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Figure 1: Our method captures and renders existing trees from photographs, by estimating opacity in a volume, then generating and displaying
view-dependent textures attached to cells of the volume. (a) One of the original photographs of an oak. (b) Theα mask used for the opacity
estimation. Two cross slices of the resulting opacity are shown in (c). A synthetic image of the original view, using our view-dependent
rendering, is shown in (d). Textures are attached to billboards in cells of the volume and are generated based on estimated opacity.

Abstract

Reconstructing and rendering trees is a challenging problem due to
the geometric complexity involved, and the inherent difficulties of
capture. In this paper we propose a volumetric approach to cap-
ture and render trees with relatively sparse foliage. Photographs
of such trees typically have single pixels containing the blended
projection of numerous leaves/branches and background. We show
how we estimate opacity values on a recursive grid, based on alpha-
mattes extracted from a small number of calibrated photographs of
a tree. This data structure is then used to render billboards attached
to the centers of the grid cells. Each billboard is assigned a set of
view-dependent textures corresponding to each input view. These
textures are generated by approximating coverage masks based on
opacity and depth from the camera. Rendering is performed using a
view-dependent texturing algorithm. The resulting volumetric tree
structure has low polygon count, permitting interactive rendering
of realistic 3D trees. We illustrate the implementation of our sys-
tem on several different real trees, and show that we can insert the
resulting model in virtual scenes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: 3D reconstruction, interactive rendering, visibility es-
timation

∗e-mail: {Alex.Reche|George.Drettakis}@sophia.inria.fr
†e-mail:Ignacio.Martin@udg.es

1 Introduction

Capturing real-world trees for subsequent rendering in virtual en-
vironments is an interesting and challenging task. Existing digi-
tal capture techniques such as laser range finders, stereo or mod-
elling from images have been extensively developed for solid ob-
jects which have a well-defined opaque surface. Once the object
is captured, standard computer graphics methods are used for ren-
dering. Trees, and vegetation in general, are a special case. The
complex geometric structure of leaves and branches means that tra-
ditional scanning methods cannot usually be applied. In particular
capturing depth information of such objects is a very difficult task
because of the high frequencies implied by the complex, small ge-
ometries of the leaves and twigs. Procedural models for trees can be
guided by images [Shlyakhter et al. 2001], but result in models with
very high polygon counts (hundreds of thousands or even millions
of polygons per tree).

Our goals are i) to capture real trees from a small number of pho-
tographs, using a relatively simple and fast procedure, without the
need for specialized equipment or setup; ii) to create a low polygon
count tree model which permits realistic interactive renderings of
the captured tree.

To achieve these goals we make a key observation: at a reason-
able distance, each pixel in a photograph of a tree is typically the
blended projection of a number of leaves/branches and the back-
ground. This can be seen as a transparency effect, in which the
pixel value corresponds to a mixture of tree/leaf colors and back-
ground modulated by the opacity of the “tree volume” along the
pyramid defined by the camera and the pixel.

Based on this observation, we adopt a volumetric model for the
rendering of trees. We cast the problem in a direct volumetric ren-
dering context [Max 1995]; we consider the tree as a volume, with
opacity and color values. We estimate opacity based on a small set
of calibrated digital photographs of a tree. We first estimate opacity
of the tree volume, by optimizing over a recursive grid of opac-



ity values. Our optimization uses alpha-mattes extracted from the
photographs as estimates of cumulative opacity at the pixels (see
Fig. 1(b)). Once the recursive grid of opacity values has been esti-
mated, we assign a billboard to each grid cell. For each billboard, a
view-dependent texture is generated for each view, using the orig-
inal image, the number of billboards projected to the image and
the opacity of each cell. These textures capture the high frequency
detail and are rendered with a view-dependent texturing algorithm.

The main contributions of our approach are:

• The efficient estimation of the opacities for a tree volume on a
recursive grid, using the alpha-mattes computed from a small
set of calibrated images around a tree.

• The generation of view-dependent textures for each cell of
the recursive grid, which allows high-quality view-dependent
rendering of the resulting, low polygon tree model using bill-
boards.

