The C++// language - DRAFT

Denis Caromel, Fabrice Belloncle, and Yves Roudier

I3S - CNRS - University of Nice - INRIA Sophia Antipolis
650 Rte des Colles, B.P. 145 - 06903 Sophia Antipolis - France
{caromel,belloncl roudier } @unice.fr
http://wuw.inria.fr/sloop/c++11 and
http://wwwi3s.unice.fr/c++11

fi sLoor
— T——ST

Introduction

The C++// language (pronounced “C++ parallel”) was designed and
implemented with the aim of importing reusability into parallel and
concurrent programming, in the framework of a MIMD model. C4++//
defines a comprehensive and versatile set of libraries, using a small set of
simple primitives, without extending the syntax of C++. The libraries
are themselves extensible by end users, making C++// an open system.

Reusability has been one of the major contributions of object-oriented
programming; bringing 1t to parallel programming is one of our main
goals, and it would be a major step forward for software engineering of
parallel systems. Part of the challenge is to combine the potential for
extensive reuse with the high performance which is usually required of
parallel and real-time systems.

Working mainly within the framework of physically-distributed archi-
tectures, we are concerned with both explicit and implicit parallelism in
both the problem and solution domains. Qur applications include paral-
lel data structures, computer-supported cooperative work (CSCW), and
fault-tolerance and reliability in safety-critical and real-time systems.

We are part of the SLOOP (Simulation and Parallel Object-Oriented
Languages) project, a recently-formed research team with approximately
15 members at 13S-CNRS, the University of Nice, and INRIA Sophia
Antipolis. This team is investigating three research areas: parallel and
distributed discrete event simulation, parallel object-oriented languages,
and communication and interconnection networks. These three domains
are not independent: each level needs and uses the primitives and capa-

bilities of the layer beneath it. As a member of this group, supporting
distributed simulations [Mallet & Mussi 1993] is of first importance for
our system.

To achieve this, we began the design and implementation of C++//
in early 1994. While a recent development, C++// owes a significant
part of its design and implementation techniques to previous research,
which led to the definition of Eiffel// [Caromel 1989 , Caromel 1993a
, Caromel 1993b], a parallel extension of Eiffel [Meyer 1988 , Meyer 1992
]. In particular, C4++// defines a reduced set of simple primitives: these
can then be composed to create comprehensive and versatile libraries,
which—most importantly—can then be extended by end users.

Another important characteristic of our system is the complete ab-
sence of any syntactical extension to C++4. C++// users write stan-
dard C++ code, relying on specific classes to give programs a parallel
semantics. These programs are then passed through a pre-processor,
which generates new files. The original and new code are finally com-
piled and linked with a standard C++ compiler. When appropriate, all
names related to the C++// system include the 11 root in their name
(for “parallel”).

This chapter begins by describing the basic features of our program-
ming model, which is a distributed-memory MIMD model. Section 2
deals with the control programming of processes (i.e., the definition
of concurrent process activity). A recommended method for parallel
programming in C++// is outlined in Section 3. Those parts of the
programming environment which handle compilation and mapping are
described in Section 4. We then present our implementation of poly-
gon overlay in Section 5. Finally, an overview of the implementation
techniques which make the system open and user-extensible is given in
Section 6, and we present some concluding remarks.

Information on our system is available from http://www.inria.fr/
sloop/c++11 and http://wwwi3s.unice.fr/c++11. Queries and com-
ments can be sent to c++11l@unice.fr and c++1l@sophia.inria.fr.

1. Basic Model of Concurrency

This section describes four important characteristics of our parallel pro-
gramming model: parallel processes, communication between them, syn-

chronization, and data sharing. As mentioned above, we adopt a distributed-
memory MIMD model, which means that there are no directly-shared
objects in our system.

Along with simplicity and expressiveness, reusability is one of our
major concerns. More specifically, we want to allow users to take an
existing C++ system and transform it into a distributed one, so that
they may derive parallel systems from sequential ones [Caromel 1990b].

1.1. Processes

One of the key features of the object-oriented paradigm is the unification
of the notions of module and type to create the notion of class. When
adding parallelism, another unification is to bring together the concepts
of class and process, so that every process is an instance of a class,
and the process’s possible behavior is completely described by its class.
However, not all objects are processes. At run-time, we distinguish two
kinds of objects: process objects (or active objects), which are active by
themselves, with their own thread of control, and passive objects, which
are normal objects. This second category includes all non-active objects.
An example of the arrangement of processes and objects at run-time is
given in Figure 1.1.

U]

-
A==
i

(iii)

-
e

f
L

=y s :
Legend
O sibsysem @ Process/ActiveObjet) Object © Member
———= Pointer ——— Void pointer

Figure 1.1
Processes and objects at run-time

At the language level, there are two ways to generate active objects.
In the first, an active object is obtained by instantiating a standard
sequential C++ class using Process_alloc:

A* p; // A is a normal sequential class
p = (A %) new (typeid(A)) Process_alloc(---);

In this case, a standard sequential class A is instantiated to create an ac-
tive object, whose method invocations are then serviced in the order in
which they are received. The Process_alloc class is part of the C++//
library, while typeid is the standard C++ run-time type identification
(RTTI) operator. We will refer to this technique as the allocation-based
process creation, and say that it produces an allocation-based process, or
allocation-based active object. The allocation style is convenient, but lim-
ited because it only allows us to create processes which handle method

invocations in a first-in, first-out (FIFO) manner.

The second technique, which we call class-based, is more general. All
objects which are an instance of a class that publicly inherits from the
class Process are processes. This Process class is part of the C++//
library. To use class-based process creation, the programmer must derive
a specific class, called a process class, from Process, as in:

class Parallel_A : public A, public Process {
b

Parallel_A* p;
p = new Parallel _A(---);

As with the allocation-based technique, instances of sub-classes of
Process have a default FIFO behavior. However, as we will see in the
following sections, it is possible to change this to create other behaviors.
We say that the class-based technique generates class-based processes,
or class-based active objects.

As shown on Figure 1.1, passive objects (i.e., objects which are not
active) belong at run-time to a single process object. This organizes
a parallel program into disjoint sub-systems, each of which consists of
one active object encapsulating zero or more passive objects. Figure 1.2
presents the two styles of active object definition.

Classes Objects

N C++ allocation CAY
uential
o (2) TS e
asses
4y, Objects

')
Acii
Process \ cive
Objects
“p A
Classes Class-based ©
>
new PA(..)
Legend
O C++ Class <— Inherit from > C++ Object

Figure 1.2
Allocation-Based and Class-Based Active Objects

1.2. Sequential or Parallel Processes

A major design decision for any concurrent programming system is
whether processes are sequential (i.e., single-threaded) or able to sup-
port internal concurrency (i.e., multi-threaded). Because our system
is oriented towards reuse and software engineering of parallel systems,
rather than operating systems programming, we chose to make processes
sequential. We believe that single-threaded processes are easier to reuse,
and easier to write correctly.

The model does not allow the user to program multi-threaded processes,
but this does not prevent multi-threading at the operating system level.
As we will see in Section 4.2, several sequential processes can be imple-
mented with one multi-threaded operating system process for the sake
of light-weightness.

1.3. Communication

Since a process is an object, it has member functions. When an object
owns a reference to a process, it is able to communicate with it by calling

one of its public members. This is C4++//’s interprocess communica-
tion (IPC) mechanism: all communication towards active objects appear
syntactically as member function calls:

p—>f (parameters);

This idea, introduced by the Actors model [Hewitt 1977 ; Agha 1986],
means that what is sometimes called a process entry point is identical
to a normal routine or member function.

While this idea is widely used in parallel object-oriented systems, there
are many differences in the definition of the semantics of method-based
IPC. In C++//, IPC calls are asynchronous by default, while function
calls to passive objects retain the synchronous semantics of standard
C++. This choice encourages the parallel execution of objects, and
makes each process more independent from other parallel activities and
more self-contained. As we will see, it is also very important for sup-
porting reusability. Synchronous function calls are possible in C++//,
but must be specified explicitly in either the function call or the process
definition.

The choice of asynchronous TPC for the default structures a C++//
system into independent asynchronous sub-systems: all of the communi-
cation between sub-systems is asynchronous. Figure 1.1 illustrates five
such sub-systems.

