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The computation of steady flows can be considered efficient not only if a steady state is reached for a reduced
CPU time but also if a low memory storage is used in this process; besides for complex industrial applications
involving grids with very large numbers of points this latter requirement may become especially critical. The
same comment holds of course for unsteady flows, now classically computed by a dual time-stepping approach
in which a steady-state with respect to the dual time must be approximately reached at each physical time-
step. The strong need for low-storage efficient implicit treatments has led to the development of so-called
matrix-free methods [1][2]. In the particular applications we are dealing with here, namely the simulation
of buoyant multicomponent reactive flow in a nuclear reactor containment, the methods should be versatile
enough to deal with flow regimes ranging from nearly incompressible to highly compressible [3]. It has been
known for more than a decade now that a proper preconditioning, so-called low-Mach preconditioning, of the
equations governing compressible flows enables the application of schemes initially developped for compress-
ible flows simulation to the incompressible regime (see [4] for a recent review). The introduction of such a
preconditioning matrix in an implicit scheme is not really an issue if a standard block factorization or relax-
ation is used to solve the linear system associated with the implicit stage [5][6]. However, one may wonder
whether it is possible to preserve a matrix-free implicit treatment for flows at all speeds when the implicit
stage involves a preconditioning matrix; it is the purpose of the present paper to bring an answer to this
question.
A time-accurate solution of the Navier-Stokes equations is computed for flows at all speeds by solving :
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where τ is a pseudo or dual-time, t is the physical time, fE
p and fV

p are respectively the Euler (convective) and
viscous fluxes in the pth space-direction (d is the dimension of the problem) and P is a preconditioning matrix
which takes, in the present work, the form proposed in [7]. System (1) is solved by the following scheme :
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where m is the pseudo-iteration (on dual-time) counter, n is the time step counter, j = (j1, j2, . . . , jd) is
a multi-integer associated with a point xj = (j1δx1, . . . , jdδxd) of a regular Cartesian grid; (δph

p) is the
difference operator on a grid cell δp in the pth space-direction applied to the numerical flux hp approximating
the physical flux (fE
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, where ep is a multi-integer with components epq

equal to 0 if q �= p and to 1 if q = p. For high-resolution computation, the numerical flux depends on
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using a now standard MUSCL approach. It is easy to check that, at steady-state on τ , scheme (2) yields a
second-order time-accurate solution of the preconditioned Navier-Stokes equations. In order to speed up the
convergence to the pseudo-steady state, scheme (2) is made implicit with respect to τ ; if a simple first-order
space-discretization is retained to build this implicit stage, it eventually takes the form :

D∆wn,m
j +

∑d
p=1[σp(µpApδp∆wn,m)j − (δp(

˙̃ρp

2 P + ρ̇V
p )δp∆wn,m)j ]

= ∆wexp
j = −∑d

p=1 σp(δph
p)n,m

j − λ[32 (wn,m − wn) + 1
2 (wn − wn−1)]

(3)

where σp = ∆τ/δxp, λ = ∆τ/∆t, ∆wn,m = wn,m+1 − wn,m, µp is the average operator over a grid cell in
the pth space-direction ((µpv)j = 1
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)), ˙̃ρp is the spectral radius of the preconditioned Jacobian
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p . The diagonal
coefficient appearing in the LHS implicit stage is defined by :
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In order to produce a matrix-free method, products Apδp∆wn,m appearing on the LHS of (3) are replaced by
δp∆(fE

p )n,m and all the non-diagonal terms are relaxed to yield :
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For standard compressible flows, in which preconditioning is not required, P = Id so that D is a diagonal
matrix and the implicit scheme (5) is indeed matrix-free since D−1 acts as a scalar on each component of the
RHS. However, when the preconditioning [7] is applied, P becomes of the form :
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where Φ is a function of the local Mach number, c is the speed of sound, u and v the velocity components
and H the total enthalpy. Consequently the diagonal coefficient D given by (4) is now a full matrix, to be
inverted, so that storage requirement and operations count of the implicit treatment increase for low Mach
number flows. This loss of efficiency can be cured if, in a first step, D is computed with a single evaluation of
matrix P at point j, resulting in a diagonal coefficient of the form :
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Taking advantage of the fact that the matrix Q in (6) satisfies Q2 = Q, it is easy to obtain an explicit
expression for D−1; left-multiplying (5) by this expression and rearranging leads to :
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Treatment (8) becomes wholly matrix-free if the specific expression of matrix Q given in (6) is used to express
a matrix-vector such as Q · X under the form :
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with X(m) the components of vector X . Note that the implicit scheme (8) is not only matrix-free now but
also allows to decouple the standard matrix-free implicit treatment used for compressible flow from the added
treatment specific to low-Mach number flows (Φ �= 1). Applications of the scheme (with explicit treatment of
Roe, Rusanov or AUSM+ type) will be presented at the Conference for a range of low-Mach number flows,
on structured and unstructured grids; assessment of the efficiency gains offered by the approach with respect
to more conventional block treatments will be detailed.
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[1] H. Luo, J.D. Baum, R. Löhner, An accurate, fast, matrix-free implicit method for computing unsteady flows on

unstructured grids, Computers and Fuids, 30 (2001), 137-159.

[2] Y. Zhao, Computation of complex turbulent flow using matrix-free implicit dual time-stepping scheme and LRN

turbulence model on unstructured grids, Computers and Fluids, 33 (2004), 119-136.

[3] A. Beccantini, F. Dabbene, S. Kudriakov et al., Simulation of hydrogen release and combustion in large scale geome-

tries: Models and Methods, Int. Conf. on Supercomputing in Nuclear Application, Paris, France, Sept. 22-24, 2003. .

[4] E. Turkel, Preconditioning techniques in CFD, Annu. Rev. Mech. 31 (1999), 385-416.

[5] W.R. Briley, L.K. Taylor, D.L. Whitfield, High-resolution viscous flow simulations at arbitrary Mach number, J.

Comput. Phys. 184(2003), 79-105.

[6] S.A. Pandya, S. Venkateswaran, T.H. Pulliam, Implementation of preconditioned dual-time procedures in OVER-

FLOW, AIAA Paper 2003-0072, Jan. 2003.

[7] J.M. Weiss, W.A. Smith, Preconditioning applied to variable and constant density flows, AIAA J., 33, n◦ 11

(1995).