This entire process is efficient and compact, creates satisfactory re-
constructions of trees, and is particularly suited to those with rel-
atively sparse foliage (see Fig. 1), which are not well handled by
previous methods.

2 Related Work

Modelling and rendering of trees has interested computer graphics
researchers over the last decades. A large part of previous work
concentrated on the generation and rendering of entirely synthetic
trees based on procedural methods such as grammars (L-systems)
(e.g., [Prusinkiewicz and Lindenmayer 1990; Deussen et al. 1998]),
or on rule-based plant growing systems based on codified botanical
knowledge such as the AMAP system [de Reffye et al. 1988]. Such
approaches have been used to generate stunning images of forests
and trees in general, with a high degree of realism. However, they
do not capture the aspect of existing, real trees.

The multi-layer z-buffer method uses precomputed synthetic im-
ages of trees for rendering [Max and Ohsaki 1995; Max 1996].
Volumetric texture approaches have been used to model and ren-
der trees; the complex geometry is represented as an approxima-
tion of the reflectance at a distance [Neyret 1998]. An adaptation
of this approach to hardware was developed later, using textured
slices for interactive rendering [Meyer and Neyret 1998]. Meyer
et al. [Meyer et al. 2001], presented a hierarchical bidirectional
texture solution for trees at different levels of detail, i.e., leaves,
branches, up to the entire tree. This results in very efficient level-
of-detail rendering for trees. Efficient rendering of trees can also be
achieved using point-based methods [Deussen et al. 2002]. A more
recent approach has been developed by [Qin et al. 2003], in which a
volumetric approach effects an implicit level-of-detail mechanism,
for lighting (both sun and sky) and shadowing, using shadow maps.

With the emergence of augmented reality applications, as well as
the generation of virtual objects from real sources, the need for cap-
ture of existing trees has become more evident. A simple approach
using two textures based on photos has been developed [Katsumi
et al. 1992]; rendering is achieved using horizontal slices through
the tree, the emphasis being on shading and shadowing. A dif-
ferent approach to capturing and rendering trees was presented by
Shlyakhter et al. [Shlyakhter et al. 2001]. This approach first cre-
ates a visual hull-like representation of the shape of the tree and
then fits an L-system to the resulting model. The photographs are
reprojected onto the resulting polygons of the L-system, resulting
in very realistic representations of real trees, at the price of high
polygon counts for the resulting models.

Image-based methods have also been developed which can han-
dle objects with semi-transparent silhouettes. These include opac-
ity hulls [Matusik et al. 2002], surface light fields [Wood et al.

2000] and microfacet billboards [Yamazaki et al. 2002]. In all of
the above cases, a large part of the object is opaque, defining an
overall opaque geometric shape, which is recovered. This shape is
required since these approaches use either pure standard “surface
textures”, or, in the case of microfacet billboards, require the un-
derlying geometry to place and cull the billboards used.

In the approach presented here, we have been inspired by vol-
ume rendering methods. The rendering model we have adopted
is based on the original direct volume rendering approaches (e.g.,
[Blinn 1982; Levoy 1988; Drebin et al. 1988; Max 1995]). Al-
though our method is closer to image-based rendering than volume
rendering, our approach is related to polygon-rendering solutions
for volumes (e.g., [Westover 1990; Shirley and Tuchman 1990]).

Our opacity estimation approach is inspired by the approaches
used in medical imaging. Our method has similarities to alge-
braic methods used for computed tomography, such as the SART
algorithm (e.g., [Andersen and Kak 1984]). The construction of
a voxel representation for the tree has similarities with the voxel
coloring [Seitz and Dyer 1997] or space carving [Kutulakos and
Seitz 1999] approaches. However, these approaches do not cur-
rently treat semi-transparent volumes such as those we construct
for trees. The Roxel algorithm [Bonet and Viola 1999] extends
space carving to treat opacity using techniques for opacity estima-
tion [Szeliski and Golland 1998]. A related approach, using a hi-
erarchy of cells for fast rendering of complex scenes was presented
by [Chamberlain et al. 1996]. Compared to medical imaging or the
Roxel approaches, we need to represent high frequency detail with
low storage cost, which we achieve using the recursive structure
combined with the view-dependent texturing technique.
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Figure 2: (a) A recursive grid is placed around the tree. (b) A ray
emanating at pixelp traverses the grid; a set of cells are collected.