1.4. Synchronization

Asynchronous communication can be difficult for programmers to man-
age. For example, since function calls to processes are asynchronous,
one needs to explicitly synchronize before using result values, to make
sure they have been returned by the processes. Commonly, such mod-
els lack the implicit synchronization usually provided by a synchronous
communication semantics.

We use a simple rule, called wait-by-necessity, to address this prob-
lem. In C4++//, a process is automatically blocked when it attempts to
use the result of a parallel member function call that has not yet been
returned. Thus, a caller does not wait for the result of an asynchro-
nous function call until that value is explicitly used in some computa-
tion. Should a value not have been returned at that point, the caller

is automatically blocked until the value becomes available. This mech-

v = p->f(parameters) ; // asynchronous call

v->foo(); // wmplicitly triggers a wait
// if vis awaited

if (Awaited(v)) { // test the status of v
}
Wait(v); // explicitly triggers a wait

// if vis awaited

obj->g(v); // no wait if pointer access
v2 = v;

Program 1.1
Wait-by-Necessity

anism implicitly synchronizes processes; the two primitives Wait () and
Awaited() are provided for explicit synchronization.

Program 1.1 summarizes the semantics of wait-by-necessity. The re-
sult of a function call not yet returned is called an awazited object. Our
semantics define that no wait is triggered by assigning a pointer to such
an object to another variable, or by passing such a pointer as a parame-
ter. A wait occurs only when the program accesses the awaited object
itself (which is syntactically a pointer access to the object) or transmits
(copies) the object to another process.

Wait-by-necessity is a form of future [Halstead 1985], and is related to
concepts found in several other languages: the Hurry primitive of Actl
[Lieberman 1987], the CBox objects of ConcurrentSmalltalk [Yokote
& Tokoro 1987], and the future type message passing of ABCL/1
[Yonezawa et al. 1987]. However, an important difference is that the
mechanism presented here is systematic for all asynchronous function
calls and automatic, which is reflected in the absence of any special
syntactic construction. This has a strong impact on reusability.

In order to avoid the run-time overhead involved in the implementa-
tion of wait-by-necessity, programmers can use explicit synchronization

primitives instead of implicit synchronization. This is a tradeoff between
programming ease and reusability on the one hand, and efficiency and
speedup on the other.

1.5. Sharing

If two processes refer to the same passive object, method calls to that
object may overlap, which raises all of the problems usually associated
with shared data. To address this issue, each non-process object in
C++// is a private object, and is accessible to only one process. We say
that a private object belongs to its process’s sub-system.

The programming model ensures that sharing does not occur: the
communication of passive objects between processes uses a copying se-
mantics. Passive object parameters of a call are automatically transmit-
ted by value from one process to another. A deep copy of these objects
is achieved: when an object X is copied, all the (also passive) objects
referred to by pointers in X are deep-copied as well. The implementa-
tion automatically and transparently handles the required marshalling
of data and pointers, as well as circular object structures. Of course,
process parameters are always passed by reference.

Figure 1.1 illustrates the absence of passive objects shared by processes
in C++// programs. Each passive object is accessible to exactly one
active object; each of the five sub-systems in this program consists of
one active object and all the passive objects it can reach. The arcs
labelled (1) and (2) are always activated as asynchronous communication
(TPC), while the arcs labelled (3) to (6) are activated as normal function
calls. As a consequence of the absence of shared objects, synchronization
between sub-systems only occurs when one sub-system waits for a result
value from another process.

Prohibiting shared data also has important methodological conse-
quences. As we shall see in Section 3.3, the features of C++//, to-
gether with object-oriented techniques such as polymorphism and dy-
namic binding, permits the derivation of parallel systems from sequential
ones. The absence of shared objects allows either an immediate reuse
(the default automatic copy of parameters is the correct semantics), or
the identification of new processes to program in order to implement
semantically shared values. Finally, due to the absence of interleaving
of operations inside sub-systems, it helps to ensure the correctness of
the parallel applications derived from sequential ones.

The basic characteristics of our programming model are summarized

in Figure 1.3.

A process is an active object, sequential and single-threaded.

Communication to active objects are syntactically programmed as mem-
ber function calls, and are asynchronous.

An object is automatically blocked when it attempts to use the result of a
member function call that has not been returned yet (wait-by-necessity).

There are no shared passive objects.

Passive objects parameters are passed by value (copy).

Figure 1.3
Basic Features of the C++// Model

2. Control Programming

So far, we have only examined and defined the features of C++// which
deal with the global aspects of the programming model, such as the
nature of processes and their interactions. This section describes how the
control flow of processes is specified, i.e., how behavior, communication,
and synchronization of active objects is programmed. Here and later, we
use request to mean a call issued to a process member function. Since
communication is asynchronous, the process to which the request was
issued will later serve the request: that is to say, it will execute the

member function being invoked.

2.1. Centralized versus Decentralized Control

Decentralized control is distributed throughout a program. Each rou-
tine, public or otherwise, may contain a part of the control. An example
of this is the uses clause of the Hybrid langauge [Nierstrasz 1987 |:

type buffer of (.--);

private {
put: (item: item_type) —>;
uses not full;

10

get:->item_type;
usesg not empty;

{ e }

Alternatively, control can be centralized (i.e., gathered into one place
in the definition of a process), independent of the function code. An
example of this is the CONTROL construct of Guide [Decouchant et al.
1989]:

CLASS buffer IS

METHOD put(---); BEGIN

END put;

METHOD get(.--); BEGIN

END get;

CONTROL
put: ((completed(put) - completed(get)) < size)
and (current(put) = 0);
get: (completed(put) < completed(get))
and (current(get) = 0);
END buffer

Decentralized control makes the reuse of member functions difficult
for two reasons. First, functions designed in a sequential framework
cannot be reused in a parallel one just as they are, as elements of control
must be added to them. Second, when a new process class is obtained
through inheritance of another process class, the new class often needs to
change the synchronization scheme used in the original class. If control
is embedded in function bodies, this may not be feasible. This led us to
decide to use centralized control in C++//, as it allows function reuse
for both sequential and process classes.

Program 1.2 presents partial code for the library class Process. After
creation and initialization, a process object executes its Live() rou-
tine. This routine describes the sequence of actions which that process
executes during its lifetime. The process terminates when the Live()

routine completes.

11

class Process {
public:
Process (.-.) { // process creation

}
virtual void Live() { // process body

// default FIFO behavior

};.

Program 1.2
The Process Class

2.2. Explicit vs. Implicit Control

Another design decision that must be made in concurrent object-oriented
systems is whether process control is implicit or explicit. Control is
explicit if its definition consists of an explicitly programmed thread of
control (e.g., as in Hybrid). Otherwise, control is implicit, which in
practice usually means that it is declarative (e.g., as in Guide).
Implicit control is a high-level concept. Thanks to its declarative
nature, it is an effective way to express synchronization. It usually pro-
vides programmers with a consistent framework, in which they can for-
get implementation details and describe the synchronization constraints
in a very synthetic manner. ITmplicit control has also the advantage of
promoting synchronization reuse [Matsuoka et al. 1990 , Neusius 1991
, Decouchant et al. 1991 , Shibayama 1991 | Frolund 1992 , Lohr 1992].
However, many implicit control frameworks (i.e., abstractions for con-
currency) exist, including path expressions [Campbell & Haberman 1974
], synchronization counters [Robert & Verjus 1977 , McHale et al. 1990
], behavior abstractions [Kafura & Lee 1990], and synchronizers [Agha
et al. 1993]. Each has a different expressive power, and different prop-
erties regarding reusability of synchronization constraints. None is uni-
versal: within each, some problems are difficult to describe, and some
problems cannot be described at all. Nevertheless, for its abstract na-

12

ture and its reuse potential [Kafura & Lee 1989 , Frolund 1992], we
believe that implicit control should be used as often as possible.

Synchronization expressed using explicit control is not defined declar-
atively, but is instead programmed. The languages CSP [Hoare 1978
, Hoare 1985], Ada [Burns 1985 , Gehani 1984 | Ichbiah et al. 1979],
Occam [Inmos 1988], ABCL/1 [Yonezawa et al. 1987], POOL2 [Amer-
ica 1988], Concurrent C [Gehani & Roome 1989], and Eiffel// [Caromel
1993a] all use explicit control. Its first advantage is that, since the pro-
grammer actually programs a thread of control, all the expressive power
associated with imperative language can be used. The detailed behav-
ior of an active object can be specified, and fine tuning of policies is
possible.

