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Motivations: low aspect ratio, high beta

• The toroidal magnetic field (supplied by the current flowing in the 
central column) needed to keep  the plasma stable can be a factor of 10 
less in a spherical tokamak than that of a conventional tokamak 
carrying the same plasma current. 
•Efficiency is measured in values of the parameter ß .
Ref : homepage of Start project 
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Spherical Tori, Spheromaks and FRCs 

• Spheromaks are low β toroidal confinement configurations where currents
 flowing in the plasma produce the magnetic field almost entirely; they have a finite internal toroidal magnetic 
field, which vanishes at the plasma surface; hence no external field coils link the plasma. 
• Field Reverse Configuration’s are high β toroidal confinement configurations 
with zero toroidal magnetic field everywhere and so, like spheromaks, do not have coils linking the plasma. 

Spheromaks manage to have a toroidal field without having toroidal field coils;
 FRCs do not have toroidal field coils, but also do not have a toroidal field
• ST is a modification of the conventional tokamak and differs by having a much smaller aspect ratio 

 

Compact tori in the world :
 NSTX (US), START(UK), 
Globus (Rus.), TS 3 
(Japan),..
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The Spherical Tokamak (ST) is a magnetic confinement configuration 
that provides plasma β much higher than conventional tokamaks
The advantage stems from the nearly-geodesic lines of force in ST

Severe space constraints for material center column:
• No space for central solenoid
• No neutrons shield (no superconductor/high dissipation)

PROTO-SPHERA1: a plasma central column (ST-PCC)2

Requires electrodes and plasma self-organization!

1 F. Alladio, et al., Nucl.Fus. 46 S613 (2006)
2 S.C. Hsu & X.Z. Tang,  J.Fus.En. (2006) Complementary proposal-LANL 

2

PROTO-SPHERA
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• e l e c t r ode  plasma - ope n  f i e ld  l i n e s - h as j  || B  
 

• t h e  ope n  f ie ld l i ne s al so  w ind t or o idal l y 

• magne t ic  r e c onn e c t io ns c on v e r t  ope n  j ,B  l i n e s in t o  

c l ose d  j ,B  l in e s w ind in g on  a sphe r ic al  t or u s 

Driven relaxation of Plasma Central Column
forms & sustains the ST

PROTO-SPHERA

PCC - ScrewPinchPlasma (SP), electrode-driven

Elongated ST (k  ≥ 2.3), aspect ratio A~1.2
to get an MHD safety factor q0~ 1, qedge~ 3

PCC electrode current: Ie=60 kA

ST toroidal current
(limited by ideal MHD): IST=240 kA

ST diameter Rsph=0.7 m

3

“Smoke-ring like
self-organization”:
sustainement by
Helicity Injection
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Proto-Sphera experiment: aim

•The PROTO-SPHERA experiment aims at sustaining a flux-core-spheromak,while 
exploring the configuration space that connects spherical tori and spheromaks. 
•The compression of the central pinch, while decreasing the total longitudinal pinch 
current, would lead, if successful, to the formation of a field reversed configuration. 
• PROTO-SPHERA could also explore a new technique for setting up an FRC. 
• PROTO-SPHERA could also aim at exploring the novel Chandrasekhar-Kendall-Furth 
configuration  consisting of a spherical torus enclosed within a spheromak.

Objectives of the numerical modeling

• validate different scenarii of plasma formation
• help to conceive realistic CKF configuration

• study the ideal MHD stability of configurations 



7

Outline

•  MHD equilibrium equations
•  Boozer coordinates
• Ideal MHD stability: numerical modelling
• CKF configurations
• Proto-SPHERA 
•  Future
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Derivation of Grad-Shafranov equilibrium MHD equations

,

,

,0.

0

BJ

JB

B






p



 eeB B

Magnetic field obey to equilibrium MHD 
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Derivation of Grad-Shafranov equations  

iso- pressure are orthogonal to field lines, then : 
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1. P(Ψ),rBφ(Ψ) are given functions of Ψ.
2.  β poloidal and total toroidal current are given
3. Plasma boundary (ψ=cste)  pass trough X-point (B poloidal=0) 

Nonlinear free-boundary problem
 

Ψ is the poloidal magnetic flux

Magnetic axis

X-point

X

Symmetric axis

Iso Ψ 
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Numerical methods for solving GS equation 