3 A Volumetric Rendering Approach for Trees

As mentioned in the introduction, we have chosen a volumetric ren-
dering model to represent and render trees, given the fact that we are
dealing with photographs containing many semi-transparent pixels.

Consider the tree shown in Fig. 2(a); we create a recursive grid
enclosing the tree which is surrounded by the cameras. For a
large number of pixels in these photographs, each pixel is semi-
transparent, and we estimate an alpha value corresponding to the
cumulative opacityαp for each pixel (see Section 4). In typical vol-
ume rendering applications (e.g., [Levoy 1988; Drebin et al. 1988]),
a sampled opacity field is given at vertices of a grid, typically com-
ing from a scanning device (X-rays etc.). In our case, we will need
to estimate the opacity in the grid, based on the alpha values ex-
tracted from the photographs. We assign the valueαi to each celli
of the grid. We show how to do this in Section 5.

Given the opacity and color, we can adopt a standard volume
rendering equation to generate images of our trees. Consider a
ray emanating from a pixelp, which traversesn grid cells which
have opacity valuesαi (see Fig. 2). For now, we assume that for a
given pixel we have assigned a colorci for each cell. The intensity



Figure 3: Three photographs of typical trees we captured using our
method. In each photograph the background color is significantly
different from the colors of the leaves, trunk and branches.

I at a pixel is defined using standard volume rendering equations
(e.g., [Levoy 1988]):

I =
n

∑
i=0

αiciΠn
m=i+1(1−αm) (1)

which expands to the standard compositing equation for rendering:

I = αncn +(1−αn)(αn−1cn−1 +(1−αn−1)(..(1−α1)α0c0)..)
(2)

To render the tree volume, we will develop a rendering algorithm
which approximates Eq. 2. We first need to estimate theαi values,
and we then need to approximate the color.

In reality, both the opacity and color values are anisotropic
and inhomogeneous; estimating and storing them accurately would
clearly be intractable, except in the simplest cases. We choose
the following simplifications: we will estimate inhomogeneous but
isotropic discrete opacity values defined on a recursive grid. For
color, we will not perform an estimation, but we will partially pre-
serve the anisotropic quality of the color by using a view-dependent
texturing approach, with textures generated based on the opacities
and the original photographs of the tree (see Section 6). We use
billboards centered at the cells for the actual rendering.

Our capture method has three main steps. The first step is image
capture and alpha matting. In the second step, these alpha values
are used to estimate the opacity values in a grid. In the third step,
we used estimated opacities to generate billboards for each cell and
each image. Rendering is achieved with view-dependent texturing
on the billboards to efficiently display the trees. These three steps
are described in detail in the following sections.

4 Image Capture and Alpha Matting

The first step in our algorithm requires photographing the tree and
generating the alpha maps. The tree chosen for reconstruction cur-
rently needs to be in a suitable position so that it can be pho-
tographed with a relatively distinct background (see for example
Fig. 3, in which we can photograph the tree in a full circle with
a sky background). Trees in urban environments often have this
property, at least for the majority of views.

Photographs are then taken while moving around the tree. Our
experiments have shown that approximately 20-30 photographs
are required. We then need to calibrate the cameras of these
photos. We accomplish this step using REALVIZ ImageModeler
(www.realviz.com), but any standard algorithm can be applied for
this step [Faugeras 1993]. The calibrated cameras will be used in
subsequent steps. By adding a few markers in the scene (we use
sticks with colored play-doh on the top), calibration takes less than
10 minutes for about 20 images.