The second advantage of explicit control is that it allows programmers
to describe the internal actions of processes, i.e., operations that are
to execute independently of external requests. This kind of activity
is difficult, or even impossible, to program with implicit control, since
there is usually no place to mention the activation of personal actions.
In any case, it is very hard to finely control the time spent executing
such actions, and the time spent servicing externally-visible routines.

The third (and, to our group, decisive) advantage of explicit control
is that under some conditions, it permits the design and construction of
implicit control frameworks. Such abstractions can be put into libraries,
from which programmers can chose the most appropriate for their needs
[Caromel 1990c]. Then, within one language, one can always choose
the type of control programming that best fits a given problem. In
fact, explicit control may be viewed as a low-level mechanism, allowing
either the definition of complex and precise synchronization, or the con-
struction of a particular abstraction to be used for higher-level implicit
control.

In summary, our argument is that:

1. programmers sometimes need explicit control;

2. implicit control permits the reuse of synchronization;

3. no universal implicit control abstraction exists; and

4. explicit control allows us to build implicit control abstractions.

As a consequence, the basic mechanism for programming process be-
havior in C++4// is explicit control. Explicit control programming con-
sists of defining the Live () routine of the Process class and its derived
classes (Program 1.2) using the sequential control structures of C++.

13

All of the expressive power of C++ is available, without any limitation.
For example, the process body of a bounded buffer can be defined as:

class Bufferl : public Process {

virtual void Live()

{

while (ezecuting) {
if (1£ullQ))
explicit service of put
if (lempty())
explicit service of get
}

}
};

Besides explicit control, other features are needed in order to con-
struct abstractions for concurrent programming. These features also
provide C++// with a mechanism to explicitly service requests, the two
instructions left unspecified in the example above.

First, defining a process’s thread of control often consists of defin-
ing the synchronization of its public member functions. Since such an
activity requires dynamic manipulation of C++ functions, we need to
represent member functions as first-class objects. (In practice, only some
limited features, such as the ability to use routines as parameters, and

system-wide valid function identifiers, are needed.)
To fill that need, we provide the function mid() (for “method TD”) to
return function identifiers. Its usage is:

member_id f;

f = mid(put);

f = mid(A::put);

f = mid(A::put, A::get);

f = mid(A::put(int, P *));

In order to deal with overloading, this function returns either a single
identifier, or a representation of all adequate functions. Related func-
tions are defined in Section 6.3.

In the same way, because we need to explicitly program request ser-
vicing, we must be able to manipulate requests as objects (i.e., to pass
them as parameters of other functions, to assign them to variables, and
so on). In C++4//, the class Request models requests. As shown below,
every request is an instance of this class:

14

class Request {

public:

member_id m; // member to be called
List<Any> eff_paranms; // effective parameters
Any object; // target object

request_id id; // ID of the request

}s
A request object holds the identifier of the function to be invoked, the
actual parameters of the invocation, a reference to the target object,
an ID of the request, and information needed in order to implement
the remote invocation. The class Any is used to manipulate any basic
type of C++, and any pointer to a class or a structure. Since Any is
implemented in standard C++, the basic type conversions are implicit,
while conversions to class pointers must be explicit.

Finally, to be able to fully control request servicing, programmers
must have access to the list of pending requests. This is given through
the Process class, with a specific member named request 1ist that
contains the list.

With these three facilities in place, it is possible to program the con-
trol of processes in diverse and flexible ways presented in the two next
sections.

2.3. Library of Service Routines

Service primitives are needed to allow programmers to program control
explicitly. Usually, programmers are given only a few such primitives,
mainly because they are made part of the language itself as syntactical
constructions (e.g., the serve instruction of Ada). With the primitives
we define, it is possible to program a complete library of service routines
[Caromel 1990a]. Some of these are shown in Program 1.3, where £ and
g are member identifiers obtained from the function mid() introduced
in the previous section.

These functions are defined in the class Process, and can be used
when programming the Live() routine. There are no limitations on the
range of facilities that can be encapsulated in service routines. Timed
services are an example of such expressiveness; selection based on the
request parameters is another. Moreover, if a programmer does not find
the particular selection function she needs, she is able to program it.

15

// Non-blocking services

serve_oldest(); // Serve the oldest request of all
serve_oldest(f); // The oldest request on f
serve_oldest(f, g, ---); // The oldest of for g

serve_flush(); // Serve the oldest, wipe out the others
serve_flush(f); // The oldest on f

// Blocking services: wait until there is actually a request to serve
bl_serve_oldest(f); // blocking version of serve_oldest on f
bl_serve_flush(); // blocking version of serve_flush

// Timed blocking services: block for a limited time only
tm_serve_oldest(t); // Serve the oldest, wail at most t

// Information retrieval
exist_request () // true if a pending request exists
exist_request (f) // True if a pending request exists on f

// Waiting primitives
wait_a_request(); // Wait until there is a request to serve
wait_a_request(f); // Wait a request to serve on f

Program 1.3
A Library of Service Routines

Thus, libraries of service routines, specific to particular programmers or
application domains, can be defined.

Another important point concerns efficiency: concurrency policies are
determined within the context of each process, based on local informa-
tion, rather than by using IPC. This avoids problems like polling bias
[Gehani 1984]. This is an important advantage in distributed program-
ming.

To illustrate the use of explicit control programming, Program 1.4
presents a C++// implementation of a bounded buffer. This definition
implements a specific policy: when the buffer is neither full() nor
empty (), the buffer alternates service on put() and get(). This policy
is clearly not the only possible one. For example, some situations might
require requests to be processed in the order of their arrival. Such a
policy can be programmed as follows:

virtual void Live() {
while (!stop) {

16

class Buffer: public Process, public List {

protected:
virtual void Live()

{
while (!stop) {
if (Mfull())
serve_oldest (mid(put));
if (lempty())
serve_oldest(mid(get));

}
}
};

Program 1.4
An Explicit Bounded Buffer Example

if (full())
serve_oldest (mid(get));
else if (empty())
serve_oldest (mid(put));
else
serve_oldest (mid(put), mid(get));

}
}

This is an example of explicitly fine-tuning the synchronization of processes.
While this might be important in some contexts, in other contexts we
might want to program within a more abstract framework, and ignore
the implementation details. The next section shows how we allow such
programming,.

2.4. Library of Abstractions

Again, using the basic features defined in Section 2.2, it is possible to
program the abstractions for concurrency control that are usually built
into parallel languages [Caromel 1990¢ , Caromel 1991 , Caromel 1993¢
]. In order to define a new abstraction, one inherits from the Process
class, and creates the desired synchronization behavior framework. In
order to exploit the abstraction, users inherit from this class instead of
from the Process class when defining an active object.

17

A
B
s
T
R
A
c
T
1
o
N
s
A
P
P
Blackboard Binary L
Search (I;
Tree A
Legend T
o
O Class N
s
<— |nheitfrom
Figure 1.4

Library of Abstractions

For example, we can program a simple abstraction in which: a block-
ing condition (i.e., a function returning true or false) is associated with
each public function, and a public function whose blocking condition
is true is not served. The class Abst Process, shown in Program 1.5,
defines this framework. The function associate() permits users to
specify blocking conditions for public functions; these associations are
to be defined in the user class within the synchronization() function.
The process body, which overrides the generic Live() routine, calls the
synchronization() function once, and then loops to scan the pending
request list, serving a request when its blocking condition is false. This
synchronization() function is empty in the class Abst Process, thus
providing a default FIFO policy (no blocking condition).

This abstraction can be used to program a bounded buffer in an im-
plicit style, as shown by the class Buffer in Program 1.6. Instead of
inheriting from Process, this class uses the Abst Process abstraction
and, as previously, also inherits from the data structure List. The
routine synchronization() defines the class’s concurrency control; the

18

class Abst_Process: public Process, --- {
public:
// associate a blocking condition bl with a function f
void associate(member_id f, member_id bl) {
// synchronization to be defined

}

virtual void synchronization() {
// empty: FIFO policy
}

virtual void Live() {
synchronization() ;
while ('stop)
for (each pending request)
if (blocking function is false) service request

}
}s

Program 1.5
An Example of Abstraction

functions £ull() and empty() are the blocking conditions of the public
functions put () and get () respectively.

