

Magneto-Hydro-Dynamic Instabilities in Tokamak Plasmas

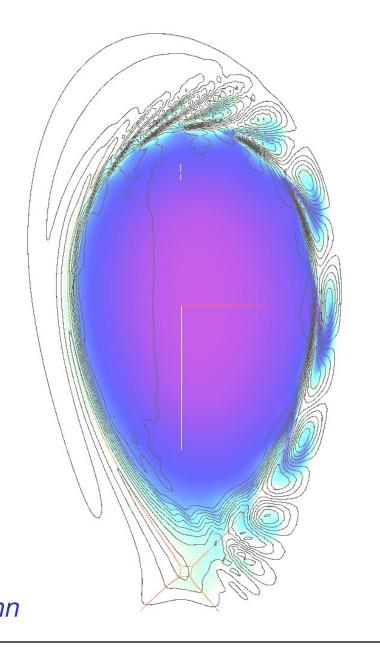
Guido Huysmans

Association Euratom-CEA

Cadarache, France

Numerical Flow Models for Controlled Fusion 16-20 April 2007 Porquerolles, France

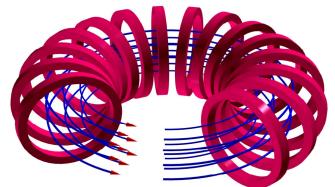
Contributions: H. Lutjens, P. Maget, A. Kirk, W. Zwingmann



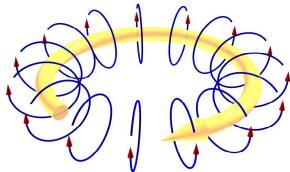
Outline

- Introduction
 - Tokamaks
- Magneto-Hydro-Dynamics
 - Equilibrium
 - MHD Instabilities
- Non-linear MHD simulations
 - XTOR : double tearing modes in Tore Supra
 - JOREK : Edge Localised Modes
- Open questions/Conclusion

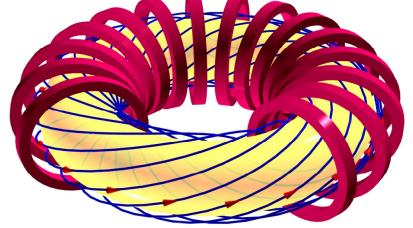
Tokamak



toroidal field coils for main magnetic field



plasma is secondary ring of a transformer ⇒induces toroidal current



total helical field winding number ~ 1/q

ITER

- Toroidal field coils (18):
 - B=5.3T (plasma centre)
- Poloidal field coils
 - plasma shaping, X-point
- Central Solenoid
 - Induction of the plasma current (15MA)

Plasma Major/Minor Radius 6.2m / 2.0m

Plasma Volume 840m³

Plasma Current 15.0MA

Fusion Power 500MW

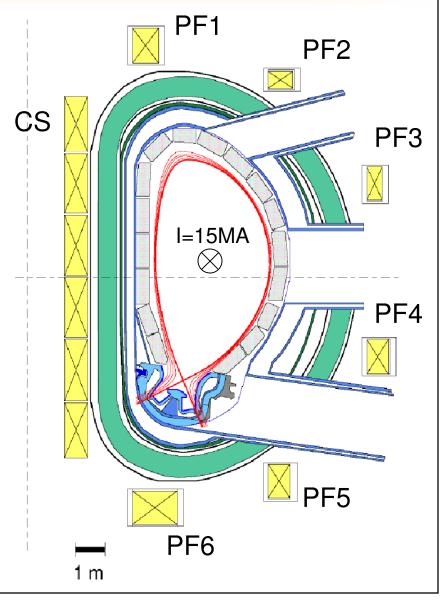
Burn Flat Top >400s

Power Amplification >10

Density 10^{20} m^{-3}

Pressure 2.8x10⁵ Pa

 $<\beta>=2\mu_0<P>/B^2$ 2.5%



Magneto-Hydro-Dynamics (MHD)

• Plasma model as a conducting fluid in a magnetic field:

- (mass)Density conservation:
$$\frac{\partial \rho}{\partial t} = -\nabla \bullet (\rho \mathbf{v})$$

- Momentum conservation:
$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\rho \mathbf{v} \bullet \nabla \mathbf{v} - \nabla p + \frac{1}{\mu_0} \mathbf{J} \times \mathbf{B}$$

- Energy conservation:
$$\frac{\partial p}{\partial t} = -\mathbf{v} \bullet \nabla p - \gamma p \nabla \bullet \mathbf{v}$$

- Faraday:
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

- Ohm's Law:
$$\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}$$

$$\nabla \bullet \mathbf{B} = 0$$

Typical time scale/speed

Normalisation momentum equation:

$$v = v_0 \tilde{v} = \frac{a}{t_0} \tilde{v}$$
 $t = t_0 \tilde{t}$ $\rho = \rho_0 \tilde{\rho}$ $B = B_0 \tilde{B}$ $p = \frac{B_0^2}{\mu_0} \tilde{p}$ $J = \frac{B_0}{a\mu_0} \tilde{J}$

$$\frac{\rho_0 a}{t_0^2} \tilde{\rho} \frac{d\tilde{\mathbf{v}}}{d\tilde{t}} = -\frac{B_0^2}{\mu_0 a} \left(\tilde{\nabla} \tilde{p} + \frac{1}{\mu_0} \tilde{\mathbf{J}} \times \tilde{\mathbf{B}} \right) \qquad t_0 = \frac{a \sqrt{\mu_0 \rho_0}}{B_0} \quad \text{Alfvén time}$$

$$B_0 = 5.3 \text{ T}$$

 $\rho_0 = 10^{20} \times (1.67 \times 10^{-27}) \times 2 \text{ kg/m}^3$
 $t_A = 2.4 \times 10^{-7} \text{ s}$
 $V_A = 8.2 \times 10^6 \text{ m/s}$