Some families of numerical methods:
2.  Iterative reconstruction of metric defined by magnetic 

surfaces:
• require a topology of plasma described by magnetic 

surfaces 
3. FEM or FD methods need to solve a linear system into a 

nonlinear loop (J. Blum)
•  unstructured meshes, boundary conditions

4. Semi-analytical expansion : spherical or toroidal coordinates
• efficient for quasi-spherical (toroidal) configurations 

(Alladio, Chrisanti)
5.  Green functions (Kerner)

• accurate, require CPU and large memory, need 
optimization

see Takeda’s review (JCP 84)
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Green’s function 
Int. J. of Comp. Eng. Sci., (2004)

Formulation of GS by integral representation :

Ingredients : 

• Galerkin method with constant or Q1 elements on N=NrXNz cells 

recovering a rectangular estimation of the plasma:

• Over relaxation scheme :

•  Expansive computational cost of K(jt(Ψ)), FFT accelerate the 

computation: 
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ΨS  is the poloidal magnetic flux created by magnetic external coils
G is the Green function of GS operator

2/3)log(2 NN

Magnetic axis

X-point

X

Symmetric axis

Iso Ψ 

External coils



12

Green’s function : implementation

1.  Initialization with calculation of matrix K and ΨS 
2.  From Ψn compute poloidal field Bn 

3. Search the point of the mesh (in a given zone) that 

realizes the minimum of the modulus of Bn 

4. Compute the plasma shape

5. Compute the toroidal current density and 

normalize to respect constraints.

6.  Apply FFT matrix product K

7. Apply over-relaxation algorithm 

8.  Compute residual and stop the iterations if 

necessary
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Green’s function : numerical results ,
 conventional tokamak

0.303-0.930.304-0.93X-point

0.60.6R axis

0.930.9Volume

6.286.3Aspect ratio

0.680.69Triangularity

Semi-analyticalGF

Comparisons with semi-analytical methods:
Tokamak with large aspect-ratio (~6), 
results deal for a shot characterized by the following plasma's 
parameters :Ip=250kA , β=1.5
Q: safety factor : number of turns in the toroidal/poloidal

safety factor
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Specific conditions for Proto- Sphera experiment
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1. The SP is a homogeneous force-free plasma : p=constant
2. The ST-SP interface is defined by the separatrix passing through 

X-point

3. Inside ST: 
4. Total toroidal current flowing inside the ST and beta poloidal are 

inputs
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Green’s function : numerical results , Sphera + Pinch

Predictive calculations for Sphera: Ip=2.7MA,β=0.07,Ie=0.38MA, Nr*Nz=100*128, CPU time=2-3mn

toroidal current

0.118-0.8680.3961.081.200.73

X-pointR-axisVolumeAspect ratioTriangularity
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Boozer coordinates

1. Axisymmetric MHD equilibrium calculations are usually carried out in 
terms of the poloidal flux or toroidal flux enclosed within each magnetic 
surface:

      




1
2

r 
B d
r 
S        



p
1
2

r 
B d
r 
S p2

 

the normalized toroidal current:
The normalized poloidal currrent 
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The magnetic field is expressed in terms of the contravariant basis vectors  as
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Or of covariant basis vectors or in terms as :

In the plane θ,φ field lines are straight
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Boozer coordinates : extension to proto-sphera configurations 
(Phys.Plasmas,2005)

 

Open field lines in the screw pinch: ψX <ψ < ψmax

Closed field lines in the spherical torus: 0< ψ<ψX

Boozer coordinates are extended to the Pinch
 in the following way :
3. Continuity at the separatrix of the metric
4. Continuity of toroidal cuurent 
It can be shown the following expression of θ,φ 

      



s


fI






f2 1

R2Bp
ˆ e pd
r 
l p

s

seq()

 Bp̂  e pd
r 
l p

s

seq()













 

      



s
1

fI





If 1

R2Bp
ˆ e pd
r 
l p

s

seq()

 Bp̂  e pd
r 
l p

s

seq()













 

Divergences of the metric at the symmetry axis, at 
the magnetic axis and at the separatrix have to be 
carefully analyzed.
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Linear MHD stability equations : derivation
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Ideal MHD stability: perturbed vaccum energy
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The normal-mode equation is modified by the free-boundary vacuum magnetic energy 
through an additional term present only upon the last  point : 
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Linear MHD Stability analysis

  The ideal MHD stability of plasma equilibria is usually undertaken expanding 
perturbed plasma displacement    in magnetic coordinates and then solving the 
normal mode equation.
The actual vector components of the displacement    are most easily 
expressed t hrough  the three (normal, binormal and parallel) vectors:
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the key argument for removing the ambiguity is that in the ideal MHD stability problem 
the normal plasma displacement                               being the displacement vector away from 
the equilibrium, must be continuous at the ST-SP interface  
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Stability analysis
Phys.Plasmas(2006)
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The perturbed displacement variables  away from the equilibrium are expanded in a trigonometric 
Fourier series of modes; each mode is labeled by an index l, which corresponds to a poloidal 
number  m and a (fixed as separable) toroidal number n.