The definition of the buffer given in Program 1.6 is much more ab-
stract than the one given in Program 1.4. In the former, control is
specified declaratively, and is also non-deterministic, in that we have
not specified whether the order of service respects the order of request
arrival. In languages with explicit control, a specific instruction is usu-
ally needed in order to obtain non-determinism, such as the select
instruction in Ada. This important capability is sometimes very much
desirable for its abstraction, sometimes not. For example, it can be use-
ful for a simple and concise specification of the next service over a set
of member functions. In our framework, non-determinism is obtained,
when needed, by normal programming, and made available through the
library of abstractions (Figure 1.4), which can be specific to particu-
lar programmers or to application domains, and are extensible by final
users. Figure 1.5 summarizes the basic features of the C++// model for
control programming.

19

class Buffer2: public Abst_Process, public List {

protected:

virtual void synchronization() {
associate(mid(put), mid(full));
associate(mid(get), mid(empty));

}
s

Program 1.6
An Implicit Bounded Buffer

Processes have centralized and explicit control programming.

Member functions and requests are first class objects.

The list of pending requests is accessible.

A library of service routines provides for explicit control programming.
A library of abstractions allows for implicit and declarative control.

Figure 1.5
Control Programming in C++//

3. A Programming Method

This section presents how to use C++// to program parallel and distrib-
uted applications. Because it is rather difficult to evaluate performances
of distributed systems before they actually run, we believe that defini-
tion of processes has to be postponed as much as possible, and should
be flexible and adaptable.

3.1. Sequential Design and Programming (step 1)

The first step is a standard, sequential, object-oriented design [Booch
1986 , Booch 1987 , Halbert & O’Brien 1987 | Meyer 1988]. The only
thing that matters is, before defining parallel activities, to have a fully
sequential implementation: we are then able to conduct tests to ensure
the correctness of the sequential algorithms and implementation. The
next three steps deal with parallel design and are specific to C++//.

20

3.2. Process Identification (step 2)

Processes are a subset of classes. Object-oriented design usually gives a
finer-grained decomposition than structured design, so there is no need
for restructuring. This step is therefore defined by two successive phases.

(3.2.a) Initial Activities In a concurrent system, there are points
where the activity starts. Our method uses these sources of initial activ-
ity to structure a system into processes. The objects where an activity
takes place will be the initial processes.

There are various cases, heavily depending on the application domain:
active objects for parallelization, control objects that continuously en-
sure their function of control, event dependent objects that need to be
activated at dedicated speed or asynchronously, all the periodic or asyn-
chronous I/0, etc.

(3.2.b) Shared Objects At this point, a set of classes are defined to
be processes and we know the system topology. The concurrent model
focuses on each object referred to by at least two processes. If the
object can be passed by copy, there is nothing to change, the model
automatically ensures this behavior. If it appears that the object really
needs to be shared, a process class has to be programmed. This rule
leads to identification of new processes.

3.3. Process programming (step 3)

In this section we program the processes identified during the previous
step. The classes that remain passive are commonly used without any
changes.

(3.3.a) Define Process Classes The method to directly program
the processes relies on the fact that each class is a potential process.

First, it has to be decided which technique is the most appropriate for
programming the concurrency control of the process: explicitly (using
the basic Process class), or implicitly (choosing and using one abstrac-
tion). Then, the new process class is a new class that derives from the
corresponding passive class and either the class Process, or the selected
abstraction.

Because TPCs are unified with member function calls, we are able to
use the methods defined in the ancestor. However, not every original
public operation will be used. Since we program the process class, new
interfaces reflecting the concurrent activities can be defined.

21

(3.3.b) Define the Activity A process class is given a default FIFO
body. There are mainly two, possibly simultaneous, cases where we
need to change the process body by redefining the control method: the
synchronization is not FIFO, or the process carries on internal activities
besides the request services. This is not a problem since the programmer
has all the control to tune up fine policies regarding the relative time to
spend among the different activities.

(3.3.c) Use the process classes In order to use the process classes
defined previously, all the objects identified in step 2. as processes need
to be assigned with an instance of the corresponding process. An entity
a declared as: A* a; has to be assigned with a process object of type
P_A (derived class of 4): a = new P.A (---). A function call on a is
now executed on an asynchronous basis (the caller does not wait for its
completion). This automatic transformation of synchronous calls into
asynchronous ones 1is crucial to avoid method redefinition. An inherited
method may use the result of a function call issued to the process:

res = a->fct(parameters);

res->g(parameters) ;

In this case, the wait-by-necessity handles the situation. Without this
automatic data-driven synchronization one would have to redefine the

routine in order to add explicit synchronization.
3.4. Adaptations (step 4)

At this stage, the system starts running and efficiency tests are real-
ized. This last step is a system refinement in order to match parallel
specifications.

(3.4.a) Refine the Topology If a value is kept in another process
context, it can be obtained in two different ways: (1) by requesting the
object that holds the data, (2) by receiving the data asynchronously
through a public method. Generally a refinement in the topology will
transform a situation (1) into a situation (2). The aim is usually to
globally minimize the number of interprocess communications. Such a
modification leads to design new classes by inheritance. A process will
receive the value it needs through a new public method.

(3.4.b) Define New Processes There are various reasons leading to
define new processes: buffering processes can be useful (even if the model
is asynchronous), secretary process can trim the workload of another
process, an object detected to be computationally intensive may need

22

to be transformed into a process to map it onto another processor, etc.

Since this phase identifies new processes, we again apply rule 3.2.b about

shared objects. Finally, we apply step 3 in order to program the new

process classes. Step 4 (Adaptation to constraints) is realized repeatedly.
The method description is complete.

4. Environment

This section describes the facilities that support the development of
C++// programs, including compilation of source code, executable gen-
eration, and a mechanism for mapping active objects onto machines.

4.1. Compilation

Compilation is achieved by pre-processing a program’s source files us-
ing the command c++11. The pre-processor does not modify the user
classes, but instead generates extra code in separate files. For each user
file, a corresponding C++ file is generated by the C+4// system. These
generated files and the original user files are then compiled with a stan-
dard C++ compiler. All files are finally linked together with the C++//
library (Figure 1.6).

For each source file, file.cc, code generation is achieved in two
phases, which are transparent to the user. The first phase analyses
the source code and generates an information file named file-11 in
a directory called .c++11 below the directory of the original file. The
second phase generates a C++ file (file-11.cc).

The file .c++11-config contains general information regarding the
user’s personal settings of the C++// installation. Information specific
to each C++// system is specified in the file .c++11-system in order
to produce an executable from a set of files.

4.2. Mapping

Mapping assigns each active object created during the execution of a
C++// program to an operating system process on an actual machine or
processor. In order to avoid confusion, we call the sub-system consisting
of one active object and all its passive objects a language process, and
use the term OS process for the usual notion of an operating system

process.

23

C++// classes (files)

Generated C++

777777777777 > | CHHll| == [| [| []

L1 c+nr Pre-processing
- =

(D standard C++ compilatior]
e

Figure 1.6
Compilation of a C++4// System

The mapping of a language process to an OS process on a particular
processor is controlled by the programmer through the association of
the machine where the process is to be created, and its light-weight or
heavy-weight nature. The machine itself can be specified in two ways.
The first method is to specify a virtual machine name, which is simply a
string. This name is related to an actual machine name by a translation
file called .c++11-mapping. The C++// system looks for this file first
in the directory in which the process is running, and, if it is not found
there, in the user’s home directory. An example of such file is:

// .ct+ll-mapping
// wvirtual name actual name

Mach_A Nice

Mach_B cannes.unice.fr
Mach_C alto.unice.fr
Names monaco

Server Inria.Sophia.fr
S1 wilpena.unice.fr
S2 192.134.39.96

S3 // current machine

P1 I35-1

24

P6 INRIA-1

The other technique used to specify a machine is to use a language
process that already exists. In this case, the new process is created on the
machine where that language process is running. With this technique,
processes can be linked together to ensure locality. We say that a process
is anchored to another one, because its mapping will automatically follow
that specified for the process it is anchored to. An anchor can transitively
reference another anchored process.