Next, we extract alpha masks for each photograph, using the al-
gorithm of Ruzon and Tomasi [Ruzon and Tomasi 2000]. This al-
gorithm requires user intervention, in which zones of background
and foreground are specified. Consider for example the tree shown
in Fig. 4. The user specifies foreground and background, and we
can see that the alpha-mask algorithm succeeds in finding semi-
transparent regions in the image. The area of the pixel contains a
mix of leaves/branches and background. The alpha-mask calculates
this visibility coverage using colors. Alpha-masks of 0 correspond
to background regions and alpha-masks of 1 to completely opaque
regions.

The intuition behind the alpha-masking approach is simple. The
pixels in the image are transformed into LAB color space and clus-
tered by color distribution. For each pixel, its color can be seen as a
best fit interpolation between the distributions of the clusters for the
foreground and background colors. The value of this interpolant is
the alpha value of the pixel

We thus consider that for pixels with an alpha mask strictly be-
tween 0 and 1, the color of the pixelCp is a linear interpolation in
LAB color space of the background colorCb and the foreground
colorCf :

Cp = αpCf +(1−αp)Cb (3)

Cf andCb are computed as weighted sums of background and fore-
ground, and perturbed accordingly. We create an alpha-image con-
taining the valuesαp for each pixel and an image of “pure fore-
ground”Cf values used later for rendering (see Section 6).

5 Reconstruction

To achieve volumetric rendering of trees, we need to estimate opac-
ities in each grid cell. We clearly do not have enough informa-
tion insidethe volume to be able to estimate both color and opac-
ity, since we only have photographs without any depth information.
Even if the depth information were available, it could not be pre-
cise enough to be useful. For this reason, we will restrict estimation
only to opacity, treating color in the rendering process as will be
discussed in Section 6.

A complete iteration of the reconstruction process will loop
through each pixel of each image. For each pixel, we cast the pyra-
mid defined by the camera and the pixel square into the grid. The
cells touched by this pyramid are treated. The algorithm performs
an optimization step, trying to choose the best values for the opac-
ities of these cells based on the corresponding opacity valueαp of
the pixel. Note that empty (transparent) cells are ignored for all
steps of our approach.

Before the first iteration, we initialize the opacity valuesαi in
each cell, by projecting each cell into each alpha-image, and using
the minimum of the average opacity values in the respective im-
ages as the value ofαi . Given that the images are the only data we
have available, this minimum is the closest we can get to the final
solution.

At each iteration, an initial opacity valueαi (or transparency
ti = 1− αi) is stored at each cell, together with aδt

i , which is
initialized to 0 at each cell. We will use theδt

i values to accu-
mulate the movement of transparencies due to the minimization for
each pixel in each image. In particular, we accumulate intermediate
transparency optimizations for each pixel and cell inδt

i , and update
all cell transparency values simultaneously at the end of each itera-
tion.

For each pixel of each image we approximate the pyramid by
casting a ray through the grid. For each ray we collect the grid cells
hit, with initial opacity valuesαi , i = 1...n. We experimented with
a larger number of rays, but the resulting increase in accuracy did
not justify the additional expense.



Figure 4: Left: the original image. Middle: the regions specified roughly by the user as foreground and background. Right: the computed
alpha-mask (note that we used black for opaque for clarity of the figure).

Using the same reasoning as for the volume rendering equation
(Eq. 2), and considering an absorption only model [Max 1995], we
assume that the pixel opacity valueαp should be:

αp = αn +(1−αn)(αn−1 +(1−αn−1)(...(1−α1)α0)..) (4)

whereαi is the opacity in each celli. If we recast Eq. 4 as a recur-
sive functionf n, we get:

f 0 = α0 (5)

f n = αn +(1−αn) f n−1 (6)

It can easily be seen by induction, that:

f n = 1−Πn
i=0(1−αi) (7)

If we substituteti = 1−αi (which are the transparency values of
the cell), we need to find the valuesti which best fit the equation:

tp = Πn
i=0ti (8)

wheretp = 1−αp. Clearly, we have an under-constrained prob-
lem, since we need to satisfy a system of equations (8). The number
of these equations is equal to the number of pixels in all images.
Our goal is to obtain a best-fit solution for theti values in the cells.
One approach would be to use Eq. 8 directly with a standard itera-
tive minimization technique such as a conjugate gradient method.

