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Abstract
This paper presents a modeling system which takes advantage of two-dimensional drawing knowledge to design
three-dimensional free-form shapes. A set of mouse or tablet strokes is interpreted by the system as defining both a
two-dimensional shape boundary and a displacement map. This information is used for pushing or pulling vertices
of existing surfaces, or for creating vertices of new surface patches. To relieve the burden of 3D manipulation from
the user, patches are automatically positioned in space. The iterative design process alternates a modeling by
drawing sequence and a viewpoint change. To stay as close as possible to the traditional drawing experience,
the system imposes the minimum number of constraints on the topology of either the strokes set or the resulting
surface.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling Geometric algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques Interaction
Techniques J.5 [Computer Applications]: Arts and Humanities Fine arts

Keywords: drawing, modeling, interface, reconstruction, point-set surface

1. Introduction

Most people draw. We sketch, doodle, and scribble to keep
track of our thoughts or communicate ideas to others. We
consider drawing as an alternative to writing, because it is
often faster and more concise to describe three-dimensional
shapes and spatial relationships with two-dimensional lines
than with words. Drawing tools are simple and their dex-
terous use constitutes a wealth of common knowledge most
people have acquired since kindergarten. However, this
know-how is seldom used in computer graphics for anything
but two-dimensional vector or pixel-based drawing applica-
tions.

Few people sculpt. Even though many people used to
play at an early age with modeling toys such as Play-Doh
and LEGO, creating forms in three dimensions usually in-
volves modeling clay, chiseling wood or marble, etc. These
materials are difficult to manage, and shaping them gener-
ally requires highly specialized tools and skills. Using com-
puters does not make the sculpting process simpler: three-
dimensional data are obtained either by scanning an existing
sculpture, or by modeling directly with the computer, using
2D or 3D input devices. In practice, designers turn to com-

puters when they need to be definite and precise. We believe
that advantages of the digital medium could be used in the
initial idea stage.

Present day modeling systems rely heavily on 3D widget-
based interfaces to ease the user task of specifying 3D ac-

(a) (b)

Figure 1: Model creation using Relief. In (a), a simple sketch of a
tree, on paper. In (b), a three-dimensional model of a tree, obtained
with Relief.
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tions using 2D input devices. This way, the user visualizes
the task by looking at the 3D scene from several viewpoints,
such as the traditional blueprint projection planes. The un-
derlying rationale is that a 3D task is better performed using
3D tools [CSH∗92]. This is true; however, these tools are
generally controlled using 2D input devices, and this results
in nonintuitive, advanced-user-oriented systems.

The inverse approach has received far less attention. Since
most of the input devices we have are two-dimensional, we
believe that 2D tools are more appropriate to perform 3D
operations. This way, the user is able to visualize the task
completely from only one viewpoint, i.e., the current cam-
era image plane. The most simple 2D tools, that take advan-
tage of all the expressive capabilities of a human hand, are
drawing tools.

To stay as close as possible to the traditional drawing
experience, our system input must consist of just plain
strokes. They are interpreted by the system as defining a two-
dimensional shape boundary and a displacement map. The
former is computed using a curve reconstruction algorithm.
The latter is obtained by following a simple shading conven-
tion. Together, they are used for pushing or pulling vertices
of existing surfaces, or for creating vertices of new surface
patches. (These new patches are attached or not to existing
surfaces.)

In order to relieve the burden of three-dimensional ma-
nipulation from the user, new surface patches are positioned
in space according to a few simple rules. Our surface rep-
resentation handles arbitrary topology changes without the
drawbacks of either polygonal meshes (difficult to edit and
maintain through deformations) or voxel grids (storage over-
head and signal aliasing). It is based on points and a sur-
face reconstruction algorithm which is the three-dimensional
equivalent of the algorithm mentionned above.

The iterative design process alternates a modeling by
drawing sequence and a viewpoint change. Its output is a
three-dimensional triangular mesh that fits easily in the stan-
dard computer graphics production pipeline.