Up down symmetry is supposed

Ideal MHD stability code requires to treat configuration with:
2. open and close field lines 
3. separatrices between ST and SP plasma.
4. Vaccum between plasma and camera vessel

Constraints :          
• the metric coefficients near the separatrix 
exhibits singular behavior.
• Symmetric axis is contained in the plasma
=> singularity of the metric when R->0 
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Ideal MHD stability: solver

The radial behavior of the displacement variables  is approximated by an hybrid
 Finite Element Method (Rappaz Gruber (85)). 
For ξ the hat functions are used. For η and μ the piecewise constant functions are used.

A remarkable property of this representation is that neither the parallel component 
appear in the derivatives terms.
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Ideal MHD stability: perturbed vaccum energy
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For each toroidal mode

A 2D finite element method is used that can fit shape of plasma 
and of the surrounding conductors.  
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Synthesis

1.  Solve  the equilibrium MHD equations
2. Calculate the Boozer coordinates 
3.  Expand in trigonometric series the displacement
4.  Discretize the radial variable by FEM
5.  Compute the Vaccum contribution to potential 

energy by a 2D FEM
6.  Compute the eigenvalues (LAPACK)
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Ideal MHD stability: comparisons with Solovev’s 
testcase

The axisymmetric analytical Solovev MHD equilibrium solutions
 have since long time been chosen as a benchmark
for all ideal MHD stability codes. The reason is that they permit a configurational 
variety of “approximate inverse 
aspect ratio” , cross-section elongation  and safety factor
 at the magnetic axis.
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Ideal MHD stability: flux –core tokamak

Tokyo University Spherical Torus No. 3 (TS-3) flux-core-spheromak experiment,
No-singular X-point, ). The first equilibrium of   TS-3 considered for the ideal MHD
 stability calculation has a longitudinal pinch current Ie=40 kA, a toroidal ST current IST=50 kA
 and a volume averaged βinside the ST 12.0% .  

The positive eigenvalue ω2 provided by the solver is ω2/ ω2Alfven =+1.33•10-7
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Ideal MHD stability: flux –core tokamak

Comparisons with different formulations of ξ on the symmetric 
axis.
The solver calculate an oscillating motion around the q=1 
resonance, which is present inside the ST as well as inside the SP. 
Two eigenfunctions are similar when the displacement plots are 
shown upon the poloidal cross-section, inside both the ST and the 
SP.
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Ideal MHD stability: flux –core tokamak

Tokyo University Spherical Torus No. 3 (TS-3) flux-core-spheromak experiment,
No-singular X-point, ). The second equilibrium of   TS-3 considered for the ideal MHD
 stability calculation has a longitudinal pinch current Ie=40 kA, a toroidal ST current IST=100 kA
 and a volume averaged βinside the ST 14.0% .  

The negative eigenvalue ω2 provided by the solver is ω2/ ω2Alfven =-3.92
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Ideal MHD stability: flux –core tokamak

upon some horizontal plane cross-sections inside the 
screw pinch.

 upon a poloidal cross-section inside both the ST and 
the SP.

The ideal MHD stability calculations broadly agree with the experimental results,
 confirming the experimental observation that the TS-3 flux-core-spheromak 
did not achieve a toroidal ST current much higher than IST=50 kA and 
that its ST was limited to an aspect ratio not lower than A=1.6. 
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 Ideal MHD Current Limits in Proto-Sphera
12

• Three cases of PROTO-SPHERA have been selected 
with growing ratio between the toroidal ST and the 
longitudinal SP current, respectively Ip/Ie = 2, 3 and 
7/2 and corresponding to some steps of the 
Protosphera scenario.

•  All of these cases have a volume averaged beta of 
the spherical torus β =2μ0<p>vol/<     >vol ~20%.

4. T5 (with Ie=60 kA, Ip=120 kA and β  =23.1%) -> ω2/ 
ω2Alfven =+2.3110-6 : It is a stable oscillating motion 
around the q=1 and q=2 resonances inside the ST and 
around the q=3 resonance inside the SP.