The light-weight switch permits creation of several language processes
inside a single OS process. In the heavy-weight case, only one language
process is mapped to each OS process. Figure 1.7 presents the semantics
of the association of the two criteria. The user accesses these switches
through a class called Mapping:

class Mapping {
public:
virtual void on_machine(const String& m); // virtual machine name
virtual void with_process(Process#* p);
// set the machine to be the same as for the existing process p

virtual void set_light(); // set to light-weight process
virtual void set_heavy(); // set to heavy-weight (05') process
}s
Machine
P . . Machine where the language process
r Virtual machine M D isrunning
0
g On machine actual_name (M) Same machine and OS processas p
s Light On an arbitrary existing OS process
s (anew oneif none)
n
ta On machine actual_name (M) Same machine as p
u Heavy Onanew OS proce_$ On anew OS process
r
e
Figure 1.7

Combination of the Mapping Criteria

25

A *pi; // A is a normal sequential class: allocation-based style
P_A *p2, *p3; // P_A is a process class: class-based style
Mapping #mapl, *map2; // mapping objects

mapl->set_heavy();
mapl->on_machine ("Server") ;
pl = (A *) new (typeid(A), mapl) Process_alloc(---);
// p1 on a new OS process,
// on machine with actual name ”Server”

map2->set_heavy();
map2->with_process(pl);
p2 = new (map2) P_A(---);
// p2 on a new heavy-weight process,
// same machine as p1
map2->set_light();
p3 = new (map2) P_A(---);
// p3 on a light-weight process,
// same machine as pl,
// inside the same OS process as p1
map2->on_machine ("P1") ;
for (int i=0; i < 100 ; i++)
t[i] = new (map2) P_A(---);
// t[i] on a light-weight process,
// on machine with actual name "P17”,
// all within the same OS process

Program 1.7
Mapping Processes to Machines

When a program creates a language process, an object of type Mapping
can be passed to the allocator (new()) in order to specify the desired
mapping of the new process. Program 1.7 presents the syntax used for
this. With the .c++11-mapping file taken from above, Program 1.7
produces the mapping presented in Figure 1.8. Note that a language
process, even created as heavy-weight, becomes light-weight if a new
language process is mapped onto its OS process; this is the case for the

pl process.
Besides this local control of mapping, there is a global variable that
is valid within each C++// sub-system:

26

Current machine Inria.Sophiafr (Actual Machine ("Server"))

| o
ﬁ;ﬂs -
/

— -

C_J
---- -

1351 (Actual Machine ("P1")) Legend

l:l Machine (processor) C] OS process D Language process (sub-system)

Figure 1.8
Example of Mapping

Mapping* mapping;

which permits the establishment of a global mapping strategy. This
variable is accessible to all the objects of the sub-system, and is used
by default during process creation when no mapping object is passed.
The scope of mapping is the process sub-system; each sub-system has
its own copy of this variable. Using this functionality, a global map-
ping strategy accessible throughout a program can be implemented by
constructing a centralized server (a C++// process) which on request
returns a mapping object to be used for subsequent process creation.

Our intention is to develop more sophisticated mapping strategies
by deriving new classes from the Mapping class. For example, we are
currently defining Cluster classes to allow processes to be grouped and
managed in a more abstract manner. In the longer term, we aim to
develop automatic or semi-automatic load-balancing classes that will
rely on modelling and evaluation of machine and network load.

5. Polygon Overlay

5.1. Sequential Design and Programming (step 1)

We implement the overlay of two polygon maps using a simple pipeline.
We define the class polygon (Program 1.8), whose objects can test their

27

class polygon {
public:
polygon (int x1, int y1, int x2, int y2, polygon* n=0)
x1(x1), y1(y1), xh(x2), yh(y2), next(n)
{ area = (x2-x1) * (y2-y1); }

virtual polygon* get_next () { return next; }

// set_next call will be polymorphic (polygon) in the parallel classes
virtual void set_next (polygon * n) { next = n; }

virtual void overlay (polygon * map2_polygon) {
if (map2_polygon->get_area())
if (!area) next->overlay(map2_polygon);
else if (!intersection(map2_polygon))
next->overlay(map2_polygon) ;
else {
produce_intersection(map2_polygon) ;
if (map2_polygon->get_area())
next->overlay(map2_polygon) ;

}

protected:
int x1, yl, xh, yh, area;
polygon * next;

}i

Program 1.8
Polygon Class

intersection with other polygons. The pipeline is a list of objects of class
polygon. It is initialized with the contents of the first map, and is fed
with polygons from the second map.

This algorithm is enhanced by the addition of an area field to the
class polygon. This permits us to stop propagating a polygon from
the second map through the pipeline whenever it has been completely
accounted for by the polygons of the first map. Symmetrically, it allows
us to remove a polygon from the first map when its area has been totally
consumed.

28

#include "polygon.h"

polygon * tmpPoly;
polygon * mapl = 0;

void read_mapl(void) {
for(int i=0; i<mbpolyl; i++) { --- // read from file
mapl = new polygon(xl, yl, xh, yh, mapl);
}

}

void read_and_overlay_map2(void) {
for(int i=0; i<nbpoly2; i++) { ... // read from file
tmpPoly = new polygon(xl, yl, xh, yh, 0);
mapl->overlay(tmpPoly); // possible stack overflow!

}
}

// the first process

int main(int argc, char * argv[]) {
read_map1();
read_and_overlay_map2();

}

Program 1.9
Pipeline Construction

The construction of the pipeline is straightforward: polygons from
the first map are read and linked together, and then polygons from the
second map are passed to the pipeline (Program 1.9).

5.2. Parallel Programming

5.2.1. Light-Weight Processes Once the sequential polygon pipeline
has been written and debugged (method step 1), it can be parallelized.
The pipeline polygons can be identified as active (step 2). The simplest
parallel version can be obtained by deriving a new class (Program 1.10)
from the sequential class polygon and the system class Process (step
3.1). In this version, each method call to a pipeline polygon object will
be transformed into a request to a polygon process; its service policy
needs only be FIFO (step 3.2).

29

#include "Process.h"
#include "polygon.h"

class ppolygon : public polygon, public Process {
public:
ppolygon (int x1, int y1, int x2, int y2, ppolygon2# n=0) :

};

Process(), polygon(x1, y1, x2, y2, n) {}

Program 1.10
Ppolygon: a Light-Weight Process Polygon Class

Of course, this parallelization option is practical for large data sets
only if the environment is multi-threaded.

We must also redefine the construction of the polygons of the first
map (i.e., create process polygons). Program 1.11, maps light-weight
processes to three different virtual machines.

5.2.2. Heavy-Weight Processes If the underlying system only pro-
vides heavy-weight processes, parallelization is still possible, but will
be best done by combining active parallel polygons (Program 1.12) and
passive sequential polygons to program the pipeline (steps 2 and 3).

In Figure 1.9, we show the system of active and passive objects created
by this program and the passing of a polygon from the second map to
the pipeline. This polygon will be forwarded through the pipeline until
its area has been consumed by all its intersections. In the figure, for
example, the polygon from the second map is not forwarded beyond the
second language process.

Note that the same Process class should serve for both the light-
weight and heavy-weight versions, since it only denotes a language process.
However, the mapping description is different in the two main programs.
Mapping should be the only place where we have to indicate whether
the language process should be mapped onto the same OS process.

