Enumerating a subset of the integer points inside a Minkowski sum

By Sergios Gerassopoulos

University of Crete, Heraklion

gerassop@csd.uch.gr

INTRODUCTION

A major computational problem in algebraic geometry concerns the numerical approximation of all common roots of a system of polynomial equations. Methods based on resultant matrices can exploit the sparse structure of the input polynomials, are robust to input perturbations, and have lower worst-case complexity than Gröbner bases, which is the best-established and most general method today. Exploiting structure is achieved in a strong and predictable way by the theory of sparse elimination. This theory has generalized several results of classical variable elimination theory. The model of sparsity is a combinatorial one, and raises several problems in general-dimensional convex geometry. One bottleneck is due to the computational question examined in this paper:

Consider the Minkowski sum of n convex polytopes lying in Rn with integer-coordinate vertices, and suppose a direction is specified. One problem is to compute the set of integer points in this Minkowski sum, having positive distance from the polytope boundary along the given direction. Usually, a positive lower bound on the distance or an upper bound on the set's cardinality may be supplied. In this case, we seek the subset of points satisfying all bounds provided.

We have implemented improvements on an algorithm done by Ioannis Z Emiris, which avoids constructing the Minkowski sum and implements certain branch-and-bound heuristics for searching the integer lattice by exploiting properties of the distance function. Mainly properties of convexity and projection to lower dimensions are used to improve an early version of the implementation. A public domain implementation is presented and applied to different input instances.

GENERAL TERMS

· Convex Hull

The convex combination of a number of points S (En is a linear combination when all its linear coefficients are non-negative and
[image: image1.wmf]1

=

å

=

m

j

ι

l

. Also, the sum of all the convex combinations of S would be called convex hull and noted as Conv(S).

[image: image2.wmf](

)

þ

ý

ü

î

í

ì

=

³

Î

×

+

×

×

×

+

×

=

å

=

1

,

0

,

:

1

1

1

m

i

i

i

i

m

m

S

s

s

s

S

Conv

l

l

l

l

· Minkowski Sum

Let Q0,…,Qn be polytopes in Rn. The minkowski sum of those polytopes, denoted Q, is

Q = {q1 + … + qn : q1 (Q1, … , qn (Qn},

where q1 + … + qn denotes the usual vector sum in Rn. Also let Q-i be

Q-i =
[image: image3.wmf]å

¹

i

j

j

Q

, Ti (Q-i (Zn , i = 0, … , n

where Ti denote the computed point sets.

· Mixed Volume

The n–dimensional mixed volume of a collection of Newton polytopes P0,...,Pn denoted

MVn (P0,...Pn),

is the coefficient of the monomial (0*(2 ...* (n in Voln ((0P0 + ... +(nPn). Let MV-1 be denoted

MV-1 = MV(P0, …, Pi-1, Pi+1, …, Pn)

and stand for the mixed volume of the respective Newton polytope.

· Toric Resultant

For a system of n+1 (Laurent) polynomials in n variables, the toric resultant characterizes the existence of nontrivial common zeros in (K*)n.

In our case, constructing explicitly the Minkowski sum is to be avoided; we shall opt for a method that directly enumerates the points sought. The algorithm achieves complexity proportional to the number of output points under certain assumptions; for each point, the cost is polynomial in the number of vertices of the input polytopes and the dimension. On the other hand, computing explicitly the Minkowski sum would require a convex hull operation on a number of points exponential in the dimension, irrespective of the output size.

The principal branch-and-bound heuristic enumerates integer points in projections of the Minkowski sum, and then lifts the interesting subset to higher dimensions. Again, no explicit computation of the projected polytope is required. Our heuristics reject a small fraction of interior integer points in polyhedral projections to small dimensions; in fact, the smaller the dimension, the fewer candidates are eliminated.

SPARSE elimination theory

Elimination theory deals with methods for eliminating variables and finding solutions for a polynomial system so that the equations have a common solution.