5. T6 : (with Ie=60 kA,      Ip=180 kA and β =22.4%), a 
globally unstable mode, which takes the character of a 
kink mode inside the SP and of a tilt mode inside the ST. 
ω2/ ω2Alfven =-4.89 

6.  T7 (with Ie=60 kA, Ip=210 kA and β =20.6%), ω2/ 
ω2Alfven =-3.2210-3 :two unstable eigenfunctions 
represents a globally unstable mode, which takes the 
character of a kink mode inside the SP and of a tilt mode 
inside the ST.

  



BT0
2
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 Proto-Sphera : stability results

IST/Ie = 5 and 15% 

Unstable

•n=1,2,3 investigated for all equilibria
•m=[-5:10]
•Main constraint IST/Ie , 

• = 21÷26%  ,  IST/Ie=0.5 - 1

• = 14÷15%  ,  IST/Ie=4 

With T0=20<p>vol/<     >vol

• T0=28÷29% ,  IST/Ie=0.5 - 1

• T0=72÷84% ,  IST/Ie= 4 

The dominant instabilities are :
• up to IST/Ie≈3 The Spherical Torus 

instabilities
• IST/Ie> 3 the Screw Pinch kink instabilities

  



BT0
2

n=1
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Proto-Sphera stability results

Comparison of the 
instabilities growth rate for 

free boundary codes
Mode numbers

 n=0, m=[-15,+15]. 

• StableN0mu

--- Berger

13

Pinch Magnetic Structure 
prevents n=0 

Vertical ULART Drift

PROTO-SPHERA
n=0 stable for any 

scenarios up to 
R/a = 1.2

  < 4  

Ulart Magnetic Structure 
prevents

Radial Pinch Drift
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Linear MHD Stability analysis

1. The use of magnetic coordinates, defines the simplest approach to the numerical 
study of the ideal MHD stability of magnetoplasma equilibria, but  the magnetic 
coordinates become singular in presence of magnetic separatrices (particularly 
relevant in the stability analysis of a simply connected axisymmetric plasmas 
(Flux-Core-Spheromak or Chandrasekhar-Kendall-Furth configurations)).

2. The approach taken is that of maintaining the 1-dimensional radial Finite Elements, 
while using an asymptotic analysis of the perturbed plasma displacement near the 
separatrices. 

3. The permissible asymptotic limits for the perturbed displacement are derived in 
Boozer magnetic coordinates. 

4. Numerical results confirm that the formation sequence of PROTO-SPHERA is 
ideal MHD stable, provided that it occurs at β<20%.
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Chandrasekhar-Kendall-Furth  force free fields

The problem of finding a stable force-free axisymmetric magnetic field, by 
minimizing the magnetic energy , has received as a tentative answer a singular 
domain: an extreme "apple", in which north and south pole are pressed and joined 
together (spheroidal surface enclosing a double connected volume). So the 
spheromak has the right topology, but needs to be embedded in a stabilizing 
plasma, which provides to the spheromak an inner flux-core. 

 A simply connected magnetic confinement scheme can be obtained superposing two 
axisymmetric homogeneous 
force-free fields, each with

    



r 

r 
B 
r 
B 
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Chandrasekhar-Kendall and Furth force free fields

The first is the Chandrasekhar-Kendall force-free field of order-1 which in spherical 
coordinates  admits the poloidal flux:

 

The second homogeneous force-free field is the Furth square-toroid s (embedding 
stabilizing plasma), whose poloidal flux can be written as:

  



,
CKr,rj1rsinP11cos

  



,
Fr,22sinJ1
22rsincosr cos
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Chandrasekhar-Kendall-Furth force free fields

The superposition of the two force-free fields is written as:

 
  



r,,
CKr,,
Fr,

The main torus (ST) has a safety factor q with value ≈1.0 on the magnetic axis (y=ymax), 
and ≈1.5 at the "edge“
When the superposition constant exceeds γ=0.69… the secondary tori disappear .
The outermost toroidal shell surrounding the three tori and extending up to the symmetry axis is indicated 
by SP and has a larger safety factor (always the ratio between the toroidal and the poloidal turns of a field line),
 respectively ≈1.5 on the symmetry axis and ≈3.7 at the "separatrix" (=0.95•yX).   
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Chandrasekhar-Kendall-Furth force free fields: Stability

The result of the ideal MHD stability calculations for low toroidal mode numbers (n=1,2,3),
 assuming fixed boundary conditions at the edge of the plasma: ξ=0, 
is that the Chandrasekhar-Kendall-Furth force-free fields are stable 
when the value of the superposition parameter is greater than γ=0.5 .
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The unrelaxed CKF equilibrium

CKF homogeneous force-free fields have          =0, and are so unable to confine 

plasmas of fusion interest. Unrelaxed equilibrium, similar to homogeneous CKF 
force-free fields, are calculated imposing that the relaxation parameter μ is 
constant only at the edge of the plasma.