• Ohms Law: $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}$

$$E = (V_A B_0) \tilde{E}$$
 $\eta = (\mu_0 a V_A) \tilde{\eta}$ $\tilde{\eta} = \frac{1}{S}$

$$\eta = 10^{-9} \text{Ohm m (at T=10keV)}$$

magnetic Reynolds number : $S = 2 \times 10^{10}$

Equilibrium

• Static equilibrium:

$$\frac{\partial}{\partial t} = 0 \quad \mathbf{v} = 0 \quad \frac{\partial}{\partial \varphi} = 0$$

 Force balance between pressure gradient and the Lorentz force:

$$\nabla p = \frac{1}{\mu_0} \mathbf{J} \times \mathbf{B} \qquad \nabla \bullet \mathbf{B} = 0$$

- Poloidal flux ψ : $\mathbf{B} = \frac{F(\psi)}{R} \mathbf{e}_{\varphi} + \frac{1}{R} \nabla \psi \times \mathbf{e}_{\varphi}$
- Grad-Shafranov equation describes axisymmetric equilibrium:

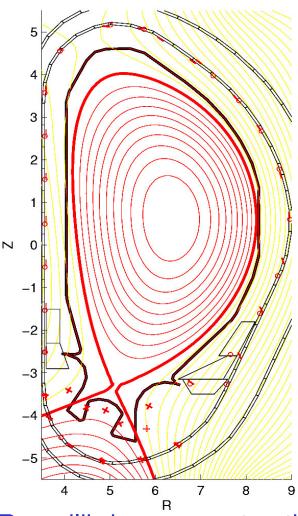


JET equilibrium

$$R^{2}\nabla\left(\frac{1}{R^{2}}\nabla\psi\right) = -RJ_{\varphi} = -\mu_{0}R^{2}p'(\psi) - F(\psi)F'(\psi)$$

Equilibrium Reconstruction

- Equilibria can be reconstructed from measurements of magnetic field outside the plasma.
 - minimisation measurements with values from numerical solution
 - Internal measurements of pressure and magnetic field can also be used



ITER equilibrium reconstruction using EFIT (W. Zwingmann)

See J. Blum, tuesday

Ideal MHD Instabilities

- Driving forces for ideal (no dissipation) MHD instabilities:
 - Parallel current density
 - Pressure gradient

Compression magnetic field fast waves

Bending of magnetic field lines
Alfven waves

Compression of pressure, sound (slow) waves

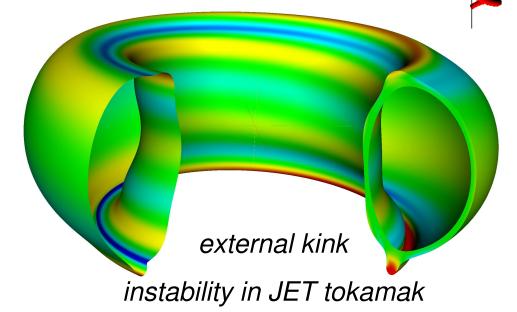
$$\delta W = \frac{1}{2} \int dV \left(\left| B_{1,\perp} \right|^2 + B_0^2 \left| \nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa \right|^2 + \lambda p_0 \left| \nabla \cdot \xi \right|^2 \right)$$
$$- \int dV \left(2(\xi_{\perp} \cdot \nabla p_0)(\kappa \cdot \xi_{\perp}) + J_{0,\parallel}(\xi_{\perp} \times B_0 / B_0) \cdot B_{1,\perp} \right)$$

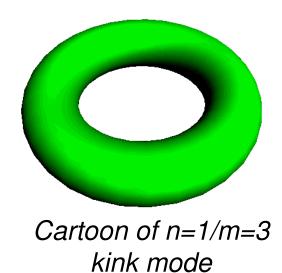
Pressure gradient
Curvature(K)
Ballooning instability

Parallel current drive kink instability

External Kink modes

- Simplest model for current driven kink modes is a current carrying wire in a parallel magnetic field
 - unstable to helical deformation
- Ideal MHD kink mode deforms surface
 - driven by parallel current
 - requires a rational q surface just outside plasma
 - Magnetic topology remains the same in ideal MHD