Our system reuses some of the ideas proposed by previ-
ous modeling systems, such as specification of displacement
through shading, and depth determination through projection
on existing surface. However, it overcomes three of their key
limitations. First, it formulates the two-dimensional shape
from strokes problem as a curve reconstruction problem and
thus handles most stroke input with ease. Second, it imposes
no constraint on the appearance and topology of the surface
during the design session, thus freeing the user from the
burden of planning its entire sculpture process in advance.
Third, it does not limit modeling operations to modifications
of the initial surface, thus allowing a wider range of resulting
shapes.

2. Related Work

Since the invention of Sketchpad by Ivan Sutherland in
1963 [Sut63], many computer graphics systems have used
drawing metaphors for 3D shape modeling, most often
requiring the user to draw polyhedral surfaces in wire-
frame [LS96, SC04]. However, this CAD atavism keeps
these solutions out of reach of common drawing practice.
Notably, Eggli et al. alleviate this burden of unintuitive input
by using simple drawing techniques that have an unambigu-
ous interpretation in three dimensions [EBE95].

Departing from these approaches, SKETCH and Teddy
demonstrated that gesture-based interfaces are powerful and
intuitive tools for 3D model design [ZHH96, IMT99]. How-
ever, they trade their simplicity against limitations on the
appearance (boxy, rotund) or topology of models generated.
Concerning Teddy, the latter problem has been addressed us-
ing either variational implicit surfaces [KHR02] or a volu-
metric shape representation [ONNI03].

In systems mentioned previously, drawing is used for de-
scribing boundaries and shape features using strokes, but not
as a way of modeling the relief of surfaces. In his pioneering
work, Williams proposes to create a height field by directly
painting the luminance value corresponding to a given ele-
vation [Wil90]. On the contrary, the GRADED system uses
shading information to infer a gradient map and a consistent
depth map [van96]. Inspired by these attempts, a modeling
tool based on a shape-from-shading algorithm has been pro-
posed for surface retouching [RGB∗03]. However, it is too
slow for interactive use and requires photorealistic shading,
which is difficult to obtain by drawing.

Three interesting solutions to the modeling by drawing
problem are found in commercial systems. Artisan is a Maya
software toolset with a common painting metaphor [Ali04],
inspired from interactive texturing interfaces [HH90]. The
Sculpt Polygons Tool pushes, pulls, or smoothes the sur-
face when the user paints it with the corresponding brush.
ZBrush greatly expands the mesh editing operations of
Maya’s Artisan [Pix04]. The user first sculpts a rough shape
envelope using ZSpheres, and then refines it thanks to
its subdivision surface multiresolution capabilities. Finally,
SketchUp is a thorough architecture design system, inspired
by SKETCH [@La04].

3. Tool Workflow

The Relief system is a modeling by drawing tool, i.e., mod-
eling operations are achieved by drawing. The user draws
only on the image plane, never directly on the objects of
the scene. However, drawing operations take into account
three-dimensional information, such as visibility and depth,
by performing image queries in buffers, such as ID and depth
buffers, using the graphics hardware.
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(a) (b) (c) (d) (e)

Figure 2: Tool workflow. In (a), the user has drawn both on an existing surface (an imported sphere) and on empty space, with a pencil
(hard black strokes) and a brush (soft white strokes). In (b), reconstruction of the boundaries (green lines) of the drawn shape. In (c), adaptive
sampling of the displacement regions. In (d) and (e), new surface obtained after reconstruction.

A modeling by drawing sequence can be divided in two
distinct steps: in the first step, the user draws, in image space;
in the second step, the system uses the drawing informa-
tion for moving or creating surface vertices, in world space.
Then, the user can change the viewpoint and repeat a mod-
eling by drawing sequence all over again.

3.1. First Step: Drawing

When the user draws a stroke on the image plane (see
Fig. 2a), either with a mouse or a tablet, two types of in-
formation are recorded. First, the stroke path obtained from
the input device is regularly sampled into two-dimensional
points that are stored in a common point set, with other
stroke samples (points are represented as orange dots on
Fig. 2b). Second, the stroke image obtained from the stroke
rendering process is accumulated in a pixel array, e.g., the
frame buffer, with other stroke images (see Fig. 5a).