Hypothesis

4.  the pressure gradient vanishes at the edge of the plasma:

5. the toroidal current density j vanishes at the edge of the plasma:

6. the relaxation parameter is constant at the edge of the plasma, where both the 

field  as well as the current density  is purely poloidal:

7. The parameter                                 represents the drop of the relaxation 

parameter and the pressure from the edge of the plasma to the axis of the ST
     

    



r 
p

  



dpd
edge
0

  



jedge0

  



0jpolBpoledgeedge

  



edgeaxis  


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The unrelaxed CKF equilibrium

The case shown here corresponds to setting the geometrical choices to γ=0.55 and μ =0.35, 
the pressure peaking parameter  to R/A=2, and Ist=836 kA. 
It has a very high total plasma beta in the spherical torus: 1.02 .  
It refers to an unrelaxed CKF equilibrium which has roughly the same geometrical dimension 
as PROTO-SPHERA. The total poloidal spheromak current is Ie=60 kA
 (the same as the longitudinal pinch current of  PROTO-SPHERA), 
whereas the total toroidal current in the main spherical torus is Ip=451 kA
 (much larger than in the case of PROTO-SPHERA, which has          Ip=120/240 kA).
The unrelaxed CKF configurations can be obtained  by simple external poloidal coils:
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The unrelaxed CKF equilibrium: stability results 
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The unrelaxed CKF equilibrium: stability results 
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The unrelaxed CKF equilibrium: stability results 
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The unrelaxed CKF equilibrium: conclusions

1. Chandrasekhar-Kendall-Furth (CKF) equilibrium are innovative simply connected magnetic 
confinement configurations.

2. They embed a magnetic separatrix with regular X-points, which divides a main spherical torus ,two 
secondary tori on top and bottom of the main torus and an outermost toroidal shell surrounding plasma 
(characterized by its total poloidal current Ie and with q≈3 on the symmetry axis and q ≈5 at the 

"separatrix"). 

3. CKF equilibrium can be calculated with the boundary condition that the relaxation parameter is 

constant only at the edge of the plasma 
4. If the surrounding plasma can be sustained by driving a poloidal current Ie on its flux surfaces, 

magnetic helicity, flowing down the gradient of , will be injected into the main spherical torus, through 
magnetic reconnections at the regular X-points. If the helicity injection is efficient enough it will 
sustain the toroidal current IST, while converting part of the magnetic energy into kinetic plasma 
energy.

5. A parametric scan of unrelaxed CKF equilibria, at fixed shape of the plasma edge, has been calculated 
in terms of the current ratio Ist/Ie and of the safety factor at the ST magnetic axis . The vanishing of 
the toroidal current density jt on the ST axis, a too large  at the plasma edge and ≠0 extending up to the 
ST axis respectively set the low Ist/Ie, the low  and the high  equilibrium limits. The transformation of 
each regular X-point into a pair of connected Y-points along the magnetic separatrix sets the 
equilibrium limit for the plasma beta in the spherical torus at a value of about one, 
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Towards a high power thruster ?

Reactor extrapolation: even if a PCC 
could be maintained at a few 100s eV,
PCC power dissipation could be too large:
a configuration initiated by electrodes 
but then sustained in absence of them?

CKF configurations4: variant with closed 
flux surface - ideal MHD stable at =1!
But how to form and to sustain them?

“Very imaginative” development:
=1 mandatory in D-3He space
thusters5: (weight forbids large B)

CKF channel promptly lost (~15%) 
charged fusion products (): from

ordered (nv) + magnetic nozzle 
direct energy conversion & thrust

4F. Alladio, et al., ICPP02, Sydney (2002)
5 NASA/TM-2005-213559 (2005)

6

Similar to LANL proposal
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Conclusions and future

1.  Numerical tools for calculate equilibrium and stability of complex axisymmetric plasma 
configurations have been developed and validated.

2.  Equilibrium and stability calculations have been proved that Proto-Sphera is ideally stable up 
to β =20%

3. This high β value of CKF configurations opens the possibility that plasma motions can sustain 
the magnetic field. PROTO-SPHERA experiment could host an unrelaxed Chandrasekhar-
Kendall-Furth (CKF) configuration. 

