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Abstract

In the framework of the modeling of the plasma by the compressible Euler equations,

we consider the transport of suprathermal particles created by fusion, whose modeling is

made by a kinetic equation. We focus on the coupling between the fluid model and the

kinetic equation ; the momentum and energy deposit has to be consisered precisely and

a coherent treatment of the electric plasma field has to be made. We emphasize some

details of the numerical simulations.

INTRODUCTION

In hot plasmas such as stellar plasmas or plasmas produced by laser in Inertial Confinement Fu-
sion, the fusion of Deterium and Tritium creates Helium ions whose initial velocity is very large
compared to the thermal velocity of plasma ions (so they are called suprathermal particles). It
is crucial to deal correctly with the slowing down of these particles due to the Colomb interac-
tion with the plasma and to perform the coupling of these phenomena with the hydrodynamics
of the plasma. Moreover, it is well known that for the plasma, one has to take into account
a two-temperature model, with an electron temperature Te different from the ion temperature
T0. For a relevant physical modeling, one has also to consider the electric plasma field E (see
[1]).

The modeling of the transport of the suprathermal (ST) particles by a Vlasov-Fokker-Planck
equation and the numerical simulation have been studied for a very long time by physicists see
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for example [7],[4] specially in a homogeneous plasma. But the momentum and energy deposit
in the momentum and energy balance equations of the fluid model has to be consisered precisely
and a coherent treatment of the electric plasma field has to be made (which was not the purpose
of the mentioned litterature). So we focus here one these coupling aspects.

The outline of the paper is the following. Section 1 is devoted to the statement of the
model, specially the coupling between the plasma and the ST particles. In section 2, we give
some enlightments on the Monte-Carlo method for the ST particles. In the last section, some
numerical results are given.

1 THE MODEL

For the shake of simplicity, the plasma is assumed to contain only one species of ions.
Notations : me, m0, ms are the mass of the electrons, the ions and the ST particles ; qs the

ST particle charge, Z the ionization level of the plasma ion ; U the plasma velocity ; ε0 which
is proportional to T0 and εe = 3

2
ZTe are the internal energies ; P0 and Pe = ZNTe the ion

and electron pressures (the relation between P0 and ε0 is given by an equation of state); Ω the
energy exchange term between ions and electrons which is proportional to (Te − T0). Denote
also by f(t, x,v) the distribution function of the ST particles, where v ∈ R3 and x belongs to
a bounded domain in R3.

The Vlasov-Fokker-Planck equation. For the sake of simplicity, one assumes that
the ST particles undergo Coulomb interactions on electron population only, so the evolution
equation of f reads

∂

∂t
f + v.∇f = −

qs

ms
E.

∂f

∂v
+ ZN

∂

∂v
.((Sf)(v − U)) (1)

and the simplest form of the operator S reads as (by defining w = v − U)

Sf(w) = Y wf + Oe(w).
∂f

∂v
, Oe(w) ' 3Y

Te

ms

(

1 −
ww

|w|2

)

.

The coefficient Y is roughly speaking proportional to T
−3/2

e , see [4]. For any function φ defined
on the whole space R3 one sets 〈φ〉 =

∫

φ(v)dv. The balance relations related to (1) are

ms(
∂

∂t
〈vf〉 + ∇〈vvf〉) = qsE 〈f〉 − msZN 〈Sf〉 ,

ms

2

∂

∂t

〈

|v|2f
〉

+
ms

2
∇.

〈

v|v|2f
〉

= qs 〈vf〉 .E − msZN 〈v.Sf(· − U)〉 .

The Euler system. Consider now the plasma model. The continuity equation is not
changed by the coupling with the ST particles

∂

∂t
N + ∇(NU) = 0. (2)
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In the momentum equation, one has to add by a natural way the counterpart of the momentum
change of the ST particles (msZN 〈Sf〉) added to (qsE 〈f〉), that is to say, with Ptot = Pe +Pi

m0

(

∂

∂t
+ ∇(U•)

)

(U) + ∇Ptot = msZN 〈Sf〉 − qsE 〈f〉 . (3)

Define f̃(w) = f(w + U). Since 〈v.Sf(· − U)〉 =
〈

(w + U).Sf̃
〉

, if the plasma were char-

acterized by only one internal energy εtot = εe + ε0, the plasma energy equation would read
as

(

∂

∂t
+ ∇(U•)

)

(

Nεtot +
m0

2
N |U|2

)

+ ∇.(PtotU) + ∇.qther =

msZN(
〈

w.Sf̃
〉

+ U.
〈

Sf̃
〉

) − qsE. 〈vf〉 .

where qther is the Spitzer thermal flux proportional to the gradient of Te, see [6]. So for the

internal energy equation, the source term would reduce to msZN
〈

w.Sf̃
〉

+ Q, where :

Q = −qsE.
〈

wf̃
〉

.

As a matter of fact, two energy evolution equations are to be considered for a classical
modeling of the plasma. Let us recall that without any coupling with the ST particles, they
read as (see [5]).

(

∂

∂t
+ ∇(U•)

)

(Nεi) + Pi∇.U − Ω = 0 (4)

(

∂

∂t
+ ∇(U•)

)

(Nεe) + Pe∇.U+∇.qther + Ω = 0 (5)

The simplest defintion for E is ∇Pe + ZNqeE = 0, see [1]. Consider now the coupling with
the ST particles : we must add at the right hand side of (5) all the terms coming from this
coupling

(

∂

∂t
+ ∇(U•)

)

(Nεe) + Pe∇.U+∇.qther + Ω = msZN
〈

w.Sf̃
〉

+ Q (6)

Up to our knowledge, system (2)(3)(4)(6) has not been considered up to now. Let us notice
that in [2] such a system is written in 1D without the term Q. This term is the counterpart of
the work of the electric field. It is crucial (and not intuitive) to notice that this work has to be
evaluated in the matter reference frame.