For reasons of efficiency however, we choose to transform Eq. 8
into a sum by taking logarithms:

logtp = logΠn
i=0ti =

n

∑
i=0

logti (9)

Eq. 9 can be seen as an n-dimensional plane, and desirable values
for logti should satisfy this plane equation.

Interestingly, the logarithms have a physical interpretation.
Transparencyt(s) is defined as [Max 1995]:

t(s) = e
∫ s

0 −τ(t)dt (10)

whereτ is the extinction coefficient of the volume. If we approxi-
mate the integral using a Riemann sum at intervals∆x, the discrete
transparencyti can be defined as [Max 1995]:

ti = e−τ(i∆x)∆x (11)
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Figure 5: Illustration of the projection step for the optimization of
theti (or respectivelyqi values). The illustration is in 2-D for sim-
plicity, but is actually performed inN-d, whereN is the number of
cells intersected by the ray.

Taking the logarithms gives:

logti = − τ(i∆x)∆x (12)

Thus the logti values can be seen as a discrete approximation
of the extinction coefficients. In what follows we useqi = logti ,
whereqi is the analog of the discrete extinction coefficient, and
logtp = qp. We also define the vectorQ = (q1,q2, ...,qn).

Recall that the goal is to find a best fit of theti values for the
cells for the giventp of the alpha image. The transformation via
the logarithm allows us to perform this step by a direct projection
onto then−dimensional planeP, which has normalN = (1,1, ...1)
and with interceptqp on one of the axes (see Fig. 5). We can thus
simply find the projectionQ′ = (q′1,q

′
2...q

′
n) of Q ontoP.

We then revert to the space of transparencies by taking the ex-

ponentt′i = eq′
i . We will weight this projection by the relative

coverage of the ray and the voxels being considered. The exact cal-
culation of the weight is illustrated in Appendix A. The weighting
can be seen as a linear interpolation between the component values
of Q andQ′. Thus, for a given celli, we have:

δi = wi(t
′
i − ti) (13)

The storedδt
i value of the cell is then incremented with theδi

value, representing the optimization ofti due to this ray.
To complete an iteration we perform this estimation for each

pixel of each image.



When the iteration is complete, for each cell we add theδt
i val-

ues, normalized by the sumw of the weightswi , into the trans-
parency valuesti to initialize them for the following iteration. We
iterate until convergence, which is defined when the values ofti
change less than a threshold in a single iteration. The result is an
estimate of transparencies (and thus opacities) for each grid cell.
We try and do a “best-fit” for all input images; this approach will
tend towards a local minimum. Note that in practice we recover and
store the transparency valuesti from the estimated discrete extinc-
tion coefficientsqi , passing through the exponential.

Finally, if ti becomes greater than atransparency cutoff threshold
when adding inδt

i ’s, we setti to 1; the cell thus becomes transparent
and is subsequently ignored. The reconstruction process is summa-
rized as follows:

while not converged
foreachcell i

init δt
i ,w

endfor
foreach image

foreach pixel
list-of-cells = cast-ray-into-grid
create vectorQ = (q1, ..qn) from ti ’s
projectQ onto planeP
foreachcell i

δi = wi(t′i − ti)
updateδt

i ; w + = wi

endfor
endfor

endfor
foreachcell i

ti += δt
i / w ; if ti > thresthen ti = 1

endfor
endwhile

A visualization of slices of opacity values are shown in Fig. 6.
The process typically takes 3-5 minutes on the models we tested
on a Pentium IV 2.7 Ghz PC, and 3-4 iterations are sufficient to
achieve convergence.

Figure 6: Illustration of slices of opacity values at the initialization
step (left) and after the end of the reconstruction process (right).
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Figure 7: An illustration of the problems of naive rendering using
view-dependent texturing: texture repetition results in blurring.

6 Texture Generation and View-Dependent
Rendering

At this stage, we have a recursive grid with opacity values which
represents the tree. Rendering the tree is a complex task, since we
want to preserve high-frequency information existing in the pho-
tographs, but at the same time we do not have any additional 3D
information other than the low-frequency opacity estimate per cell.
Given our goal of low-polygon count for the final representation,
we cannot subdivide the recursive grid too deeply, since this would
lead to an explosion in the number of primitives required.