4. The PROTO-SPHERA project is in the framework of the research on Compact Tori (ST, 
spheromaks, FRC) and has the capability of exploring the connections between the three 
concepts. In particular its goal is to form and to sustain a flux-core- spheromak with a new 
technique.

5. If all the major points of PROTO-SPHERA are successfully met, and if, in the meantime, a 
method for injecting current (or torque) into a CKF configuration is developed, the road 
toward small, compact, low field and simple maintenance fusion reactor (particularly suitable 
to direct energy conversion and to the use as space thrusters) could be possible.

6.  Others simulation have to be performed to quantify the principle of helicity injection

7.  Equilibrium must be reconstructed from measurements of magnetic field 
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Progress of the Multi-Pinch construction

8

QUESTIONS ?
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Correspondence of the poloidal between the tori and the 
surrounding plasma

1.  the poloidal angle θ makes an excursion 
[0,θX] upon the lower outboard of the 
main ST 

2. θ runs in the range [θX, 2π+θX] upon the 
lower SC 

3. θ continues through the range [2 π + θ X, 
4 π - θ X] upon the inboard of the main ST 

4. θ runs in the range [4 π - θ X, 6 π - θ X] 
upon the upper SC. 

5. θ closes its run in the range [6 π - θ X, 6 π] 
upon the upper outboard of the main ST. 
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Ordering of the radial variable: CKF configuration

1. Starts at the magnetic axis of the main 
spherical torus : = 0

2. reaches the value  on the separatrix.
3. reenters the upper secondary torus from 

the edge , 
4. jumps to the magnetic axis of the lower 

secondary torus , 
5. and  enters the surrounding plasma.
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Towards a high power thruster ?
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Status & Perspectives
of the

PROTO-SPHERA Project

F. Alladio, A. Mancuso, P. Micozzi, S. Papastergiou

1
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Stable SP Ie= 8.5 kA destabilized

by Ie-> 60 kA in 0.5 ms, forms ST
as in TS-3 Tokyo University experiment3

Alfvén MHD growth time: A~ 0.5 s

Resistive diffusion time: R~ 70 ms

(RA)
1/2~ 1 ms for IST=120 kA (2xIe)

•IST= 240 kA (4xIe) really achievable?

•Can it be sustained for R~ 70 ms?
•Resistive MHD stability & confinement?

3 N. Amemiya, et al., JPSJ 63, 1552 (1993)

• A reduced setup (a) of PROTO-SPHERA (b)
is being built inside START vacuum vessel
(gifted by Culham UKAEA Science Centre)
to clarify PCC breakdown & stability with
annular electrodes (beware anode anchoring!)

PROTO-SPHERA obtained  later, adding 
PF compression coils and their power supplies,

and implementing the PCC power supply

t=0, Ie=8.5 kA t=0.5 ms,Ie~60 kA,IST~30 kA

5Multi-Pinch PROTO-SPHERA
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- Partial PF coils system (constant current):
   only the “Pinch shaping coils”

- Definitive Anode & Cathode

Multi-Pinch Experiment

       START vacuum vessel

      (in Frascati since May 2004)

Aims:
stable PROTO-SPHERA Screw Pinch plasma
with full dimension, disk shape,
and current Ie = 8.5 kA

Philosophy:
almost all parts should be reutilized
in PROTO-SPHERA

PF2
PF3.1

PF4.1

PF4.2
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Progress of the Multi-Pinch construction

8

START in Frascati

Arrival

Disassembling

May 2004

October 2004
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Progress of the Multi-Pinch construction

9

PF coils have been built by ASG Superconductors S.p.A. (Genova, Italy):

PF2: Pinch “mirror coil”
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Progress of the Multi-Pinch construction

10

PF coils have been built by ASG Superconductors S.p.A. (Genova, Italy):

Pinch “shaping coils” (pancake kind)

PF3.1 PF4.1
PF4.2
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Progress of the Multi-Pinch construction

11

European “call for tender”
to build the Load Assembly:
starting now

Anode

Cathode
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Actions & Time Schedule

12

• Power Supplies: PF coils, Cathode and Screw Pinch (reduced)

• Diagnostics: Spectroscopy, Magnetics*, Fast Camera*

• Vacuum System, Data Acquisition System and Control System

* Culham collaboration?

Realistically the first Multi-Pinch plasma

could be obtained in the first half of 2009


