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p Problem setting

• In the context of Inertial Confinement Fusion (ICF), plasma collision may
occur

• Its modeling by mono-fluid hydrodynamic leads to unphysical densities
(shocks).

• Full modeling would require kinetic description of the plasma which is not
realistic for multi-dimensional flows.

• So it affects the interpretation of experiments of ICF on laser by using an
ICF hydro code.

Our aim is to present a model for the description of such phenomena, to
describe the numerical method and the implementation made in the ICF code
used, and to show some numerical results.
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p Different models

• Classical model = the 2 ionized fluids can be described by a system of six
equations which correspond to the conservation of mass, momentum and
energy for each fluid.

• 5-equation model = by the use of a closure, we get a five-equation model:
the conservation equation of mass, momentum and energy for the average
fluid coupled with an equation of concentration and relative velocity.

• Reduced model = the 5-equation model is then simplified by using
assumptions on the friction coefficient and on the relative velocity
(diffusion approximation).
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p The initial model (6 equations)

Two fluids ( q = g and l) are assumed to fill possibly the same volume

∂

∂t
ρq + ∇

`

ρq
−→uq

´

= 0,

∂

∂t

`

ρq
−→uq

´

+ ∇
`

ρq
−→uq

−→uq + Pq

´

=
−→
Ξq,

∂

∂t
(ρqEq) + ∇

`

ρq
−→uqEq + −→uqPq

´

= Ωq + Ce,q.

Knowing that the friction or drag term may reads as

−→
Ξ g = −

−→
Ξl = ν0ρgρl(

−→ul −
−→ug),

one has to add an equation on electronic energy (two temperature Euler
equations).
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p The 5-equations model: Notations

The mean quantities

ρ = ρg + ρl,
−→u = (ρg

−→ug + ρ−→ul)/ρ, E = (ρgEg + ρlEl)/ρ,

concentration of material g and relative velocity:

c =
ρg

ρ
,

−→
V = −→ug −−→ul ,

the total material pressure and the mixing pressure:

P∗ = Pg + Pl, Pb = ρ
−→
V
−→
V c(1 − c).

We set σ = ρν0. We can see after standard calculus that

ε ≡ cεg + (1 − c)εl = E −
1

2
|−→u |2 −

1

2
c(1 − c)|

−→
V |2.
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p The 5-equations model:

We get after standard calculus

ρDtρ
−1 −∇−→u = 0,

ρDt
−→u + ∇P∗ + ∇.Pb = 0,

ρDtc + ∇
“

ρc(1 − c)
−→
V

”

= 0,

ρDt(ρ
−1−→V ) −∇.(|

−→
V |2

2c − 1

2
) + G = −σ

−→
V ,

ρDtE + ∇
“

P∗

−→u + Pb.
−→u

”

+ .... = Ce,i,

where

• whereDt = ∂
∂t

+ −→u ∇ is the lagrangian derivative.

• G = 1
ρc

∇Pg − 1
ρ(1−c)

∇Pl

• Ce,i corresponds to the coupling between the ions and the electrons.
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p The reduced model

If one assumes that the flow of each fluid is isentropic, the following closure
holds:

G ⇒ ∇(Ψ(c)ε)

with

Ψ(0) = γg , Ψ(1) = −γl.

So we get

ρDt(ρ
−1−→V ) + ∇(Ψε) −∇.(|

−→
V |2

2c − 1

2
) = −σ

−→
V ,

ρDtE + ∇(−→u P∗ + ρc(1 − c)
−→
V Ψε) + ∇(Pb

−→u −
2c − 1

2
ρc(1 − c)

−→
V |

−→
V |2) = 0.

This leads to an hyperbolic system (for |
−→
V | small enough).
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p Remark

By denoting

K =
c(1 − c)|

−→
V |2

2
,

this mixing kinetic energy satisfies

ρDtK + 2ρK∇.−→u + ρc(1 − c)
−→
V .∇(Ψε) + 2σρK −∇

“

(2c − 1)ρK
−→
V

”

= 0.

Then, we get the following equation for the internal energy ε:

ρDtε + P∗∇.−→u + Ψε∇(ρc(1 − c)
−→
V ) = 2σρK.

C. Baranger NFMCF - April 2007 8

– p. 8/17



p Diffusion approximation

This consist on assuming that:

∇(Ψε) + σ
−→
V = 0.

We take
−→
V ' −

1

σ
Ψ′ε∇c ≡ D∇c.

Then

ρDtc −∇. (ρc(1 − c)D∇c) = 0,

ρDtE + ∇.
`

P∗

−→u + 2ρK−→u
´

−∇. ((c(1 − c)Ψε − (2c − 1)K)ρD∇c) = 0.

For the internal energy, equation is similar to the classical Euler but with
different right hand side:

ρDtε + P∗

−→
∇.−→u = Ψε

−→
∇.

“

ρc(1 − c)D
−→
∇c

”

+ 2σρK.
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p Final system

We could resume the whole model in this system

ρDtρ
−1 −∇.~u = 0,

ρDt~u + ∇P∗ + ∇. ¯̄Pb = 0,

ρDtc −∇.(c(1 − c)D∇c) = 0,

ρDtε + P∗∇.~u = Ψε∇.(ρc(1 − c)D∇c) + 2σρK,

ρDtK + 2ρK∇.−→u + σρ(2K − c(1 − c)|D|2|∇c|2) −∇ ((2c − 1)ρKD∇c) = 0.
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p Numerical method

Brief description of our simulations

• Arbitrary-Lagrangian-Eulerian hydro code.

• Electronic thermal conduction is taken into account by using the classical
Spitzer-Härm formula. Ionic thermal conduction is neglected.

• Equation for the concentration:

• non-linearity -> implicit scheme with fixed point method,

• Diffusion scheme: 5 points scheme on quadrilaterals.
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p Numerical method

• We have to model the diffusion coefficient D: it has the following form (for
a given function Ψ)

D(c) '
ε

β0

Ψ′(c)

ρ

„

(
9π

2α2
0

)
1

3 (γ − 1)(2 + (1 − 2c)
Ψ(c)

γ
)ε + V 2

r

« 3

2

A possible choice for the corrector term Vr is

Vr
2 = C2

1ε5/(Lρβ0)
2

where L is a constant which is a characteristic value of the width of the
mixing zone (it depends on the actual cases).

Some numerical experiments were made in order to see the influence of the size
of the mesh (with respect to the mean free path) and of the value of the
characteristic length L.
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p Numerical results

An example in a 1D configuration

Initially, two pure fluids with opposite velocity (Gold/Gold collision)

Gold
GoldVr −Vr

Here we take σ0 = 2.5 1036, Vr = 2. 108 (in CGS units).

Limit condition: vaccum.
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p Numerical results

concentration versus position
(from 0 to 300 ps)

non linear profile

density versus position at 300 ps
with or without mixing

decreasing of the density
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p 2D simulation

The simulation of the mixing of 2 plasma flows of Titanium, obtained by a laser
ablation.

evolution of the front of titanium
from 0.2 to 2.5 ns profile of concentration

from 0.9 to 2.5 ns
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p 2D simulation

We observe, as request, smaller density and smaller emission of the zone of the
mixing of plasma (emmision is proportionnal to ρ2).

evolution of the density
from 1.2 to 1.8 ns

R

ρ2dx in the mixing zone
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p Perspectives

• Take into account the coupling between ions and electrons at the
numerical level.

• Refined the 2D case and compute the emissivity of the whole simulation,
in order to made a comparison with experiments.
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