Once the drawing is finished, the system computes two
image maps. First, from the point set, one or several closed
curves defining the boundaries of the drawn shape are ob-
tained using a two-dimensional reconstruction algorithm de-
scribed in Sec. 4 (curves are represented as green lines on
Fig. 2b). These curves are then transformed into a binary
map, i.e., a mask defining image regions inside the shape.
Second, from the pixel array, a displacement map is ob-
tained using a simple shading convention, described below.
Together, these two maps define displacement regions on the
image plane.

The shading convention relates tones of the drawing to
displacement values along an oriented axis. The user draws
with black and white tones on a midgray canvas (see Fig. 2a).
Shades (black tones) translate into negative displacement
values, highlights (white tones) translate into positive dis-
placement values, with respect to the oriented axis. The mid-
tone (midgray canvas) has no influence. The magnitude of
the displacement is proportional to the distance (in grayscale
space) between the tone and the midtone.

3.2. Second Step: Modeling

The displacement information obtained in the first step is
used to perform two types of modeling operation: either
pushing or pulling vertices of existing surfaces, or creating
vertices of new surface patches. (These new patches are con-
nected or not to existing surfaces.) To achieve this, existing
vertices are moved away from their previous position ac-
cording to the displacement value, along the surface normal
vector. New vertices are introduced when the displacement
is not well sampled by the existing vertices. This is due ei-
ther to the insufficient resolution of the existing surface, or
the complete absence of it, when the user draws on a blank
canvas.

To determine if and where new vertices are introduced,
displacement regions are adaptively sampled on the image
plane (see Fig. 2c), using an algorithm described in Sec. 5.
From their positions in image space, the new vertices posi-
tions in world space are computed using an algorithm de-
scribed in Sec. 6. Finally, the new surfaces resulting from
these operations are obtained using a three-dimensional re-
construction algorithm on the entire point set (see Fig. 2d-e).
It is the three-dimensional equivalent of the algorithm men-
tioned in the first step.

3.3. Changing Viewpoint

Once the second step is over, the user is free to change
the viewpoint to evaluate the result and repeat the en-
tire modeling by drawing sequence (described in Sec. 3.1
and Sec. 3.2). Thus, the user progressively builds a three-
dimensional model out of a series of modeling sequences
performed each time from a different viewpoint.

4. Curve and Surface Reconstruction

In Sec. 3.1 and 3.2, we use the same reconstruction algo-
rithm to obtain the shape of a point set: in the first step, we
reconstruct curves from a two-dimensional point set result-
ing from the sampling of the stroke set; in the second step,
we reconstruct surfaces from a three-dimensional point set
resulting from the sampling of the displacement regions.

c© The Eurographics Association 2004.
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(a) (b) (c)

Figure 3: The two-dimensional convection process. In (a), before the convection starts. The pseudo-curve lies on oriented edges of the
Delaunay triangulation of the point set. In (b), the pseudo-curve evolves as long as the Gabriel criterion is not met for every oriented edge
(half-disk, in red, associated with an oriented edge, in green). In (c), after the convection stopped. The result of the process is a topologically
consistent set of oriented edges; it can contain coupled oriented edges called thin parts (the “tail” at the bottom right of the shape).

In both cases, our reconstruction algorithm must satisfy
several requirements:

• It must be able to handle an arbitrary number of connected
components to allow modeling of an entire scene, contain-
ing many objects.

• It must be able to handle outliers, i.e., points located off
shape boundaries. For example, in the two-dimensional
case, strokes can describe either geometry or texture in-
formation, and thus do not always lie on the silhouette of
the shape.

• It must be sufficiently fast to allow interactivity for
average-sized point sets (around 5×103 points).

Our first attempt to solve this reconstruction problem
was successful in 2D, but did not generalize well to
3D [Bou03]. However, a recent method meets all the re-
quirements previously listed, for two- and three-dimensional
point sets [Cha03]. We will describe this reconstruction al-
gorithm and illustrate its key features in the two-dimensional
case.