Our solution is to attach a billboard (a small polygon which is
always oriented towards to viewer) to each cell. A naive approach
to rendering would be to project a view-dependent texture from the
input images onto each billboard, potentially blending between the
n closest cameras, in the spirit of Debevec et al. [Debevec et al.
1996] or the Unstructured Lumigraph [Buehler et al. 2001]. Our
tests with this approach gave severe blurring artifacts, since texture
is repeated across the billboards corresponding to a given pixel (see
Fig. 7). We present a heuristic solution where we use a billboard for
each cell and we generate an appropriate texture for each image.

Generation of the billboard textures

We generate billboard textures in a preprocessing step by looping
through input images and all cells. For each imagei and for each
cell c we construct anM ×M billboard textureT. We typically
set M = 8 or M = 4, which is a good compromise; smaller
sizes would require higher subdivision. Note that we use the images
containing the “pure foreground” valuesCf (Eq. 3).

Cell projection to image
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Figure 8: (a) Illustration of the ideal case; (b) Texture generation
for the first cell, and update of the image.

The intuition behind this process is illustrated with an artificial
ideal case, shown in Fig. 8(a). Three cells in a row project onto a
region of the image containing the three leaves. If all information
were available, we could generate the three separate textures with
each leaf, one for each cell. To do this, we would visit the cells
front to back. For each cell, we would project the cell to the image,
extract the texture, mask out only the part corresponding to this cell
and assign this as a texture for the cell. We would then update the
image and proceed to the following cell (Fig. 8(b)). The resulting
billboards would avoid the blurring problem mentioned above.

In what follows, we use the termpixelsfor the values in the RGB
and alpha images, andtexelsfor pixels of the billboard textures. We
project from billboard to image space and vice-versa using appro-
priate resampling for all values. We use a copyCi of the (RGBA)
image since we modify pixel values.

For a given image and a given cell, we have estimated transparen-
ciestc for each cell, and theαp (or transparencytp = 1−αp) value
for each pixel. We also compute the total number of billboards ren-
dered at each pixel using the stencil buffer, and keep track of the
remaining numberNcurr of cells not yet rendered as we process al-
pha image pixels.



We introduce a heuristic approximation to the ideal case given
the minimal information at our disposal, i.e., alpha image pixel val-
ues, cell transparencies, and the current number of cells (or bill-
boards) rendered at each pixel.

As in the ideal case, for each image, we render cells front-to-
back, and find the regionR in the image corresponding to the pro-
jection of the cell. For each texel, we decide whether it should
be selected using the corresponding image pixels. Our metric for
selecting these texels is based on an appropriate comparison of
cell and pixel transparencies. Our heuristic assumes that coherent
pixel/cell transparencies indicate a higher probability that the pix-
els correspond to geometry in this cell. We will thus prefer pixels
with cell/pixel values which are close according to the metric. To
complete the method, we update the pixel color and transparency
values after treating each cell.

To implement this approach we first create a quantity from
the cell transparencytc which is comparable to the corresponding
alpha-imagetp values. This is done by raisingtc to the power of
Ncurr of billboards not yet rendered at this pixel. This approximates
the influence of the current cell on the cumulative transparency of
all cells projecting to this pixel: We note this valuetNcurr

c . For each
pixel we also store a valuetcurr, which is initialized totp.

For each texel we thus compute the importance,Ht , which gives
higher values for texels withtcurr close totNcurr

c :

Ht =
1

tcurr − tNcurr
c

(14)

To complete the approach we update the value oftcurr as follows:
tcurr = tcurr/tc, thus “removing” the influence of the current cell
as estimated previously using the power computation.

We store an age field with all pixels which is initially 0; recall
that texels resample this value. Texels are ordered by age and im-
portance, and the firstbαc ∗M ∗Mc texels are selected to be used
on this billboard. For the remaining texels, the age of their cor-
responding pixels is incremented, thus increasing their chance of
being selected later, and spreading out the choice of texels. Some
pixels of the image may remain unselected, but this does not appear
to cause significant artifacts.