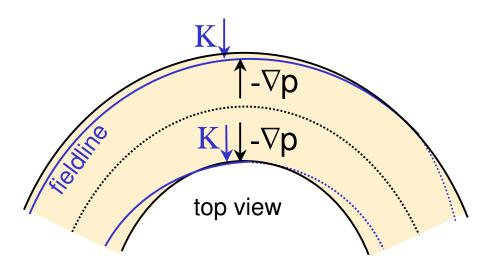


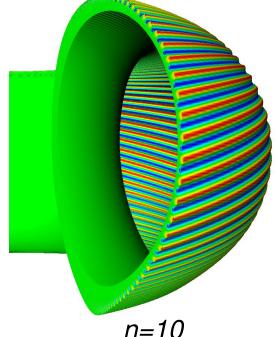
Ballooning Modes

- Instability drive: pressure gradient (∇p) against curvature (K)
 - Unstable on outside of torus, stabilising on inside
 - ⇒ ballooning mode localised on low-field (outer-side) of torus

 radially localised (in high pressure gradient region) to avoid stabilising bending of magnetic field lines

High toroidal mode numbers most unstable

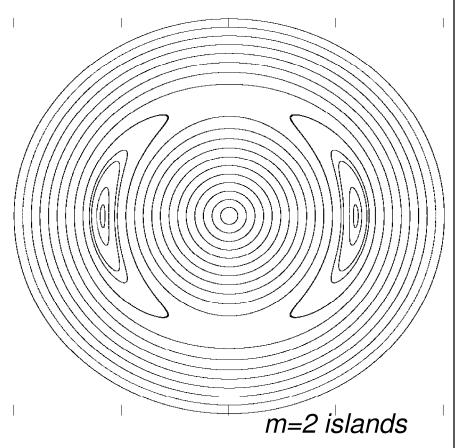




n=10 ballooning mode

Tearing modes

- Finite resistivity allows a change of topology of magnetic configuration
 - Tearing modes, driven by current gradients, lead to the formation of magnetic islands on rational q (=m/n) surfaces
 - Local flattening of current and pressure profile
 - "Neoclassical" tearing modes are driven by a local pressure gradient
 - absence of the pressure gradient (bootstrap current) inside (existing island) increases island size
 - requires a large enough initial perturbation, f.e. by another MHD mode
 - can lead to pressure limit below ideal MHD stability limits



Linear MHD

- Linear ideal MHD model :
 - generalised eigenvalue problem

$$Ax = \omega Bx$$

- Linear MHD codes give:
 - MHD stability limits
 - MHD mode structures
 - MHD spectrum of waves
- Codes are well established:
 - MISHKA, CASTOR, MARS, PEST, ...
- Routinely used to analyse experiments

$$p(t) = p_0 + p_1 e^{i\omega t}; p_1 \ll p_0$$

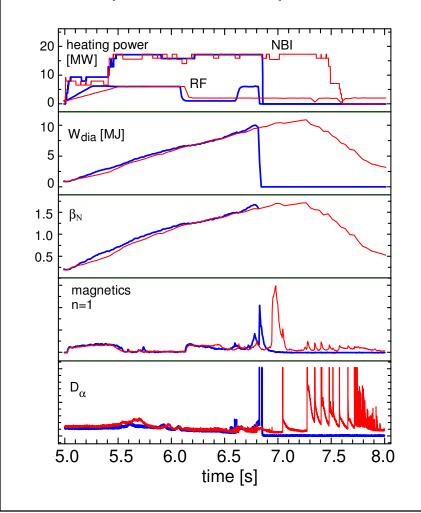
$$\mathbf{v}(t) = \mathbf{v}_1 e^{i\omega t}; \mathbf{v}_0 = 0$$

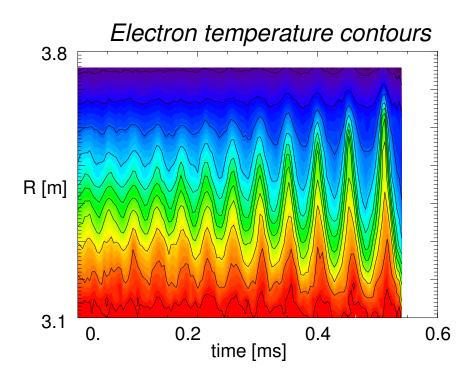
$$\mathbf{B}(t) = \mathbf{B}_0 + \mathbf{B}_1 e^{i\omega t}; \mathbf{B}_1 \ll \mathbf{B}_0$$

$$\omega \rho_0 \mathbf{v}_1 = -\nabla p_1 + \frac{1}{\mu_0} (\nabla \times \mathbf{B}_0) \times \mathbf{B}_1$$
$$+ (\nabla \times \mathbf{B}_1) \times \mathbf{B}_0$$
$$\omega p_1 = -\mathbf{v}_1 \bullet \nabla p_0 - \gamma p_0 \nabla \bullet \mathbf{v}_1$$
$$\omega \mathbf{B}_1 = \nabla \times (\mathbf{v}_1 \times \mathbf{B}_0)$$

Example Disruption in JET Tokamak

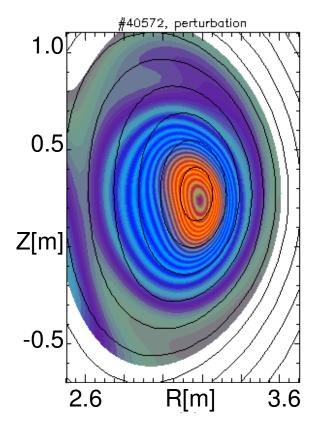
 peaked pressure profiles in 'advanced scenarios' can lead to sudden end of the plasma: disruption



