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Context of the study

• Numerical analysis of dust transport behaviour in Vacuum Vessel 
of a fusion reactor in case of Loss Of VAcuum event (LOVA)
• The simulation of LOVA scenario is a challenging task for today 
numerical methods and models:
✔ Three dimensional geometry with large dimensions
✔ Required computational ressources only available on large 

parallel platforms
✔ Computing near vacuum flows ranging from highly supersonic to 

nearly incompressible

• Objective of the present work:
✔ Presentation of basics numerical methods
✔ Preliminary computations using parallel solutions
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The Dusty-Gas Model

1. Assumptions
➢ High dilute and gas mixture

➢ This model leads to simplifications
✗ Standard Euler equations can be considered for the gas phase

✗ The solid phase can be modelled using pressureless gas 
equations

d= Volumic fraction of the dust phase

g= Volumic fraction of the gas phase

d≪g g≈1and
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The Dusty-Gas Model

2. Euler equations for the Gas phase

➢ These equations can be solved independently from the dust 
equations except for the interation terms detailed further.

➢ The treatment of the vacuum problem will lead us to a specific 
numerical scheme

∂g

∂ t
 ⋅g⋅ug  = 0

∂g⋅ug

∂ t
 ⋅g ug⊗ ug p = g⋅gF dg

∂g E g

∂ t
 ⋅g ug H g = g ug⋅gF dg⋅ugQ g



6

6

The Dusty-Gas Model
3. The equations for the dust phase

➢ where      denotes the particle concentration.

➢ This system corresponds to the so-called pressureless gas 
equations in which the collisions between particles are neglected

➢ Dust system is degenerately hyperbolic with one multiple 
eigenvalue

➢ The Jacobian matrix is a Jordan block not diagonalizable
➢ Special properties such as the delta-shock waves

∂
∂ t
 ⋅⋅ud  = 0

∂⋅ud

∂ t
 ⋅ ud⊗ ud  = ⋅g−F dg

∂ E d

∂ t
 ⋅ ud E d  =  ud⋅g−F dg⋅ud−Q g


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The Dusty-Gas Model

4. The interaction terms
➢ Hard to define in an unique way because case dependant

➢ Main actions of the gas on the particles
✗ The drag force

✗ The lift force (usually neglected)

➢ Heat transfert

D=g C D⋅
d p

2

8 ⋅ug−ud ∥ug−ud∥

Q=d p
C p

Pr T g−T d Nu
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Treatment of the vacuum

1. Definition of the vacuum state
➢ Vacuum 

➢ The continum assumption is no longer valid

➢ Necessity to adapt the Riemann solvers

2. The Riemann problem in presence
of vacuum

⇔ g=0 ⇒ g E g=0
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Treatment of the vacuum

2. The Riemann problem in presence of vacuum
➢ A shock wave cannot be adjacent to a vacuum region

✗ Proof: application of the Rankine-Hugoniot conditions

➢ A contact discontinuity can be adjacent to the vacuum aera

L uL−R uR=S L−R

L uL
2−R uR

2=S L uL−R uR

uL L E L pL−uRR E R pR=S L E L−R E R

R=0
R E R=0

uL=uR=S
pL= pR

⇒ ⇒ No shock wave
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Treatment of the vacuum

2. The Riemann problem in presence of vacuum
➢ As the gas particles fill the vacuum region, the pressure decreases 

behind them. The tail of the rarefaction wave thus coalesces with 
the contact wave.

ttuL−aL
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Treatment of the vacuum

2. The Riemann problem in presence of vacuum
➢ The speed of the contact wave is then given by the left Riemann 

Invariant:

➢ The complete solution reads:

➢ An exact Godunov solver has been designed to deal with the 
vacuum case

S∗=uL
2 aL

−1

W  x , t =

W L if x /t  uL−aL

W Fan if uL−aL  x / t  S∗

W Vac if x / t  S∗
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Treatment of the vacuum