Sparse elimination generalizes several results of classical elimination theory on multivariate polynomial systems by considering the structure of the given polynomials, namely their Newton polytopes. This results to stronger algebraic and combinatorial results in general.

Newton polytopes provide a link from algebra to geometry since they permit certain algebraic problems to be cast in geometric terms. Minkowski sum, mixed volume and toric resultant are geometric operation used for algebraic problems.

Point enumeration is of course important in sparse elimination theory because of the bijection between integer points and monomials, where we assume that all variables are nonzero. The principal computational object of interest is the sparse resultant and its matrix, whose determinant is a nontrivial multiple of the resultant and which reduces system solving to an eigenproblem or univariate factorization. Using the properties of the mixed volume, we can assume that the sparse resultant’s degree in the coefficients of a polytope Pi is MV-i , for i = 0, …,n, and the total degree is
[image: image4.wmf]å

¹

-

n

i

i

MV

0

, which gives the optimal dimension of any sparse resultant matrix.

Example Consider a 3-polynomial system with 2 variables

f0 = c01+c02x1x2+c03x12x2+c04x1,

f1 = c11x2+c12x12x22+c13x12x2+c14x1,

f2 = c21+c22x2+c23x1x2+c24x1
For each subsystem of two polynomials we compute MV-0=4, MV-1=3, MV-2=4 thus the total degree of the sparse resultant is 11. On the other hand, the classical resultant has total degree given by the sum of three twofold Bezout bounds, each being the product of two total degrees, namely 8+6+12=26.

The corresponding twofold Minkowski sums have the following interior point sets, including the respective v-distances:

(Q-0 (Z2) = {(0,1;0.150), (1,0;0.100), (1,1;0.100), (1,2;0.091), (2,1;0.050), (2,2;0.050), (0,2;0), (0,3;0), (2,0;0), (2,3;0), (3,1;0), (3,2;0), (3,3;0)},

(Q-1 (Z2) = {(0,0;0.150), (1,0;0.100),(0,1;0.091),(1,1;0.091),(2,1;0.050), (1,2;0), (2,2;0), (2,0;0), (3,2;0), (3,1;0)},

(Q-2 (Z2) = {(0,1;0.182), (1,1;0.150), (1,0;0.111), (2,1;0.100), (2,2;0.091), (3,2;0.050), (1,2;0), (2,0;0), (3,1;0), (3,3;0), (4,2;0), (4,3;0) }

The incremental algorithm starts with point set (here are included the respective v-distances) B1 = {(0,0; 0.150), (1,0; 0.100), (0,1; 0.091)}. The algorithm has to increment the matrix so updates B1 to B1 ({(1,1; 0.091)}. Figure 1 below shows how the algorithm is used to enumerate points by lifting their projection each time to one dimension higher.

The incremental algorithm yields a 13 x 12 matrix, from which it returns any maximal nonsingular minor as sparse resultant matrix.

Point computation

The implementation is based on an improved version of the Mayan pyramid. This algorithm is used to enumerate integer lattice points T (Q(n) (Zn and compute their respective v-distance while working on a Minkowski sum of n polytopes, defined as Q(n) = Q1 + Q2 + … Qn. Linear optimization is used with k < n coordinates to compute v-distances; k being the step and n the polytope-dimension. The v-distance δv(p) of any point p (T to be the maximum non-negative real such that p + δv(p) (T. Also
[image: image5.wmf]v

d

 (
[image: image6.wmf]p

) will stand for the
[image: image7.wmf]v

-distance of point
[image: image8.wmf]p

 (Zk inside some polytope in Rk, where
[image: image9.wmf]v

 is the projection of v to (R*)k.

Algorithm (Improved Mayan pyramid)

Input: The vertices of Qi, v ((R*)n, and bound β > 0 on v-distance; possibly, also a bound

on #T (cardinality of integer points).