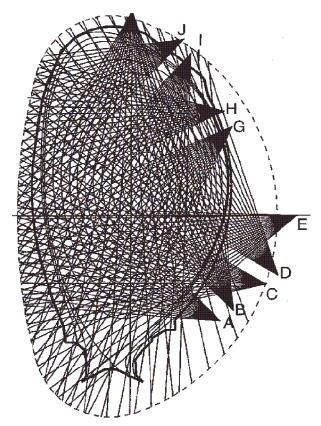


Soft X-ray Tomography

• 2D view of the plasma motion due to the MHD instability just before the disruption :



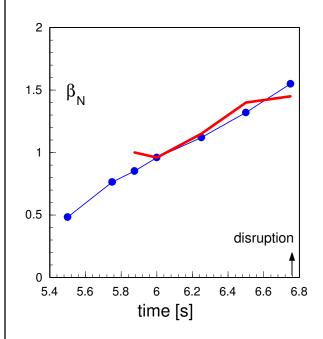
Tomographic reconstruction of X-ray emission



JET SXR cameras (1998)

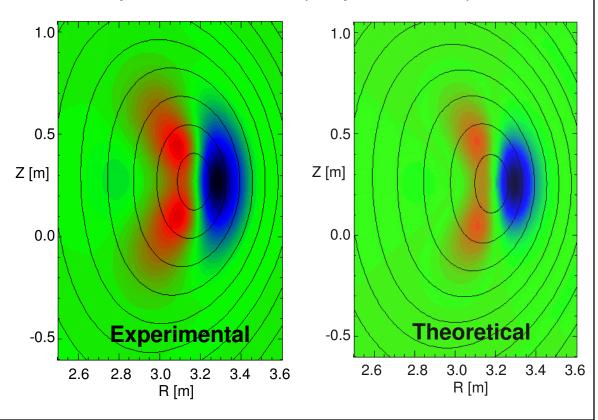
Linear MHD Stability

 The stability limit and the plasma motion in the advanced scenarios are well described by the ideal linear MHD model:



Ideal MHD limit due to pressure driven kink mode

comparison observed and calculated plasma motion (displacement)



Ideal MHD limits

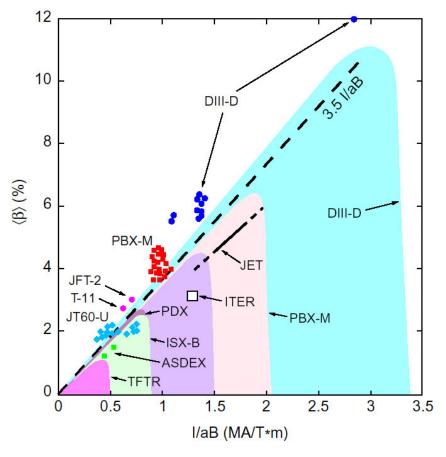
- MHD instabilities impose the ultimate limit on the plasma parameters:
 - the plasma current is limited by external kink modes ($q_{edge} \gtrsim 3$)
 - the plasma pressure is limited by ballooning modes and pressure driven kink modes

beta limit: $\beta_N < 4l_i$

$$\beta_N = \beta [\%] \frac{a[m]B[T]}{I[MA]} \qquad \beta = \frac{2\mu_0 \langle p \rangle}{B_0^2}$$

 l_i : internal inductance (~1)

– (neo-classical tearing modes)



ITER Physic Basis, Nuclear Fusion, Vol. 39, No. 12 (1999)

Non-linear MHD simulation

- Difficulties MHD simulations :
 - Large variation of time scales:
 - Fast waves : frequency varies from order 1 Alfvén times to infinity
 - •Instabilities are relatively slow 10⁻³ a 10⁻² Alfvén times.
 - Equilibrium evolution 10⁶ -10⁸ Alfvén times
 - Large variation in spatial scales:
 - •MHD Instabilities are quasi singular
 - •High (magnetic) Reynolds numbers S~108 1010
 - Anisotropy of energy transport parallel and perpendicular to magnetic field (~10¹⁰)
 - The exact geometry of the magnetic field is essential.

XTOR

- Non-linear MHD code in toroidal tokamak geometry developed by H. Lutjens and J.F. Luciani (CPhT Ecole Polytechnique Paris)
 - Equations: viscous/resistive MHD + heat conduction

$$\rho \frac{D\vec{v}}{Dt} = \vec{J} \times \vec{B} - \nabla p + \nabla v \nabla \vec{v}$$

$$\partial_{t} \vec{B} = \nabla \times (\vec{v} \times \vec{B}) - \nabla \times \eta (\vec{J} - \vec{J}_{boot})$$

$$\partial_{t} T = -\vec{v} \cdot \nabla T - (\Gamma - 1)T\nabla \vec{v} + \nabla \chi_{\perp} \nabla T + \vec{B} \cdot \nabla \chi_{//} \frac{\vec{B} \cdot \nabla T}{B^{2}} + H$$

$$\partial_{t} \rho = -\vec{v} \cdot \nabla \rho - \rho \nabla \vec{v} + \nabla D_{\perp} \nabla \rho$$

$$H = -\nabla \chi_{\perp} \nabla T_{equil}; \eta(J_{\phi} - J_{\phi,boot}) = const.$$

 Applications: internal kink modes, neo-classical tearing modes, double tearing modes (Tore Supra, JET) etc.

