with an artificial dissipation of 
Jameson type, the VOF-type advection equation uses a first order upwind scheme 

• the pseudo-time smoother is represented by a 4th order Runge-Kutta scheme with optimized 
coefficients 

• the dual-time stepping technique employs first or second-order accurate backward 
differencing in the physical time to advance the solution. 

 Validation is made against the broken dam problem. For this test case we added a level set 
advection equation in order to control the numerical diffusion of the interface only on its edge between 
the dense phase and the mixture. Figures 1 and 2 show the evolution of the free surface (marked by the 
zero level set) and the comparison with the experimental data provided by Martin and Moyce (1952). 
 Figures 3 and 4 emphasize the solution computed for an industrial application namely the 
hydroplaning of the 195/65R15 rigid slick tire (see Grogger (1996)). The application is challenging 
because one has violent impacts between the free surface and the tire with formation of sprays in its 
frontal part. In figure 3 one can find the density distribution in the computational domain and in figure 
4 the frontal pressure distribution on the ground, on the symmetry axis, is given. The difference 
between the computations and experiment is due to the fact that the tire’s deformability is not 
considered. Ongoing work is focused on coupling the flow solver with a finite element software which 
evaluates the deformation based on the computed pressure distribution acting on the tire’s skin. 
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Fig. 1 Snapshots with the free surface position in the broken dam problem 

 

 
Fig.2 Broken dam problem: comparison between computation and experiment for the leading 

edge position 
 

 
Fig. 3 Solution for slick tire: density field, regime velocity 60km/h 

 

 
 

Fig. 4 Solution for slick tire: pressure field on the ground, regime velocity 60km/h 