Output: T (Q(n) (Zn and δv(p) for all p (T, under the condition that δv(p)(β.

Steps:

1. T ((, k (1 and initialize
[image: image10.wmf]p

 to the empty vector.

2. Compute mn, mx as the minimum and maximum k-th coordinates of any integer point in the projection of Q(n) in Rk whose first k-1 coordinates are specified by
[image: image11.wmf]p

.

2.1. If k = 1 and
[image: image12.wmf]v

=v1>0 (resp. v1<0) then for s = mn, …, mx (s = mx,…,mn) and while
[image: image13.wmf]v

d

(s) (β do:
[image: image14.wmf]p

 ((s), k (2, then recurse at step 2.

2.2. If 2 (k < n, for s = mn, …, mx,
[image: image15.wmf]p

 ((
[image: image16.wmf]p

,s). If
[image: image17.wmf]v

d

 (
[image: image18.wmf]p

)(β then k (k+1 and recurse at step 2. Otherwise: if s > mn and pr is defined and
[image: image19.wmf]v

d

 (
[image: image20.wmf]p

) < pr, then terminate the iteration on s; if s = mn or
[image: image21.wmf]v

d

 (
[image: image22.wmf]p

) (pr, then set pr (
[image: image23.wmf]v

d

 (
[image: image24.wmf]p

) and continue the iteration on s.

2.3. If k = n, for s = mn,…, mx, set p ((
[image: image25.wmf]p

,s). The iteration on s is terminated when δv (p) < β and at least one of the following two conditions is satisfied: s > mn and pr is defined and δu (p) < pr, or c is given and #T > λc for some constant λ determined by fine-tuning. While the iteration continues, set T (T ({p} and pr (δv (p)

3. Sort all p (T according to δv (p) (keep only the c first points if c is given).

See figure 1 below for an example of the algorithm. The figure is based on the example of sparse elimination theory above.

Linear programming is used to compute mn, mx at step 2 above:

[image: image26.wmf](

)

å

å

=

=

=

i

m

j

ij

ij

n

i

v

s

p

1

1

,

l

with
[image: image27.wmf]1

1

=

å

=

ij

m

j

i

l

, for i=1,…,n, (λij (0 where mi is the cardinality of the vertex set of Qi, the vij are its vertices,
[image: image28.wmf]v

ij is the projection of vij to its first k coordinates, and
[image: image29.wmf]p

 (Zk-1. The linear program's variables are the λij and s. For the same constraints, mn is the ceiling of the minimum value of s, while mx is the floor of the maximum s.

In Rk, computing
[image: image30.wmf]v

-distances is accomplished by maximizing σ (R(0 subject to:

[image: image31.wmf]å

å

=

=

=

×

+

i

m

j

ij

ij

n

i

v

v

p

1

1

l

s

and
[image: image32.wmf]1

1

=

å

=

ij

m

j

i

l

, λij (0, for i=1,…,n, where
[image: image33.wmf]p

,
[image: image34.wmf]v

and
[image: image35.wmf]v

ij are, respectively, projections of p, v, and vij to Zk, (R*)k, and Zk, for k=1,…,n.

[image: image40.wmf]v

Figure 1: To the left is the 1-dimensional projection of Q-1 and projection
[image: image36.wmf]v

 of vector v. Points having zero
[image: image37.wmf]v

-distance are crossed out; the algorithm recurses on the other 3 points. In two dimensions (figure on the right), the v-ray is extended from every point to the boundary, for points with δv (p) > 0.

The main advantages gained by using this improved version of the Mayan algorithm are:

1. There is no need to construct explicitly the Minkowski sum Q(n),

2. the algorithm starts by considering projections of the polytope, which allows for bounding the search space,

3. it considers each point in some projection of Q(n) a constant number of times and for most points only once,

4. it allows us to limit the number of extra points that shall not be output, when a cardinality bound is provided,

5. it offers control over the direction of search in order to prune the search space.