XTOR numerics

Split time stepping scheme:

- Ideal MHD part of motion and resistive part of Faraday: semi-implicit
- Linear ideal MHD fully implicit
- Predictor-corrector for other than motion ideal advances
- Scheme for ideal MHD part strongly damps fast modes
 - ⇒ designed to solve shear Alfvén modes.
- Thermal transport: preconditioned fully implicit (conjugate gradients)

Boundary Conditions:

Free slip, infinitely conducting wall

Discretisation:

- radially : Finite Differences
- poloidal and toroidal angles θ , Φ : Fourier Series

XTOR numerical scheme

- Semi-implicit schema (ideal MHD part):
 - Predictor $(1-L)(v^*-v_n) = \frac{\Delta t}{2} F_v(v_n, b_n, p_n)$ $b^*-b_n = \frac{\Delta t}{2} F_b(v^*, b_n, p_n)$ $L = L_0$ $p^*-p_n = \frac{\Delta t}{2} F_p(v^*, b^*, p_n)$

$$\begin{split} L &= L_0 \Delta t^2 + c \Delta \\ \text{L}_0 : \text{ideal MHD} \\ \text{operator} \end{split}$$

$$(1-L)(v_{n+1}-v_n) = \Delta t F_v(v^*, b^*, p^*)$$

$$b_{n+1} - b_n = \Delta t F_b(\frac{v_{n+1}+v_n}{2}, b^*, p^*)$$

$$p_{n+1} - p_n = \Delta t F_p(\frac{v_{n+1}+v_n}{2}, \frac{b_{n+1}+b_n}{2}, p^*)$$

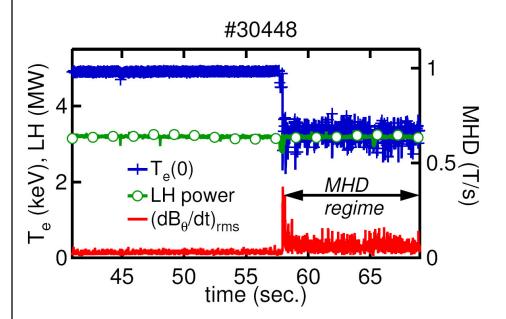
Stable for

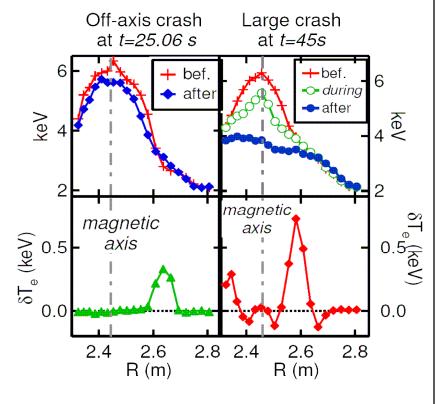
$$c > (\Delta t.\delta B)^2$$

⇒ Damping of (unwanted) high frequency (fast) modes, small damping for low-frequency modes

Tore Supra

- Steady state, long pulse discharges
 - driven by Lower-Hybrid waves leads to hollow current profiles (and non-monotonic q-profiles
 - Onset of 'MHD regime'

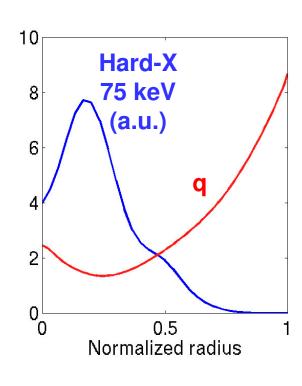


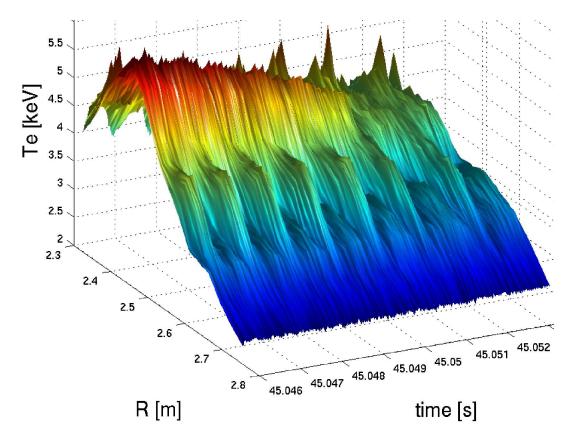


temperature perturbations due to MHD modes

Temperature Perturbation

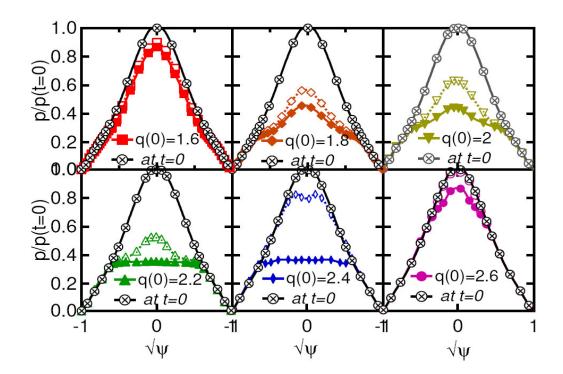
- The measured temperature perturbation indicates a double island structure with two local flattened regions
 - double tearing mode due to 2 rational surfaces (q=2)