As seen above, we base the number of texels selected for each
billboard on the opacity of the cells. Initially, we tried a random
choice of texels given this number, and the results were unsatisfac-
tory. Use of these heuristics clearly improved the result.

The pixels used on the billboard are removed from the copy of
the original image, and are filled by interpolating neighboring pix-
els. A more sophisticated texture generation process could be used
for this step, e.g., in the spirit of [Efros and Leung 1999].

The final texture for this cell billboard and this image is thus
anM×M RGBA texture, for which the pixels chosen as valid are
assigned the RGB values of the (potentially modified) copy of the
original image, and the A value is the value of theα image. This
process is summarized in the following pseudo-code:

foreach RGBα imagei
make a copyCi of imagei
render billboards to initializeNcurr at each pixel
foreachcell c front-to-back

find projected regionRof cell c in imageCi

create resampledM×M textureT from Ci

sort texels ofT by age and byHt

selectbαc ∗M ∗Mc first texels
for pixels inRcorresponding to selected texels

tcurr = tcurr
tc

replace pixels using texture generation
for remaining pixels inR, increment age
for all pixels inR, Ncurr = Ncurr −1;

endfor
endfor

The uncompressed textures require a significant amount of mem-
ory. To reduce the required texture memory, we dissociate alpha
from RGB, and pack two RGB textures if their alphas do not in-
tersect. The resulting memory requirements are about 45% of that
originally required. For a typical uncompressed tree of 100Mb, the
resulting compressed version requires 45Mb.

View-Dependent Rendering

Once an RGBA texture has been generated for each cell and each
original camera, we can render in a straightforward manner. We tra-
verse the cells back-to-front, and render the billboard for each cell
with multi-texturing, using the appropriately weighted textures cor-
responding to the two closest cameras [Debevec et al. 1996]. The
RGBA billboard textures are simply blended for each cell visited
in back-to-front order, in the sense of theover operator [Porter and
Duff 1984].

7 Implementation and Results

Our current implementation uses a recursive grid, which subdivides
into 3x3x3 subcells (an octree could also be used). Currently, we
subdivide all non-empty cells down to the maximum subdivision
level. Empty interior cells are not subdivided.

We present two examples of real captured trees. Our approach is
however better appreciated in an animation or walkthrough. Please
see the accompanying video, available on the ACM SIGGRAPH
2004 Full Conference DVD-ROM, to better appreciate the results.
The video also shows sequences of trees inserted in virtual scenes.
All timings are on a Pentium IV 2.7 Ghz PC.

The first tree we have captured is an oak, shown in Fig. 1. We
took 22 pictures of the tree, and generated an equivalent set of
masks. The estimation took about 15 mins for a 4-level subdivi-
sion of our grid, resulting in 51,000 cells with 8x8 billboards, using
a cuttoff transparency threshold of 0.94. The texture generation
phase took 30 minutes, and resulted in 150Mb of texture, which af-
ter packing (which took 31 min), reduces to 56Mb. We show two
new (non input) views of the oak in Fig. 9 (rightmost images); a
synthetic rendering of an input view is shown in Fig. 1(d).

The second tree we have captured is a pine, shown in Fig. 9.
We took 18 pictures of the tree; estimation took 15 minutes for
a level 5 subdivision of our grid, resulting in 110,000 cells, with a
cutoff transparency threshold of 0.9. The texture generation for 4x4
billboards took 15 minutes, resulting in 58Mb of texture. After a 17
minute packing process, the final compressed tree requires 22Mb.
We show two new (non input) views of the pine in Fig. 9 (left).

Use of the transparency cutoff threshold greatly reduces the
number of cells (by a factor of 2 and 8 respectively for the oak
and pine), making the resulting trees smaller in memory and faster
to display. Initially, some cells incorrectly receive non-zero opacity
due to missing information such as the small number of cameras, or
occlusion in the images. Use of the threshold makes some of these
transparent during reconstruction, improving the visual quality.