Implementation

My work is based on an implementation done by Ioannis Z Emiris "Enumerating a subset of the integer points inside a Minkowski sum". The original version has been changed in some parts to improve functionality but the main changes and improvements are the duplicate point finder in the original polytopes and the creation of a table that holds the projected vertices of the original polytopes in every dimension, from the given one down to 1, for use in linear programming above. These two main improvements are explained below more thoroughly as ver Sergios.1 and 2.

· Ver Sergios.1

The program receives as input the number of variables (int n>0), the number of polynomials (int N>n), the cardinalities of supports (positive ints) and the supports, each containing n-dimensional points (each coordinate is non-negative). Also the user gives the mixed volumes, the v-vector and the coefficients of the polynomials.

Mainly, after having examined the code, the input and output of the program, I found that if the user gives as input a point two times (duplicate) in the original polytope input, the point would not be considered as a vertex even if it were. The program uses an algorithm (simplex) to check if a point is in the convex hull (internal), on it (vertex), or outside (external). This is done mainly by checking the point with all the other given ones. The algorithm tries to find if a point is linear related to others by a convex combination i.e. x1 = (¾)x2 + (¼)x3 and to conclude that the point is not a vertex. If a point is duplicate the program will relate it to itself, for example x3= 1x5. The conclusion will be that the point is in the polytope and not on the convex hull. Of course there is no problem if the point is internal, because we only need the vertices. But what if it is a vertex? Then the algorithm will just consider the point as being internal. Basically, we don't expect the user to give a duplicate point; this is only implemented in the case of mistake!

So we have two different problems:

· The point is duplicate and in the polytope (internal)

· The point is duplicate and is a vertex (on the convex hull)

In the first case we don't care because the point will not be counted anyway!

But on the second one there is a problem because the polytope will change!

When simplex is run to check the properties of a point compared to the other ones, it expresses every point by their coordinates. After some transformations the point is expressed by the given points. Of course the points can be expressed in many ways, i.e. x1 = (½)x2 + (½)x4 and x1 = 1x3. For a convex combination the coefficients must add up to one. Simplex creates a table after the transformation that holds the coefficients of the unknowns of the equations.

When the algorithm returns that a linear relation is found for one of the points the program checks the first column of the Tableau that simplex created. This column holds the coefficients of the unknowns (X's) along with those of variables and expression that simplex used (Z's). We check only the X's. As we know from the properties of the convex hull the coefficients of the unknowns must have a sum of one. If we find one 1 and the others 0's, then the point is duplicate i.e. x1 = 1 * x2 + 0 * x3 + 0 * x4. Then the program ends to let the user correct the mistake.

Of course, the implementation could correct the mistake by sorting the points before the simplex algorithm is called and this way eliminating the duplicates. Another way would be checking all the linear combinations for every point with simplex. If there is only one linear combination, being the one with one 1 and the others 0’s then the point is a vertex. So we could eliminate the duplicate and continue with the program. But the problem would be with the corresponding coefficients given in the input file "name".coef . This can be a future implementation.

· Ver Sergios.2

Point computation is based on mayan algorithm described above on the related section. But what if after finding the mn and mx, described in linear programming above, we could use the vertices of the projections of the polytope in every dimension from 1 to n, instead of checking every integer point projection in every dimension. This way we can make the program run faster and gain time depending on the original dimension and the number of supports. This is the main idea examined in this implementation.

After the polytope points are checked for vertices in ver Sergios.1, a table is filled with their coordinates. The main point here is that the predescribed table is sorted and with no duplicate points for every polytope. This table(1) was the one used by mayan algorithm to compute the integer points in the older version. In the new one a new table(2) is created to hold, the vertices of the projections of every point for every polytope in all dimensions from 1 to n. The unique property of (1), described above as the main point, gives us two advantages for finding the projections and storing them:

· For each dimension (n-1,…,1) the projections are found by using the n-1,…,1 coordinates of the polytope vertices. This could create a problem because it can lead to duplicates. For example imagine having a polytope in R3 with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0). In R2 the projected vertices would be (1, 0), (0,1), (0, 0), (0, 0). This gives us a duplicate point (0, 0).