Double Tearing modes

- XTOR simulations find same 2 behaviours as in experiment
 - but simulations are too pessimistic (too unstable)

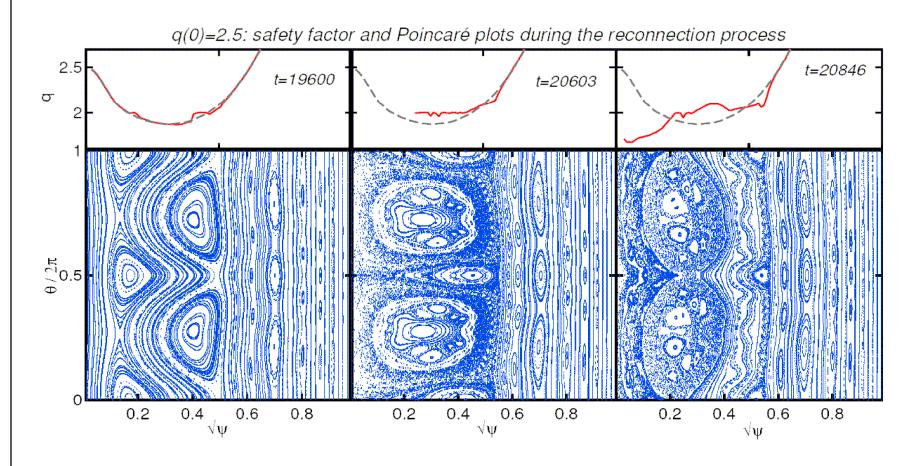


S=5x10⁶, v=1/S, χ (perp)=2x10⁻⁵, χ (parallel)=2x10⁺³

resolution: $N_{radial} = 200(300)$, $M_{poloidal} = 48(64)$, $N_{toroidal} = 16(32)$

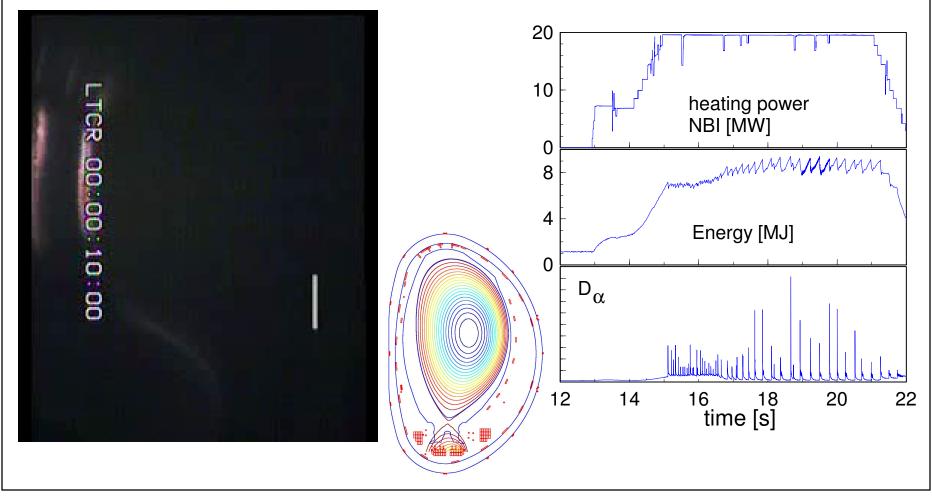
Double Tearing Modes

 XTOR: two islands exchange position causing a complete flattening of the q-profile (i.e current profile)



Edge Localised Modes (ELMs)

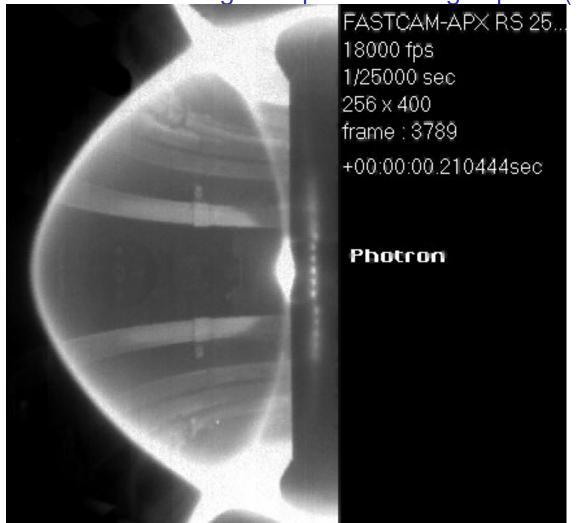
- MHD Instabilities, localised at the plasma boundary, cause large energy losses (in JET \sim 1 MJ) in a very short time (200 μ s)
 - cause for concern in ITER (damage to the first wall)