2. The Riemann problem in presence of vacuum
➢ When left state is at rest 

✗ A direct calculation of the Mach number yields:

✗ For the air, the Mach number is greater than unity in the region 
originally at vacuum state

✗ Mach number increases with the distance from the original 
separation

M 2 =  aLx / t

aL−
−1

2
⋅x /t 

2

M 2  1 ⇔ x 0

uL=0
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Treatment of the vacuum

3. Numerical results
➢ Implementation of the designed Godunov scheme into the parallel 

code NUM3SIS
➢ Shock tube problem

✗ Initial data

✗ L=1, 200 points in the x-direction

✗ Explicit scheme and 1st order space accuracy

✗ Solved on 8 processors until time t=0.05

R=0L=1
uL=0
pL=1

uR=0
pR=0
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Treatment of the vacuum

Rarefaction wave
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Treatment of the vacuum

M = 1 for
x = 0.5 as 
expected
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
➢ There is vacuum (on at least one side of the discontinuity)

✗ If both states are vacuum, vacuum remains
✗ If right state is vacuum:

✗ If left state is vacuum (reverse of the previous one)

uL  0 ⇒ no particle goes through the interface ∗= 0
u∗= 0

uL  0 ⇒ particles coming from left go through the interface ∗= L
u∗= uL
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
➢ There is no vacuum

✗ There is no collision

uL  uR ⇒ no collision, uL  uR ⇒ collision and delta waveif else

uL  uR

uL  0 ⇒ only left particles go through 
the interface

∗= L
u∗= uL
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
✗ There is no collision

uR  0 ⇒

uL  uR

only right particles go through the interface ∗= R
u∗= uR

uL⋅uR 0 ⇒ no particle goes through the interface ∗= 0
u∗= 0
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
✗ There is collision

✔ A delta wave is generated and its speed is given by:
uL  uR

u=
L uLR uR

LR

u  0 ⇒ only right particles go through 
the interface

∗= R
u∗= uR
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
✗ There is collision uL  uR

u  0 ⇒ only left particles go 
through the interface

∗= L
u∗= uL
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Numerical scheme for the dust phase

1. Resolution of the Riemann problem for pressureless system
✗ There is collision uL  uR

u = 0 ⇒ particles are stuck on 
the interface, the 
delta shock is on the 
interface
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Numerical scheme for the dust phase

2. A Godunov type scheme
➢ In all previous cases except the one for which         , the 

numerical flux reads:

➢ When         , the numerical flux is taken as the average between 
the left and right fluxes:

➢ The scheme has been implemented in NUM3SIS

u= 0

F=F W∗=
∗u∗

∗u∗ 2

∗E∗

u= 0

F=1
2
⋅F W LF W R
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Initial data

➢ Domain length L=5, 2000 points in the x-direction

➢ Runge-Kutta scheme (RK2), 2nd order space accurate scheme 
(Barth-Jespersen reconstruction) 

➢ Solved using 80 processors (Cluster bi-opteron 2GHz)

x ,0=
2 if 5/9  x  10 /9
1 if 20/9  x  40 /9
0 else

u  x ,0=
1 if 5/9  x  10 /9
−1 if 20 /9  x  40 /9
0 else
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Initial data
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Time, t=0.5
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Time, t=1.0
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Time, t=3.0
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Numerical results with the dusty-gas model
1. The Saito shock-tube (with crown glass)

➢ Tube length L=5, 2000 points in the x-direction
➢ Runge-Kutta scheme (RK2), 2nd order space accurate scheme 

(Barth-Jespersen reconstruction) 
➢ Solved using 80 processors (Cluster bi-opteron 2GHz)

T g=300K
ug=0
pg=106 Pa
=0

T g=T d=300K
ug=ud=0
pg=105 Pa

=g  p=105 Pa ,T g=300K 

d=2500 kg /m3

d d=10m

g=1.71⋅105⋅ T g

273 
0.77
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=50

Dusty gas density
Dust concentration
Gas only (Sod tube)
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=50