Note also that the sequential version is programmed with terminal
recursion. With large input maps, this can produce a stack overflow
during the execution. Therefore, we have also programmed a recursion-
less version. It is a little less natural, but is able to process large maps.
The parallel version, although normally suffering from the same problem,
is able to handle big maps: indeed, when the pipeline is split between

30

Mapping* light_mapping = new Mapping;
char *machines[3] = {"Mach_A", "Mach_B", "Mach_C"};
int current_machine=0;

void read_mapl(void) {
light_mapping->set_light ();
for(int i=0; i<nbpolyl; i++) {
light_mapping->set_machine(machines[current_machine]) ;
if (current_machine < 2) current_machine++;
else current_machine = 0;
// polymorphic assignment of result
mapl = new(light_mapping) ppolygon(x1l, yl, xh, yh, mapil);
}
}

Program 1.11
Modifications to the Main Routine

class ppolygon2 : public polygon, public Process {
public:
ppolygon2(int x1, int y1, int x2, int y2, ppolygon* n,
char *fname, long int pos, int nb) : polygon(x1l, y1, x2, y2, n) {
polygon *p;
int xal, yal, xa2, ya2;

// Read portion of mapl from file fname

if (mb) { // read last passive polygon (if any):
p = read_polygon_from_file();
p->set_next(next); next = p; // point to the next process

}

// read other passive polygons (if any):
for(int i=1; (i<nb) && !feof(f); i++) {
p = read_polygon_from_file();
p->set_next(next); next = p;
}
area = (xa2-xal) * (ya2-yal);
}
s

Program 1.12
Ppolygon2: - a Heavy-Weight Process Polygon Class

31

map 2 polygon

O active polygon (process)
O passive polygon

(map 1 polygons) o—— references

Pipeline

f 2 pol
[passing of amap 2 polygon

,,,,,,,, = output of a result

sub-system

i 2
E B E produced polygons (results)

Figure 1.9
Heavy-Weight Polygon Process Pipeline

several processes, the stack is partially split between pending requests
lists. For the same reason, there are no restrictions about stack size on
the size of maps in the light-weight process version.

For performance figures, we refer the reader to our web pages (http://
www.inria.fr/sloop/c++1l or http://wwwi3s.unice.fr/c++11).

6. Implementation

C++// currently runs on the following platforms: DEC AlphaStation
200 4/166, Sun SparcStation 4C (TPC), Sun Sparc 4D (multi-processor),
and PC ix86. Operating systems supported include DEC Unix 3.0
(formerly DEC OSF/1), SunOs 4.1.3, Solaris 2, and Linux 1.2.8. We
are using the GNU compiler and library version 2.7.0; PVM 3.3.7 and
PVM 3.3.8 for interprocess communication [Furmento & Baude 1995],
and are running on a 10Mb/s Ethernet. The system will be ported to
other platforms in the near future, since its only requirements are a C++
compiler supporting RTTI and a PVM library (though the language is
not tied to PVM, and could use a simpler communication library).

Below, we describe the construction of the C++// environment. This
presentation goes beyond implementation details since the technique we
use—reification—also supports the customization and extension of our
system, as laid out in Section 6.4.

32

6.1. A Reflection-Based System

The C++// system is based on a Meta-Object Protocol (MOP) [Kicza-
les et al. 1991]. There are various MOPs for different languages and
systems, with various goals, compilation and run-time costs, and various
levels of expressiveness. Within our context, we use a reflection mecha-
nism based on reification. Reification is simply the action of transform-
ing a call issued to an object into an object itself; we say that the call
is “reified”. From this transformation, the call can be manipulated as a
first class entity (i.e., stored in a data structure, passed as parameter,
sent to another process, etc).

A meta-object (Figure 1.10) captures each call directed towards a nor-
mal base-level object; a meta-object is an instance of a meta-class. In
some ways, a local object that provides a remote object with local ac-
cess, i.e. a prozy [Shapiro 1986 , Edelson 1992 | Makpangou et al. 1994
, Dave et al. 1992 | Birrell et al. 1995], is a kind of meta-object.

MOP techniques have been used in many contexts to provide an el-
egant model of various concepts, and an extensible design and imple-
mentation of various language features or extensions (such as remote ob-
jects). An important work has been the CLOS MOP [Bobrow et al. 1988
] . In that case, even the semantics of inheritance is extensible through
meta-object programming (something which we do not support). The
Eiffel// language [Caromel 1990a , Caromel 1993b] also used a meta-
level for reification. MOPs have a wide scope of applications, and are an
active field of research for parallel and distributed programming [Chiba
& Masuda 1992 , Watanabe & Yonezawa 1988 | Yokote & Tokoro 1986
, Madany et al. 1992 | Buschmann et al. 1992 | McAffer 1995 , Chiba
1995]. Work using more traditional methods, such as prozy generators,
are closely related [Birrell et al. 1995].

6.2. A MOP for C++4: Basic Classes

The first principle of our MOP for C++ is embodied in a special class,
called Reflect. All classes inheriting publicly from Reflect, either di-
rectly or indirectly, are called reified classes. A reified class has reified
instances; all calls issued to a reified object are reified. This last require-
ment is important for reusability, as it permits users to take a normal
class, and then globally modify its behavior, in order to transform it into
a process.

33

Classes Objects
tial
Sequenti base level call
Classes Caller (normal semantics)
pa->foo(...);
D) =
~
,,,,,, K"""_”J” “cal >
proxy->reify(C_D) \
“
Process \ proxy [‘Reflect'’] pa['P_A"]
_—
Classes O ey ©
o
Reification (meta-level)

Legend
(Q Ct+Class —>— Methodcall () Passive Object
<— Inherit from @ Active Object

Figure 1.10
Reification of Calls

The Reflect class implements the reflection mechanism with reifica-
tion:

class Reflect {

public:
virtual void reify(Call* c) {
c->execute(); // a call reification
}

void* operator new (size_t s, type_info& t) {

}

Reflect(---) {

}
b
The creation of an instance of a Reflect class returns a meta-object (in

our case, a proxy) for the type being passed in as a parameter of the
allocator. type_info is the standard RTTT class of C++.

34

All calls issued to instances of the Reflect class and its derived classes
will trigger the execution of the member function reify() with the
appropriate object of type Call as a parameter:

class Call {

public:
virtual void execute();
List<Any> eff_params; // effective paramelters
member_id m; // member to be called
Any object; // target object
Any result_place; // result address

}s

Instances of the Call class are reified calls (i.e., objects which represent

the reification of calls). Figure 1.10 illustrates reification.

From this mechanism, we implement the basic classes of our program-
ming model described in Section 1.1. For example, the class Process_alloc
inherits from Reflect, and redefines the reify() function as:

class Process_alloc: public Reflect {
public:
virtual void reify(Call* c) {

: // send the request to the remote process
}
void* operator new (size_t s, type_info& t) {

: // process creation
}

Process_alloc(--+) : Reflect (--+) {

}
};
It is at this point, within such routines, that a mapping between the
primitives needed to implement a specific model of parallel programming
(such as point-to-point communication or broadcasting) and the actual
platform primitives will take place. This permits our system to use the
most efficient primitives available on a given architecture.

6.3. Class and Member Identification

Within the framework of multiple address spaces, the need for class and
member identifiers is inescapable. While the classes presented in the
previous section can have simple and low-cost representations in a shared

35

address space, more sophisticated policies are needed in a distributed
environment.

Another issue is the capability to automatically marshal and unmar-
shal objects between processes and address spaces. The Class_info and
Member_info classes respond to these specific issues:

class Class_info {

public:
class_id id; // system-wide valid identification
structure s; // information on the class structure

// for (un)marshalling of objects
List<Any> flat(Any obj); // flattening an object
Any build(List<Any> 1); // building an object

}:'

class Member_info {

public:
member_id id; // system-wide valid identification
Class_info* return_type; // information on the member

b

These classes are meta-classes representing information on C++ classes.
They conform to the design principle of the standard class type_info,
which provides some basic information, and which was designed with
the intention of being extended according to specific needs [Stroustrup

1994 1.

Two functions are used to obtain the class and member IDs:

class_id cid(A); // class Id
member_id mid(put) ; // member Id

The mid() primitive was presented in Section 2.2 for member manipu-
lation, and used in Sections 2.3 and 2.4 for programming the control of
processes. By construction, class_id and member _id have system-wide
validity (i.e., can be passed as parameters between processes), while the
Class_info* and Member_info* pointers have a specific value within
each address space. Two functions:

Class_info* cid_class(class_id c); // from cid to class
Member_info* mid_member (member_id m); // from mid to member

provide a mapping in a given address space between class and member
identifications and local Class_info* and Member_info#* addresses. For

36

convenience, two other functions provide direct access to the objects
representing a class and a member function, respectively:

Class_info* typeid_11(A); // class representation
Member_info* memberid_11(put); // member representation

These are similar to the RTTI typeid() operator of standard C++.
Finally, the following function allows direction translation from RTTI
class representation to C++// class identifiers:

class_id rtti_11(type_info& t); // RTTI to C++// class id

In our distributed framework, the class Request (introduced in Section
2.2) is implemented through inheritance from the MOP class Call, and
defines only the new members corresponding to the specific information
which is needed:

class Request: public Call {

public:
virtual void execute(); // new definition

request_id id; // id of the request

};'

An instance of this class is then sent to the remote process, which exe-
cutes the call by calling the execute() function on it.