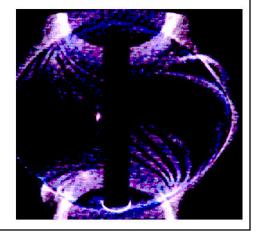


ELMs

• ELMs observed with a fast camera in MAST (A.Kirk, UKAEA):

- Filaments detaching form plasma at high speed (~several km/s)

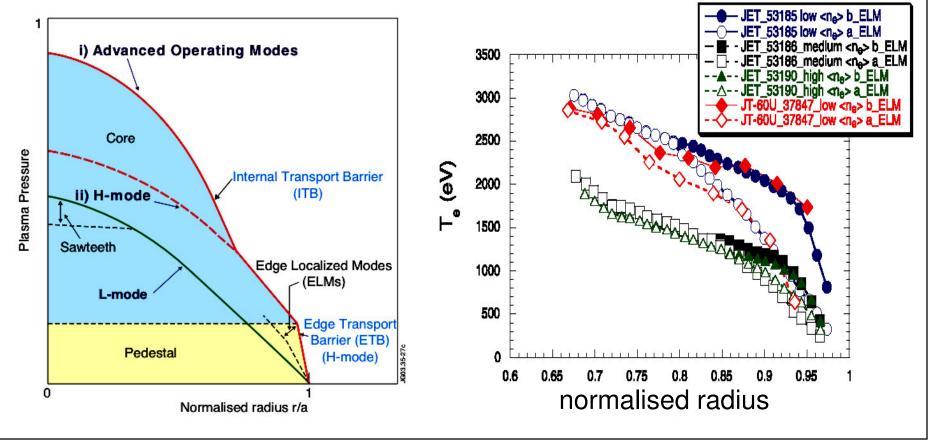




H-mode Edge Pedestal

 Improved confinement regime (H-mode) appears spontaneously when heating is large enough: formation of edge pedestal with large pressure gradient

⇒unstable to MHD instability (Ballooning modes)

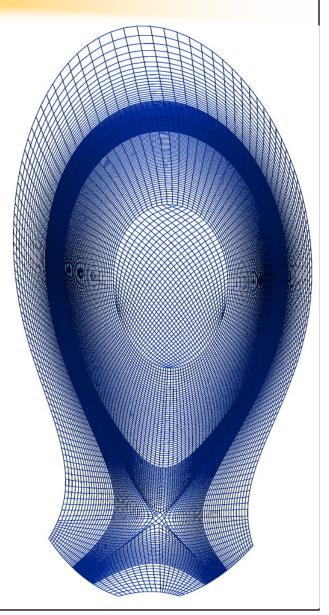


ELMs open questions

- Edge Localised Modes (ELMs) can cause large energy losses, possibly leading to damage to the first wall.
- Relevant linear MHD Stability limits are well known:
 - Ballooning modes driven by edge pressure gradient
 - External kink modes driven by edge current
- Main open question: What determines the size of an ELM?
 - How far can one cross the MHD stability boundary?
 - What is the noise level for the ideal MHD mode in stable plasma?
 - What determines the final state after the ELM?
 - Is there a correlation with the width of the linear eigenmode?
 - What is the relaxation mechanism?
 - Why not a saturated instability but a discrete event?
- ⇒Non-linear MHD simulations in full geometry including open and closed field lines, X-point and separatrix.

JOREK

- Non-linear MHD code JOREK under development at CEA for the simulation of ELMs
 - magnetic geometry with X-point
 - finite elements aligned on magnetic surfaces
 - refinable finite elements
 - reduced MHD model
 - •'vacuum' modelled as cold, low density plasma
 - fully implicit time evolution
 - parallelisation using MPI



Reduced MHD model

- •Reduced MHD model in toroidal geometry
 - fixed large toroidal magnetic field
 - removes fast waves, easier on the numerics
 - similar to reduction Navier-Stokes to potential flow

$$\vec{B} = \frac{R_0}{R} B_0 \vec{e}_{\varphi} + \frac{R_0}{R} \vec{\nabla} \psi \times \vec{e}_{\varphi}$$

$$\vec{v} = \frac{-R}{R_0 B_0} \vec{\nabla} u \times \vec{e}_{\varphi}$$

- Good for physics studies, not for detailed comparison with experiment

dimensionless form : $(x = (R - R_0)/a ; y = Z/a ; \varepsilon = a/R_0)$

Magnetic flux:
$$\frac{\partial \psi}{\partial t}$$
 =

$$\frac{\partial \psi}{\partial t} = (1 + \varepsilon x) [\psi, u] + \eta \Delta^* \psi - \varepsilon \frac{\partial u}{\partial \varphi}$$

$$\frac{\partial w}{\partial t} = 2\varepsilon \frac{\partial u}{\partial y} w + (1 + \varepsilon x) [w, u] + \frac{1}{(1 + \varepsilon x)} [\psi, J] - \frac{\varepsilon}{(1 + \varepsilon x)^2} \frac{\partial J}{\partial \varphi} + v \nabla_{\perp}^2 w$$

$$\frac{\partial \rho}{\partial t} = (1 + \varepsilon x) [\rho, u] + 2\varepsilon \rho \frac{\partial u}{\partial y} + \nabla \cdot (D_{\perp} \nabla_{\perp} \rho) + S_{\rho}$$