The reconstruction algorithm proposed by Chaine is based
on an analogy with a physical phenomenon, convection. Let
us consider a curve around a two-dimensional point set. Un-
der the influence of convection forces, each point of the
curve will move towards its nearest neighbor in the point
set, with possible topological changes occurring during the
evolution of the curve.

This process can be translated in computational geome-
try terms by evolving a data structure called pseudo-curve in
the two-dimensional Delaunay triangulation of the point set.
The pseudo-curve lies on oriented edges of the triangulation
(see Fig. 3a), and it evolves as long as the half-disk associ-
ated with an oriented edge contains a point, i.e., an oriented
edge does not meet the Gabriel criterion (see Fig. 3b). The
result of the convection process is a topologically consistent
set of oriented edges. For some point sets, this result con-
tains coupled oriented edges, i.e., oriented edges with oppo-
site orientations, that are geometrically dependent, but can

be topologically independent. These coupled oriented edges
are called thin parts (see Fig. 3c).

The resulting set of oriented edges can be partially or en-
tirely made of thin parts, when the corresponding point set
describes a non-manifold shape. (In the first step of our algo-
rithm, described in Sec. 3.1, a set of oriented edges entirely
made of thin parts is rejected, since it does not define a shape
with one or several boundaries.)

Note that the convection process cannot correctly recon-
struct a particular type of concavity called a pocket. To ad-
dress this issue, pockets are detected during the evolution
of the pseudo-curve, by comparing the size of each oriented
edge with the local density, assuming that, unless the edge
leads to a pocket, the edge size of a well-sampled object is
consistent with the local density (see Fig. 4a).

In three dimensions, this convection approach is extended
to a pseudo-surface evolving in the three-dimensional De-
launay triangulation of a point set. The result of the con-

(a)

(b)

(c)

Figure 4: Convection pocket and collapse. In (a), an example of
pocket. The size of the pocket edge (red half-disk) is larger than the
size of two of its incident edges (blue half-disks). In (b), before a
collapse of the pseudo-curve. In (c), after a collapse of the pseudo-
curve. In 2D, a collapse is always caused by a pocket. In 3D, six
possible collapse cases correspond to different topological changes
of the pseudo-surface occuring during the convection process.
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vection process is a topologically consistent set of oriented
facets.

We implemented the two algorithms using the 2D and 3D
triangulation packages of the Computational Geometry Al-
gorithms Library [CGA04].

5. Adaptive Sampling

After the first step (Sec. 3.1) of the modeling by drawing
sequence has been completed, we face in the second step
(Sec. 3.2) the following problem: given displacement re-
gions in image space, and given an existing surface in world
space, will the displacement values be correctly sampled by
the existing surface vertices projected in image space? In the
case of a highly refined surface whose projection entirely
covers the displacement regions, this will probably be true.
However, for all the other cases (poorly refined surface, pro-
jection not covering all the displacement regions), we have
to address this issue.

Finding an optimal sampling of the displacement regions
amounts to finding an error map that will provide informa-
tion about the areas that need to be sampled more than oth-
ers. We evaluate this error map by simply projecting the ex-
isting surface vertices onto the image plane, giving them a
displacement value by looking for the value at the corre-
sponding position in the displacement map (see Fig. 5a), and
rendering the corresponding 2D Delaunay triangulation us-
ing the graphics hardware, i.e., by linear interpolation of the
displacement values, considered as grayscale color attributes
of the vertices (see Fig. 5b). The absolute value of the dif-
ference between this approximate displacement map and the
true displacement map gives us an error map (see Fig. 5c).

This error map is then adaptively sampled (see Fig. 5d)
using a fast and accurate error-diffusion algorithm [ZF03].
This sampling method is inspired from interactive geometry
remeshing techniques [AMD02]. It allows a simple tuning
of the sampling rate by a linear scaling of the values of the
error map.

If the projection of the existing surface does not cover
all the displacement regions, or if there is no existing sur-
face at all, corresponding parts of the approximate displace-
ment map are filled with an arbitrary continuous value (see
Fig. 5c), in order to prevent these areas from not being sam-
pled.