8 Discussion

Our method gives very promising results, and we believe that it
will be useful as a fast way to capture existing trees and to produce
high quality interactive renderings of trees with low polygon count
models.

One current difficulty is the need to have a good background to
be able to acquire satisfactory alpha mattes. We currently add a
uniform color background (a sheet in our case), where possible to
help the alpha matte algorithm (see Fig. 4(left)). This helps, but
is not always a practical solution. Using the Bayesian approach



Figure 9: From left to right: two new (non-input) views of the captured pine tree and two new views of the captured oak tree.

of [Chuang et al. 2001] may improve the mattes extracted, and we
hope that other researchers will develop a more stable alpha extrac-
tion approach, perhaps specifically adapted to the case of trees.

Figure 10: Side by side images of the reconstructed oak tree (syn-
thetic view) using thresholds of 0.9, 0.94, 1.0 (left to right).

Currently, the generated textures partially contain the original
lighting information. However, since we manipulate the textures in
the generation stage, it is clearly possible to develop some approxi-
mations which would permit relighting. In particular, the existence
of opacity information should probably allow us to approximate
light distribution, and perform approximate lighting or relighting
calculations. A stochastic approach to shadow removal and nor-
mal estimation [Katsumi et al. 1992] could probably be applied.
The relatively random nature of the tree leaf distribution should
make this easier to achieve than for more structured objects. Ex-
act shadow shapes are harder to identify, and thus the error should
be less perceptually evident.

Using a low cutoff threshold makes some cells transparent, but
reduces blurring significantly. This is a tradeoff, since depending
on the level of subdivision and the number of cameras, existing
branches or leaves may be removed. This effect is illustrated in
Fig. 10 and in the video. Even when features are removed, for
example with threshold 0.9, the tree remains very realistic and re-
mains very similar to the input photographs; however blurring is
almost completely eliminated. Investigating heuristics to find the
best compromise is a promising avenue of research.

Finally, our approach is best suited for viewing the captured
tree at a distance no closer than that of the cameras of the input
photographs. Closer viewing would require additional processing.
Conversely, when viewing from a distance, multi-level rendering
could be used, by computing levels-of-detail for the billboards in
the hierarchy.

9 Conclusion

We have presented an approach which allows efficient capture of
trees from photographs in three steps. First photographs are taken

and alpha-mattes generated; this step also generates the appropriate
foreground color to be used for rendering and requires limited user
intervention. An automatic reconstruction step creates a recursive
grid which contains the opacity values for each cell. We then gen-
erate view-dependent textures for each cell, corresponding to the
input views, which are attached to billboards placed at the centers
of the cells. Rendering is performed using view-dependent texture
mapping.

We have presented interactive renderings of captured trees, in-
cluding the example of a pine tree, which is a particularly hard case
to capture and render using other methods, due to the numerous,
very fine pine-tree needles.

We believe that this approach, which combines a volumetric
opacity estimation with view-dependent texturing will be a promis-
ing avenue for future research. Volume rendering solutions for
shadows, lighting and relighting will probably be very useful for
the development of lighting solutions for our captured trees. We
will also develop ways to create varying instances of trees, by mod-
ifying certain characteristics, as well as ways to manipulate the re-
sulting models (motion in the wind, scaling etc.). We plan to work
actively on investigating the need and methods to improve opacity
estimation, as well as improving texture generation techniques.
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Appendix A Weight computation for a cell
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Figure 11: Illustration of the weight computation for a cell.

The four corners of the pixel define a pyramid, which we inter-
sect with the near plane (see Fig. 11, illustrated in 2D for simplic-
ity). This intersection has areaAn; the distance to the near plane
is dn. We shootN rays through a given pixel. A given ray will
intersect celli at a distancede, and the length from the entry to
the exit point of the ray in the cell isl . It is assigned an area of
As = An/N at the near plane. We compute the areaA′s of the
slice of the pyramid corresponding to the ray using similar trian-
gles: A′s/d2

n = As/d2
e giving A′s = As(d2

e/d2
n). We then estimate

the volume of the ray/cell intersection asV = lA′
s. The weight of

the ray will bewi = V/Vc whereVc is the volume of the cell.