This problem is solved because by having the vertices sorted in (1) we don’t need to check every vertex, but only the one(s) following each given vertex in the table until we find a different one.

· Another important advantage of having (1) sorted is that the first and last points of each polytope are always vertices of the specific polytope in every dimension when having their projections. This is mainly done because the first coordinate of each point is on the x-axis and by having them sorted the first and last point are the bounds of the polytope. So every point lies between them or on them.

EXPERIMENTS

The code is written in C and can be retrieved freely from

http://www-sop.inria.fr/saga/personnel/Pierre.Mario/Incres/Incres.Frames.htm

Compilation should use the option –DONLY_POINTS if the user does not wish to construct the sparse resultant matrix. In the current version, point coordinates should be non-negative. The most important options include

· -mc c, with integer c providing a bound on the point set cardinalities,

· -ms k, with k({0,…,n+1} indicating the number of point sets already computed and stored in the appropriate file, k=0 implying that all sets must be computed,

· -mu b, with rational b providing a bound on the v-distances.

We report on execution times on a SunUltra 1/170 workstation running SunOS 5.6, with a 167MHz CPU and 64MB of main memory. All running times are reported in user CPU seconds by Unix command time.

Our experiments are based on two different systems: multihomogeneous systems where all polytopes are identical (identified by their type) and the standard algebraic benchmark of cyclic n-roots. The cyclic N-roots family is defined by
[image: image38.wmf]j

k

i

j

N

i

k

x

f

Õ

å

-

+

=

=

=

1

1

1

 where xN+ t =xt , for k=1,…,N-1, and fN=x1x2… xN-1. This is a square system of dimension N. We use an equivalent formulation that decreases the dimension by setting yi=xi/xN and yN=1 in the first N-1 equations, then employ (xN)-n=y1…yN-1 to solve for the N-th variable. The new system contains N-1 polynomials in N-1 variables:

[image: image39.wmf]i

k

i

j

N

i

k

y

f

Õ

å

-

+

=

=

=

1

1

1

, yN=1 and yN+ t =yt, k=1,…,N-1

Here we consider the overconstrained system resulting from ``hiding'' y1 in the coefficient field. Setting n=N-2 yields a system of n+1 equations in n variables. This is a particularly sparse system since every Newton polytope has zero n-dimensional volume.

A class of special interest are semi-mixed systems, with each Q-i defined by k summand polytopes S1,…,Sk, where k<n is the number of distinct Qj, j(i. Of course, if Qj is repeated r times in the Minkowski sum, then the corresponding Sj=rQj, and replaces all r Newton polytopes equal to Qj. This drastically reduces the number of variables in the linear programs at a small cost, because the program has already computed the classification into distinct Newton polytopes.

The next table reports running times of the current version of the program with the use of projections as described in ver Sergios.2 above, compared with the previous version of the algorithm. Also included in the table, as column “Not used”, are the times of having the table(2) created but not used, to see how long the program needs to create it. The cyclic n-roots are used as well as the multihomogeneous ones. Every time is the average of at least 10 runs. Column n is dimension, T reports the polytopes checked, #Ti the integer points needed (given by mc c above).