6. Depth Inference

Once the displacement regions have been adaptively sam-
pled as described in Sec. 5, each new sample can be con-
sidered as a three-dimensional surface vertex projected on
the image plane, with a known displacement value, but an
unknown depth value. Our problem amounts to defining the
depth of these new vertices in order to compute their three-
dimensional position by “unprojection” from image space to
world space.

(a) (b) (c)

(d) (e) (f)

Figure 5: Adaptive sampling and depth inference. (Same example
as the one presented on Fig. 2.) In (a), the corresponding displace-
ment map. In (b), the approximate displacement map, obtained by
sampling the displacement map with the projections of the existing
surface vertices. In (c), the error map corresponding to the differ-
ence between (a) and (b): the darker the tone, the larger the error.
In (d), the adaptive sampling of the error map. In (e), the ID buffer
used to identify the projections of existing surface vertices. In (f),
the depth buffer corresponding to the existing surface.

We infer the depth of the new vertices using the depth in-
formation of the vertices of the existing surface. To this end,
we build a 2D Delaunay triangulation of all the vertices pro-
jected on the image plane: both the vertices of the existing
surface, with known depth value (see Fig. 5e), and the new
vertices, with unknown depth value. In practice, we reuse
the triangulation data structure already built in Sec. 5, sim-
ply adding the new vertices to it.

Then, starting with the vertices of unknown depth value,
whose incident vertices are of known depth value, possibly
thanks to a depth buffer query (see Fig. 5f), we propagate
depth information through the triangulation using a standard
best first search algorithm, i.e., a breadth first search that
uses a priority queue ordered according to, for a given ver-
tex element, the number of incident vertices of known depth
value. Successively examining the vertices in the queue, we
evaluate their unknown depth using an interpolation scheme
based on the distance between the vertex and each of its inci-
dent vertices of known depth value [Tau95]. As a result, the
position of new vertices interpolates, and sometimes extrap-
olates, the position of existing surface vertices (see Fig. 8a-
b).

In the case the user has not drawn at all on an existing
surface, an arbitrary depth is assigned to the new vertices.
This depth can be either chosen as the depth of the world
space origin, or as the depth of a plane parallel to the image
plane and defined by the user.

c© The Eurographics Association 2004.
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(a) (b) (c) (d)

Figure 6: Hole marks. In (a) and (b), hole marks in comic book
production: artwork from Stone #3, Avalon Studios. In (a), pencils
by Whilce Portacio. In (b), inks by Gerry Alanguilan. Note the small
crosses drawn by the penciler to give information about the posi-
tions of holes to the inker. In (c), and (d), hole marks in Relief. In (c),
a hole mark defined by the user. In (d), the resulting effect on the re-
constructed shape boundary. (In (a) and (c), marks are colored in
red for clarity.)

7. Tool Interface

We describe in this section a few algorithms that are used
to ease the process of modeling by drawing, either to draw
shapes with holes, to compute automatic shading effects, to
obtain an adaptive shading-to-displacement mapping, or to
perform various surface enhancement operations.

7.1. Hole Marks

When drawing a shape with holes, the definition of inside
and outside parts is generally ambiguous. This problem is
commonly solved in the comic book industry: the penciler
(who has actually created the drawing, see Fig. 6a), gives
hints to the inker (who will overdraw in ink some of the pen-
ciller lines, see Fig. 6b), about the parts of the drawing which
are considered foreground and the ones which are considered
background, that is, “holes” in the foreground.

Inspired by this traditional solution to the drawing topo-
logical ambiguity problem, we provide the user with the
possibility of marking areas considered as holes with hole
marks, i.e., special strokes obtained by maintaining a modi-
fier key pressed while drawing (see Fig. 6c-d).