Dusty gas velocity
Dust velocity

Gas only (Sod tube)
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Numerical results with the dusty-gas model

2. Preliminary calculation of the VV pressurisation
➢ Objective:

✗ Testing the model on a realistic 3D problem
✗ Proving the efficiency of the code for such geometries
✗ Reporting difficulties to enhance model

➢ First step: Generating and partitioning the mesh

✗ Geometry given by LTMF laboratory (CEA Saclay)
✗ Extended to unstructured grid using CAST3M (CEA)
✗ Mesh partitioning carried out using Meshmigration       

(CEMEF-INRIA)
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2. Preliminary calculation of the VV pressurisation
➢ First step: Generating and partitioning the mesh

Numerical results with the dusty-gas model

283,747 nodes
1,468,537 elements

32 balanced partitions
(~ 9,000 nodes)
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Numerical results with the dusty-gas model

2. Preliminary calculation of the VV pressurisation
➢ Second step: Initial and boundary conditions

✗ Thin layer of beryllium oxide at the bottom of the vessel
✔ Thickness = 2cm    =>  volume ~ 1.4 m3 

✔ Total mass mobilisable = 100 kg  =>                           in the 
layer

✔

✗ Vacuum state everywhere else  (                      )
✗ Pressurisation through a 10 cm2 hole in one equatorial port

✔                                           at the inlet

d=3,01⋅103 kg /m3 d d=10m Cvd=900 J /kg /K

=70 kg /m3

=0 g=0

pg=105 Pa T g=300 K
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Numerical results with the dusty-gas model

Physical time = 1s
CPU time ~ 10h

Obviously, the 
computation has to 
be continued so as 
to observe dust 
mobilization.

The mesh is not 
fine enough
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Conclusion

• The developped schemes and solvers for the dusty gas problems 
have been validated over reference test cases
• The preliminary calculations confirm that the simulation of the 
LOVA scenario is very costly in terms of CPU time

Prospect

• Mesh refinement
• Larger amount of partitions
• Experimental data to validate further the developped models
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The Dusty-Gas Model

3. The equations for the dust phase
➢ The quantity denotes the amount of 

particles which are contained in the volume [x, x+dx] and that 
have, at time t a velocity standing in the range [v, v+dv], a 
temperature in [T,T+dT] and a radius in [r,r+dr]

➢ The distribution function f obeys a Liouville-Boltzmann equation

➢ Integrating this equation yields the system for the dust phase

f x , v ,T , r , t dx dv dT dr

∂ f
∂ t
∑i

∂ f q̇i

∂qi
= ḟ coll

qi= Phase variable (e.g. x, v, T or r) 

ḟ coll= Temporal variation due to collisions
(neglected for high dilute mixture)
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The Dusty-Gas Model
5. Nature of the systems of equations

➢ Both systems are solved separately
➢ Gas system is strictly hyperbolic (use of Riemann solver)
➢ Dust system is degenerately hyperbolic with one multiple 

eigenvalue 
➢ Consequences

✗ Information only transmitted along streamlines in the direction 
of the velocity

✗ Competition between
inertial effects and
exchange effects
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Numerical scheme for the dust phase
3. Collision between two finite clouds

➢ Time, t=1.5
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=10

Dusty gas density
Dust concentration
Gas only (Sod tube)
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=10

Dusty gas velocity
Dust velocity
Gas only (Sod tube)
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=30

Dusty gas density
Dust concentration
Gas only (Sod tube)
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Numerical results with the dusty-gas model
1. The Saito shock-tube

➢ Time, t=30

Dusty gas velocity
Dust velocity

Gas only (Sod tube)
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Treatment of the vacuum

Rarefaction wave
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4. Exemple LORIA et INRIA-Lorraine
Environnement
Rôle du documentaliste
De LoriaPublis vers Hal
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http://hal.inria.fr/INRIA/

Merci de votre attention !

http://hal.inria.fr/INRIA/