	System
	n
	T
	#Ti
	Older version
	Ver Sergios.2
	Not used

	cyclic-4
	2
	T0,…T2
	10
	0,02
	0,011
	0,021

	cyclic-5
	3
	T0,…T3
	15
	0,061
	0,046
	0,063

	cyclic-6
	4
	T0,…T4
	30
	0,642
	0,62
	0,632

	cyclic-7
	5
	T0,…T5
	250
	6,59
	6,31
	6,64

	cyclic-8
	6
	T0,…T6
	500
	61,07
	57,08
	60,76

	(2, 1, 1; 1, 2, 2)
	4
	T0
	48
	0,208
	0,2
	0,22

	(1, 1, 1, 1;2 ,2, 1, 1)
	4
	T0
	96
	0,802
	0,679
	0,805

	(1, 1, 1, 1;3 ,3, 1, 1)
	4
	T0
	216
	2,400
	2,13
	2,34

	(1, 1, 1, 1;3 ,3, 2, 1)
	4
	T0
	432
	5,612
	4,856
	5,723

	(1, 1, 1, 1;3 ,3, 3, 1)
	4
	T0
	648
	11,703
	10,654
	11,98

Table 1: Performance in CPU seconds for the new version algorithm compared with the original one.

Of course it is important to see how many points were in the original table and how many were later after the projections were found in every possible dimension. On the x-axis; dimension 1, we only have 2 points, which are the bounds of the polytope, so it is not reported. Table 2 reports the cardinalities of vertices for every polytope in all dimensions for n to 1 for cyclic n-roots and the multihomogeneous ones. In the code the table that holds the original vertices in dimension n is reported as (T1). If a column is empty it means that dimension 1 is reached. For example cyclic-4 is in dimension 2 so only column n is reported.

	system
	n (T1)
	n-1
	n-2
	n-3
	n-4

	cyclic-4
	3, 4, 3
	
	
	
	

	cyclic-5
	4, 5, 5, 4
	3, 4, 4, 3
	
	
	

	cyclic-6
	5, 6, 6, 6, 5
	4, 5, 6, 5, 4
	3, 4, 4, 4, 3
	
	

	cyclic-7
	6, 7, 7, 7, 7, 6
	5, 6, 7, 7, 6, 5
	4, 5, 6, 6, 5, 4
	3, 4, 4, 4, 4, 3
	

	cyclic-8
	7, 8, 8, 8, 8, 8, 7
	6, 7, 8, 8, 8, 7, 6
	5, 6, 7, 8, 7, 6, 5
	4, 5, 6, 6, 6, 5, 4
	3, 4, 4, 4, 4, 4, 3

	(2, 1, 1; 1, 2, 2)
	12, 12, 12, 12, 12
	6, 6, 6, 6, 6
	3, 3, 3, 3, 3
	
	

	(1, 1, 1, 1;2 ,2, 1, 1)
	16, 16, 16, 16, 16
	8, 8, 8, 8, 8
	4, 4, 4, 4, 4
	
	

	(1, 1, 1, 1;3 ,3, 1, 1)
	16, 16, 16, 16, 16
	8, 8, 8, 8, 8
	4, 4, 4, 4, 4
	
	

	(1, 1, 1, 1;3 ,3, 2, 1)
	16, 16, 16, 16, 16
	8, 8, 8, 8, 8
	4,4,4,4,4
	
	

	(1, 1, 1, 1;3 ,3, 3, 1)
	16, 16, 16, 16, 16
	8, 8, 8, 8, 8
	4,4,4,4,4
	
	

Table 2: The cardinalities of points for every support in every dimension

As seen from Table 2 and Table 1 the cost in time for creating the table with the projections is not that much compared with the time we gain from not using every point possible but only the ones that are needed. Table 2 gives us the vertices of the polytopes that will provide us the projected convex hull and as we can see in large dimension the points need to be checked are half than checking the points we knew.

� EMBED Equation.3 ���

v

PAGE
2

_1033378804.unknown

_1033678418.unknown

_1033721067.unknown

_1033783360.unknown

_1033719254.unknown

_1033382458.unknown

_1033382667.unknown

_1033382637.unknown

_1033379329.unknown

_1032791170.unknown

_1032791175.unknown

_1032791176.unknown

_1032791177.unknown

_1032791178.unknown

_1032791174.unknown

_1032791172.unknown

_1032791168.unknown

_1032791169.unknown

_1032791158.unknown