Of course one get a global momentum balance relation and a global energy balance relation.
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The coupling terms. The momentum deposition term within the matter reference frame
reads as

〈

Sf̃
〉

= Y

(

〈

wf̃
〉

+ 3
Te

ms

〈

2w

|w|2
f̃

〉)

,

The ST particle energy ms|w|2 is generally large compared to the electron temperature, so the

second term is negligeable compared to the first one and
〈

Sf̃
〉

' Y
〈

wf̃
〉

. Since w.Oe(w) = 0,

the energy deposit term within the matter reference frame reads as
〈

w.Sf̃
〉

= Y
〈

|w|2f̃
〉

2 NUMERICAL METHOD.

The Euler system. One uses a Lagrange type code based on the classical Wilkins method.
At each time step, this method consists of two stages : firstly move each node according to

the force due the pressure gradient, secondly solve the internal energy equations, see [5]. These
stages are followed by a mesh regularization.

To perform the coupling between the two models, one must evaluate in each cell the electric
field E on one hand and the momentum and energy deposit by the ST particles on the other
hand.

The transport equation. A Monte-Carlo method is used. The method is based on the
approximation of the solution f(t, x,v) by a sum of Dirac measures, see [3]. For instance at
the begining of the simulation, one sets

f(0, x,v)dxdv '

Npart
∑

p=1

ωpδvp
(dv)δxp

(dx).

where the weights ωp of the particles are such that in each cell M, one has

∑

p, s.t. xp∈M

ωp =

∫

M

∫

f(0, x,v)dvdx,
∑

p, s.t. xp∈M

ωpvp,i =

∫

M

∫

f(0, x,v)vidvdx

It is usefull for a good implementation to have a probabilist interpretation of the dual
operator of f ↪→ − qs

ms
E.∂f

∂v
+ ZN ∂

∂v
.((Sf)(v − U)) that is to say (with YD = 3ZNY Te

ms
)

ϕ ↪→
qs

ms
E.

∂ϕ

∂v
− ZNY (v − U)

∂ϕ

∂v
+ YD

∂

∂v

(

(1 −
ww

|w|2
)
∂ϕ

∂v

)

Notice that

1. E ∂
∂v

ϕ corresponds to an acceleration in the direction of E
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Figure 1: Temperature and density profiles versus radius

2. −w ∂
∂v

ϕ corresponds to a straight line slowing down (in the matter reference frame)

3. the deflection operator ∂
∂w

(1− ww

|w|2
) ∂ϕ

∂w
corresponds to a diffusion on a sphere, indeed one

can check that the solution of the elementary equation (of Laplace-Beltrami type)

∂ϕ

∂t
−

∂

∂w
(1 −

ww

|w|2
)
∂ϕ

∂w
= 0, ϕ(0,w) = δ

w0

satisfies
∫

ϕ(t,w)|w|2dw = |w0|
2 for any t. As a matter of fact, the solution of this equation is

an analytic function depending only on the angular variable w.w0 and its support is the sphere
of radius |w0|. So the Monte-Carlo method consists in a tracking of the particles in the mesh
used by the hydrodynamics of the plasma. In each cell M , where the mean velocity is UM ,

the particles move with their relative velocity wp = vp − UM , and their velocity are changed
according to the three modifications listed above.

Moreover, when the particle p goes from cell M to cell M ′, its velocity wp has to be corrected
by the following way

w′
p + UM ′ = wp + UM .

In each cell M, one has to estimate the quantities
〈

f̃
〉

|M ,
〈

wf̃
〉

|M ,
〈

|w|2f̃
〉

|M , with in

the matter reference frame. For instance, we get
〈

wf̃
〉

|M '
∑

p,s.t.xp∈M wpL
M
p ωp, where LM

p

denotes the distance of particle p in the cell M.

3 NUMERICAL RESULTS

Numerical example 1.
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Figure 2: Profiles of ∇Ptot and of msN
〈

Sf̃
〉

versus radius

One addresses a dense and hot spherical plasma with a source of ST particles in the center
of the sphere. The initial density and temperature profiles are very stiff (conditions of Inertial
Confinement Fusion plasma), see Fig. 1. At a given time, one compares the profile of the
momentum deposit with the profile of ∇Ptot, (Fig. 2). One notices that the momentum deposit

msN
〈

Sf̃
〉

is important in the zone where the pressure gradient is large, which is the crucial

zone for energy deposit.
Numerical example 2.
The same spherical plasma is considered with the same Te profile, but with ρ much lower.

The comparison of Q with I = msN
〈

w.Sf̃
〉

at a given time step is plotted on Fig. 3. One

sees that in that case the influence of the term Q may be not negligeable.
CONCLUSION.
In the two-temperature Euler equations modeling a hot plasma, we have performed the

coupling with a simplified transport equation which is relevant for the slowing down of the ST
particles. This coupling has be made by a consistant manner in such a way that there is good
momentum and energy balance. It is implemented in a plasma code and some preliminary
numerical results are given.
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Figure 3: Profiles of I and I + Q versus radius
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