These marks are taken into account after the two-
dimensional shape reconstruction is over (see Sec. 3.1).
First, using the 2D Delaunay triangulation, we determine
the faces intersected by each segment of a mark stroke and
tag these marked faces as external to the shape. Second, in-
specting each of these faces in turn, we gather the boundary
edges, i.e., edges that belong both to a marked and a non-
marked face. Third, these edges are used as starting edges
for a rerun of the two-dimensional reconstruction algorithm,
in the same way we used the convex hull edges in the initial
reconstruction, as explained in Sec. 4.

7.2. Blobbing

In order to speed up modeling of regular rotund shapes, in
the spirit of Teddy [IMT99], we provide a blobbing opera-
tion that performs an automatic inflation of the drawn shape,
i.e., that creates the shading corresponding to an inflation of
its silhouette.

Solutions to the inflation problem can be classified as ei-
ther object-based [vW97] or image-based [OCDD01]. Since
the resulting blobbing is equivalent to a shading created by
the user, we chose an image-based solution. Inflation is ob-
tained in two steps. In the first step, we compute the Eu-
clidean distance transform of the binary map correspond-
ing to the drawn shape, using a fast algorithm [CM99]. This
gives us the distance field d (x,y) (see Fig. 7a-b). In the sec-
ond step, in order to give a rotund appearance to the shape,
we map the distance field to a unit sphere height field z(x,y),
i.e.,

z(x,y) =

√

1−
(

1−
d (x,y)
dmax

)2

where dmax is the maximum value of the scalar field d (see
Fig. 7c). Note that the value of dmax gives us a distance (in
pixel units) that can be used later to estimate the mapping
of the shading corresponding to the normalized height field
in image space, to a displacement field in world space (see
Sec. 7.3). Finally, the resulting shading is accumulated on
top of stroke images in the frame buffer (see Fig. 7d).

7.3. Shading-to-Displacement Mapping

According to our shading convention, displacement is pro-
portional to the distance between a tone and the midtone (see

(a) (b)

(c) (d)

(e)

Figure 7: Blobbing. In (a), the drawn shape. In (b), the corre-
sponding distance field. In (c), the corresponding unit sphere height
field. In (d) and (e), the resulting white shading and the correspond-
ing surface.

c© The Eurographics Association 2004.
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(a) (c) (e)

(b) (d) (f)

Figure 8: Various depth modes. In (a) and (b), standard depth
inference: the position of new vertices interpolates, and sometimes
extrapolates, the position of existing surface vertices (see Sec. 6).
In (c) and (d), modeling at depth: new vertices are positioned at the
depth of the closest existing surface vertice involved (see Sec. 7.4).
In (e) and (f), frisket mode: where frisket has been applied (red re-
gions), the depth of existing surface vertices is not taken into ac-
count in standard depth inference computations (see Sec. 7.5).

Sec. 3.1). However, in order to ease modeling, this mapping
also depends on two other variables.

First, the mapping is proportional to the distance between
the point of view and a point on the existing surface, i.e.,
the closer the viewpoint is to the surface, the smaller the dis-
placements. Thus allowing the user to work with higher pre-
cision when zooming on surface details. Second, the map-
ping is inversely proportional to the current size of the sur-
face: a small surface will undergo only small displacements,
thus avoiding the user to adjust his work to the absolute size
of the object.

7.4. Modeling At Depth

Inspired by Maya’s Paint Effects depth modes [Ali04], we
provide another modeling method (alternative to the one pre-
sented above in Sec. 3.2). This method can be useful when
the user wants to avoid simply pushing or pulling vertices
while drawing over an existing surface.

With this method, existing surface vertices projected in
image space that fall into the displacement regions, are not
influenced by displacement values. Moreover, the system
computes their smallest depth value, and this value is as-
signed to the new vertices (see Fig. 8c-d). This method is
sometimes convenient to accumulate several independent
surface patches.

7.5. Frisket Masking

Inspired from the liquid masking gum of the same name, a
frisket mode is provided for masking the projection of the
existing surface on the image plane. This is very useful to

perform fine surface edits or to prevent areas of the projected
surface from being taken into account in subsequent depth
inference computations (see Fig. 8e-f).