6.4. Customization and Extension of C++//

The MOP presented above is independent of any parallel programming
model. The MIMD model we described in this paper is programmed on
top of the MOP, without any compiler modification. All the classes de-
scribed in the model, such as Process and Process_alloc, are defined as
library classes using the basic Reflect and Call classes and the class and
member identification primitives. An important consequence of this is
that other parallel programming models, such as shared-memory MIMD
or SPMD, can be defined on top of the MOP.

As well as supporting libraries of concurrent programming models, this
technique also permits us to address extension issues. We might provide
a debugging environment and tracing, or use efficient platform-specific
primitives for communication (e.g. broadcast and multicast communi-
cation), since specific behaviors can be added at the reification stage.
It is also worth noting that this mechanism allows us to handle issues

37

/ Reﬂ ect
Atoml C
P"OC Process .

eactlv
P OC

Legend: (Q C++Class <— Inherit from

Figure 1.11
Customization and Extension of C++//

such as persistent objects, atomicity, replication, and fault tolerance
(Figure 1.11). Wait-by-necessity, for example, is implemented through a
class Future, which uses reification by inheriting from Reflect. Such an
open system, or open implementation [Kiczales et al. 1991], is extensible
by the end user, and adaptable to various needs and situations.

Conclusion

Our system currently has several limitations. First, basic types are not
subject to wait-by-necessity; this can only be achieved by encapsulating
them in classes. While this can be a problem regarding reusability, the
runtime cost of adding synchronization to basic types was felt to be too
high.

The fact that data members cannot be accessed transparently on a

process object is a partial limitation of our model. However, since C++

38

does not provide uniform access to data or function members, this con-
straint is unlikely to be removed in the future.

Light-weight language processes and reflective template classes are not
yet implemented. We are currently working on these important features.

Finally, to support the use of polymorphism between standard passive
objects and process objects, all public functions have to be virtual; oth-
erwise, non-virtual function calls will not be transformed into IPCs. This
limitation comes directly from C++, which does not provide dynamic
binding by default on all members. This drawback can be alleviated
if the C+4 compiler provides an “all-virtual” option. The choice here
is between reusability, and paying the price of having all functions vir-
tual. Of course, making such a change requires recompiling all of files
involved, but this is a small price to pay compared to the benefits of
code reuse.

Our work focussed on reuse, flexibility, and extensibility. At differ-
ent levels—service routines, abstractions for control programming, and
libraries defining specific programming models—the system we propose
tries to both conform to information hiding principles, and to be open for
customization and extension. We feel this approach is at least a partial
solution to the complexity and diversity of parallel programming.

Granularity is another crucial point of parallel programming. Achiev-
ing an appropriate match between the granularity of program activities,
and the capability of the underlying parallel architecture, is a challenging
part of high-performance programming. We believe that the reusabil-
ity and flexibility of object-oriented languages allows us to address this
problem.

Finally, another important aspect of distributed programming is the
correctness issues it raises. These were not addressed in this chapter,
but this is another area of investigation for our group [Attali e al. 1993
, Attali & Caromel 1995 |. We hope formal techniques, together with
parallel object-oriented programming, will permit advances to be made.

39

Acknowledgments

The authors gratefully acknowledge the help and support of the SLOOP
project members. The work of Francoise Baude and Ph.D. student
Nathalie Furmento on interprocess communication was decisive to the
current system. Discussions, and joint work with collaborators Jean-
Claude Bermond, Bruno Gaujal, Philippe Mussi, and Michel Syska,
and Ph.D. students Olivier Dalle, Gunther Siegel, Olivier Delmas, and
Stéphane Perennes have been of first importance.

Bibliography

[Agha 1986] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[Agha et al. 1993] G. Agha, S. Frglund, W.Y. Kim, R. Panwar, A. Patterson, and
D. Sturman. Abstraction and Modularity Mechanisms for Concurrent
Computing. TEEE Parallel and Distributed Technology, May 1993.

[America 1988] P. America. Definition of POOL2, a Parallel Object-Oriented Lan-
guage. Technical Report 364, Philips Research Laboratories, April 1988.
ESPRIT Project 415.

[Attali & Caromel 1995] I. Attali, D. Caromel, and A. Wendelborn. A Formal Se-
mantics and an Interactive Environment for Sisal. In A. Zaky, editor,
Tools and Environments for Parallel and Distributed Systems, pages
231-258. Kluwer, 1995. to appear.

[Attali et al. 1993] 1. Attali, D. Caromel, and M. Oudshoorn. A Formal Definition of
the Dynamic Semantics of the Eiffel Language. In G. Gupta, G. Mohay,
and R. Topor, editors, Sizteenth Australian Computer Science Confer-
ence (ACSC-16), pages 109-120. Griffith University, February 1993.

[Birrell et al. 1995] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network Ob-
jects. Technical Report SRC-RR-115, DEC Systems Research Center,
1995.

[Bobrow et al. 1988] D.G. Bobrow, L.G. DiMichiel, R.P. Gabriel, S.E. Keen,
G. Kiczales, and D.A. Moon. Common Lisp Object System Specification:
X3J13 document 88-002R. SIGPAN Notices, 23, September 1988.

[Booch 1986] G. Booch. Object-Oriented Development. IEEE Transaction on Soft-
ware Engineering, February 1986.

[Booch 1987] G. Booch. Software Engineering with Ada. Benjamin/Cummings, Sec-
ond edition, 1987.

[Burns 1985] A. Burns. Concurrent Programming in ADA. Cambridge University
Press, 1985.

[Buschmann et al. 1992] F. Buschmann, K. Kiefer, F. Paulish, and M. Stal. The
Meta-Information-Protocol: Run-Time Type Information for C++. In
A. Yonezawa and B.C. Smith, editors, Proceedings of the Interna-
tional Workshop on Reflection and Meta-Level Architecture, pages 82—
87, 1992.

[Campbell & Haberman 1974] R.H. Campbell and A.N. Haberman. The Specifica-
tion of Process Synchronization by Path Expression. In Colloque sur
les Aspects Théoriques et Pratiques des Systémes d’Exploitation, Paris,
1974.

[Caromel 1989] D. Caromel. Service, Asynchrony and Wait-by-necessity. Journal of
Object-Oriented Programming, 2(4):12-22, November 1989.

[Caromel 1990a] D. Caromel. Concurrency: an Object Oriented Approach. In
J. Bezivin, B. Meyer, and J.-M. Nerson, editors, Technology of Object-
Oriented Languages and Systems (TOOLS’90), pages 183-197. Angkor,
June 1990.

[Caromel 1990b] D. Caromel. Concurrency and Reusability: From Sequential to
Parallel. Journal of Object-Oriented Programming, 3(3):34-42, Septem-
ber 1990.

42 Bibliography

[Caromel 1990c] D. Caromel. Programming Abstractions for Concurrent Program-
ming. In J. Bezivin, B. Meyer, J. Potter, and M. Tokoro, editors, Tech-
nology of Object-Oriented Languages and Systems (TOOLS Pacific’90),
pages 245-253. TOOLS Pacific, November 1990.

[Caromel 1991] D. Caromel. A Solution to the Explicit/Implicit Control Dilemma.
Object-Oriented Programming Systems Messenger, 2(2), April 1991.

[Caromel 1993a] D. Caromel. Towards a Method of Object-Oriented Concurrent
Programming. Communications of the ACM, 36(9):90-102, September
1993.

[Caromel 1993b] D. Caromel and M. Rebuffel. Object Based Concurrency: Ten
Language Features to Achieve Reuse. In R. Ege, M. Singh, and B. Meyer,
editors, Technology of Object-Oriented Languages and Systems (TOOLS
USA’93), pages 205-214. Prentice Hall, August 1993.

[Caromel 1993c] D. Caromel. Abstract Control Types for Concurrency (Position
Statement for the panel : How could object-oriented concepts and paral-
lelism cohabit ?). In L. O’Conner, editor, International Conference on
Computer Languages (IEEE ICCL’94), pages 205-214. IEEE Computer
Society Press, August 1993.