$$\rho \frac{\partial T}{\partial t} = (1 + \varepsilon x) \rho [T, u] + 2\varepsilon \rho T \frac{\partial u}{\partial y} + \nabla \cdot (K_{\perp} \nabla_{\perp} T + K_{\parallel} \nabla_{\parallel} T) + S_{T}$$

$$J = \Delta^* \psi; \qquad w = \nabla \cdot \nabla_{\perp} u$$

JOREK time evolution

- Fully implicit time evolution to allow large time steps
- Linearised Crank Nicholson scheme:

$$\frac{\partial A(\vec{y})}{\partial t} = B(\vec{y})$$

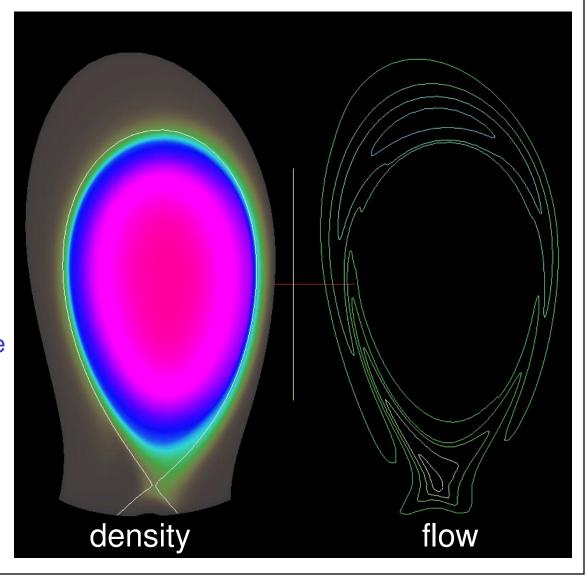
$$\frac{\partial A}{\partial y} \delta \vec{y} = \delta t B(\vec{y}_n) + \frac{1}{2} \delta t \frac{\partial B(\vec{y}_n)}{\partial y} \delta \vec{y}$$

$$\left(\frac{\partial A(\vec{y}_n)}{\partial y} - \frac{1}{2} \delta t \frac{\partial B(\vec{y}_n)}{\partial y}\right) \delta \vec{y} = B(\vec{y}_n) \delta t$$

- Large sparse system of equation solved using parallel direct sparse matrix libraries (PASTIX, MUMPS, WSMP)
 - Hybrid direct/indirect methods (PASTIX) under study (P. Ramet et al.)

ELM simulations: ballooning mode

- Evolution of n=6 ballooning mode
 - Formation of multiple filaments expulsed from plasma
 - Speed ~1 km/s
 - Sheared from main plasma by induced n=0 flow
 - Filaments are cold,
 without magnetic structure

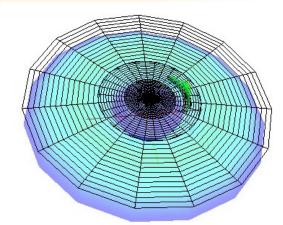


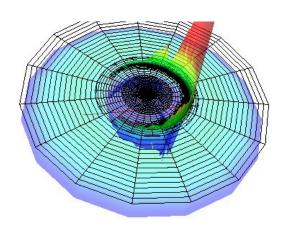
JOREK Developments

- Refinable bi-cubic Finite Elements (Bezier FE)
 - adaptive grid refinement (O. Czarny)
- Adaptation of PastiX sparse matrix library
 - direct/indirect parallel sparse matrix solver(P. Ramet, P. Henon, O. Coulaud)
- Optimisation of time-stepping algorithm in JOREK
 - stabilised FEM, stable residual distribution schemes (R. Abgrall, B. N'Konga)
- Full MHD model
 - Open field line boundary conditions
 (M. Becoulet, G. Huysmans)

project in french ANR program on 'Intensive Computing and Simulation' (ANR-CIS)

 Collaboration CEA Cadarache - INRIA Futurs-LaBRI & MAB University of Bordeaux





Open Problems

- Numerical schemes
 - High, i.e. realistic, (magnetic) Reynolds numbers
 - Resolution of 'boundary' layers
 - Long time integration
- Non-linear evolution of MHD modes
 - Simulation of complete ELM cycle (different ELM types)
 - Simulation of sawtooth cycle
 - Excitation of neo-classical tearing modes
- MHD + background turbulence
 - Interaction fluid turbulence with MHD instabilities
- Fast particle interaction with MHD modes
 - ITER

Summary/Conclusion

- The linear MHD model is one of the simplest and most successful models in tokamak physics
 - describes the operational limits of tokamaks (pressure and current)
 - Local pressure gradient and current density limits
 - Frequencies of (global) Alfvén waves
- Non-linear MHD is moving from theoretical studies to comparison theory-experiment
 - However, still many open basic physics questions
 - Crash of fast MHD instabilities (ELMs, sawteeth)
 - Trigger of neoclassical tearing modes
 - Interaction fast particles and MHD modes
 - Extensions to the MHD model
- Progress in numerical methods is needed
 - realistic Reynold numbers
 - extended MHD models