[Chiba & Masuda 1992] S. Chiba and T. Masuda. Designing an Extensible Distrib-
uted Language with Meta-Level Architecture. In O. Nierstrasz, editor,
Proceedings of the Tth European Conference on Object-Oriented Pro-
gramming (ECOOP’93), volume 707 of Lecture Notes in Computer Sci-
ence, pages 482-501, Kaiserslautern, July 1993. Springer- Verlag.

[Chiba 1995] S. Chiba. A Metaobject Protocol for C++. In Proceedings of OOP-
SLA’95, volume 30 of ACM Sigplan Notices, pages 285-299, Austin,
Texas, October 1995. ACM Press.

[Dave et al. 1992] A. Dave, M. Sefika, and R.H. Campbell. Proxies, Application
Interfaces and Distributed Systems. In Proceedings of the 2nd Interna-
tional Workshop on Object-Orientation in Operating Systems (000S).
IEEE Computer Society Press, September 1992.

[Decouchant et al. 1989] D. Decouchant,
S. Krakowiak, M. Meysembourg, M. Riveill, and X. Rousset de Pina.
A Synchronization Mechanism for Typed Objects. SIGPLAN Notices,
24(4):105-107, April 1989.

[Decouchant et al. 1991] D. Decouchant, P. Le Dot, M. Riveill, C. Roisin, and
X. Rousset de Pina. A Synchronization Mechanism for an Object-
Oriented Distributed System. In IEEE Eleventh International Confer-
ence on Distributed Computing Systems, 1991.

[Edelson 1992] D. Edelson. Smart Pointers: They're Smart, but They’re Not Point-
ers. In Proceedings of the Useniz C++ Conference, August 1992.

[Frolund 1992] S.Frglund. Inheritance of Synchronization Constraints in Concurrent
Object-Oriented Programming. In KECOOP ’92 proceedings, June 1992.

[Furmento & Baude 1995] N. Furmento and F. Baude. Design and Implementation
of Communications for the C++// System. Technical Report RR 95-
50 I3S, CNRS 1I3S - Univ. de Nice - INRTA Sophia Antipolis, 1995.

[Gehani & Roome 1989] N. Gehani and W.D. Roome. The Concurrent C Program-
ming Language. Silicon Press, 1989.

[Gehani 1984] N. Gehani. ADA Concurrent Programming. Prentice-Hall, 1984.

Bibliography 43

[Gehani 1984] N. Gehani. Concurrent Programming in the ADA Language: the
Polling Bias. Software—Practice and Ezperience, 14(5), 1984.

[Halbert & O’Brien 1987] D.C. Halbert and P.D. O’Brien. Using Types and In-
heritance in Object-Oriented Languages. In FEuropean Conference on
Object-Oriented Programming, June 1987.

[Halstead 1985] R. Halstead. Multilisp: A Language for Concurrent Symbolic Com-
putation. ACM Transactions on Programming Languages and Systems,
October 1985.

[Hewitt 1977] C. Hewitt. Viewing Control Structures as Patterns of Passing Mes-
sages. Journal of Artificial Intelligence, 8(3):323-364, 1977.

[Hoare 1978] C.A.R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8), August 1978.

[Hoare 1985] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Ichbiah et al. 1979] J.D. et al Ichbiah. ADA Reference Manual and Rationale for
the Design of the ADA Programming Language. SIGPLAN Notices,
14(6), 1979.

[Inmos 1988] Inmos Ltd. Occam 2 Reference Manual. Prentice Hall, 1988.

[Kafura & Lee 1989] D.G. Kafura and K.H. Lee. Inheritancein Actor Based Concur-
rent Object-Oriented Languages. The Computer Journal, 32(4), 1989.

[Kafura & Lee 1990] D.G. Kafura and K.H. Lee. ACT++: Building a Concurrent
C++ with Actors. Journal of Object-Oriented Programming, 3(1), May
1990.

[Kiczales et al. 1991] G. Kiczales, J. des Riviéres, and D.G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[Lieberman 1987] H. Lieberman. Concurrent Object-Oriented Programming in Act
1. In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent
Programming. The MIT Press, 1987.

[Lohr 1992] K.-P. Lohr. Concurrency Annotations Improve Reusability. In TOOLS
USA’92, August 1992.

[Madany et al. 1992] P. Madany, N. Islam, P. Kougiouris, and R.H. Campbell. Prac-
tical Examples of Reification and Reflection in C4++. In A. Yonezawa
and B.C. Smith, editors, Proceedings of the International Workshop on
Reflection and Meta-Level Architecture, pages 76—81, 1992.

[Makpangou et al. 1994] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and
M. Shapiro. Fragmented Objects for Distributed Abstractions. In T.L.
Casavant and M. Singhal, editors, Readings in Distributed Computing
Systems. IEEE, Computer Society Press, 1994.

[Mallet & Mussi 1993] L. Mallet and P. Mussi. Object Oriented Parallel Discrete
FEvent Simulation: The PROSIT Approach. In A. Pave, editor, Modelling
and Simulation FSM 93. Society for Computer Simulation, June 1993.

[Matsuoka et al. 1990] S. Matsuoka, K. Wakita, and A. Yonezawa. Synchroniza-
tion Constraints With Inheritance: What is Not Possible—So What Is?
Technical Report Technical Report 10, The University of Tokyo, Depart-
ment of Information Science, 1990.

44 Bibliography

[McAffer 1995] J. McAffer. Meta-level Programming with CodA. In Proceedings
of the Ninth FEuropean Conference on Object-Oriented Programming
(ECOOP’95), (Aarhus, Denmark), August 1995. also available from
ftp://camille.is.s.u-tokyo.ac.jp/pub/members/jeff/docs/ecoop95.
ad.ps.gz.

[McHale et al. 1990] C. McHale, B. Walsh, S. Baker, A. Donnelly, and N. Harria.
FExtending Synchronisation Counters. Technical Report TCD-Pub-0011,
University of Dublin, Trinity College, July 1990. ESPRIT Project Co-
mandos, number 834 and 2071.

[Meyer 1988] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
1988.

[Meyer 1992] B. Meyer. Fiffel: The Language (Version 3). Prentice—Hall, 1992.

[Neusius 1991] C. Neusius. Synchronizing Actions. In ECOOP ’91 Proceedings,
June 1991.

[Nierstrasz 1987] O.M. Nierstrasz. Active Objects In Hybrid. In ACM Conference
on Object-Oriented Programmaing Systems, Languages and Applications,
October 1987.

[Robert & Verjus 1977] P. Robert and J.-P. Verjus. Towards Autonomous Descrip-
tions of Synchronization Modules. In B. Gilchrist, editor, Proc. IFIP
Congress, pages 981-986, North-Holland, 1977.

[Shapiro 1986] M. Shapiro. Structure and Encapsulationin Distributed Systems: the
Proxy Principle. In Proceedings of the 6th International Conference on
Distributed Computing Systems, Cambridge, Mass. (USA), pages 198—
204. TEEE, May 1986.

[Shibayama 1991] E. Shibayama. Reuse of Concurrent Object Descriptions. In
A. Yonesawa and T. Ito, editors, Concurrency: Theory, Language, and
Architecture. Springler Verlag, 1991.

[Stroustrup 1994] B. Stroustrup. The Design and Evolution of C++. Addison—
Wesley, 1994.

[Watanabe & Yonezawa 1988] T. Watanabe and A. Yonezawa. Reflection in an
Object-Oriented Concurrent Language. In ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOP-
SLA), volume 23, September 1988.

[Yokote & Tokoro 1986] Y. Yokote and M. Tokoro. The Design and Implementa-
tion of ConcurrentSmalltalk. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications,
volume 21, pages 331-340, 1986.

[Yokote & Tokoro 1987] Y. Yokote and M. Tokoro. Concurrent Programming in
ConcurrentSmalltalk. ITn A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming. The MIT Press, 1987.

[Yonezawa et al. 1987] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Mod-
elling and Programming in an Object-Oriented Concurrent Language
ABCL/1. In A. Yonezawa and M. Tokoro, editors, Object-Oriented Con-
current Programming. The MIT Press, 1987.