7.6. Other Surface Editing Modes

Surface editing operations, such as surface smoothing or ver-
tex removal, are obtained using two simple algorithms. For
surface smoothing, we use a low-pass filtering of the surface
signal [Tau95]. This smoothing operation is currently avail-
able only if the user draws with a smoothing brush. How-
ever, it could be possible to apply it after each modeling se-
quence in order to automatically improve the smoothness of
the resulting surface. For vertex removal, we simply identify
vertices using an ID buffer and remove them from the three-
dimensional point set. After each of those surface editing
operations, the surface is reconstructed to take the modifica-
tions into account.

8. Results and Discussion

Results obtained with the Relief system are encouraging (see
Fig. 9). As we mentioned in Sec. 1, our system improves
over previous systems thanks to three key features. However,
our preliminary implementation has still several limitations.
We will discuss them here and review the work remaining to
be done in Sec. 9.

The computing time bottleneck of the system is the con-
struction of the three-dimensional Delaunay triangulation
mentioned in Sec. 4. In fact, the complexity of the shape re-
construction algorithms is comparable to the complexity of
the Delaunay triangulation of the point set. For example, re-
constructing a surface from 6752 points takes 1.1 s [Cha03].

Three users have used our system to create models in
different styles (compare for example the tree in Fig. 1b
and Fig. 9e), which is a good indication that the system
preserves the unique character of each user drawings. We
demonstrate the actual use of the system in an accompany-
ing video (showing the creation of the tree model displayed
in Fig. 1b).

The informal testing of our software assessed the true ben-
efits of several interface choices. For example, as opposed to
what we could have expected, most users were not disturbed
by the fact that the shading convention does not explicitly
provide the exact displacement values applied. However, we
found out two intrinsic problems with our drawing metaphor.

First, there is no continuous visual feedback: modeling
operations occur after the user has finished drawing, not at
the same time the user draws. An hybrid solution could com-
bine a “synchronous” mode, for editing existing surfaces,
as in commercial modeling systems [Ali04], and our “asyn-
chronous” mode, for creating new surfaces.

Second, it is difficult to obtain a continuous shading, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Various models obtained with Relief. In (a) and (b), top and other side views of a tree (2139 points), previously displayed in Fig. 1b.
In (c), the corresponding point set. In (d), the same tree rendered as a polyhedral surface with facet normals (in red). In (e), another tree
(1026 points), modeled in a different style than the one displayed in (a-d). In (f), an imported sphere model transformed into an elephant (3718
points). In (g) and (h), a fruit basket with a lonely banana (1310 points), rendered either as a solid surface or as a polyhedral surface with facet
normals (in red). In (i), (j), and (k), three sequences of the modeling of a lion head. In (l), the final model, rendered in wireframe.

thus a smooth surface, with discontinuous strokes. Provid-
ing other higher level drawing operations, in the spirit of
blobbing (see Sec. 7.2), could help the user easily achieve
continuous shadings.

Finally, we would like to briefly compare our point-set
surface representation based on evolving pseudo-manifold
surfaces [Cha03] with recently proposed point-set surface
representations based on Moving Least Square (MLS) sur-
faces [ABCO∗01, AK04]. In fact, both representations han-
dle arbitrary topology changes without the drawbacks of ei-
ther polygonal meshes or voxel grids, but differences be-
tween them come from the way surface points are found.

Our representation amounts to finding topologically con-
sistent surface neighborhoods, that together define an ex-
plicit surface. On the contrary, representations based on
MLS surfaces amount to fitting a predefined surface around

each point, and those local surfaces define together a global
implicit surface. In the first case, there is no local surface
model, and the resulting surface interpolates the point set.
In the second case, there is a local surface model, and the
resulting surface approximates the point set.

9. Conclusion and Future Work

We have presented Relief, a modeling by drawing tool which
strives to stay as close as possible to the traditional draw-
ing experience, while enabling the user to create three-
dimensional models. Using a shading convention relating
tone to displacement, we are able to edit existing surfaces
or to create new surface patches, while imposing the mini-
mum number of constraints either on the user drawing or on
the resulting model.

Given our current implementation, this tool is more ap-

c© The Eurographics Association 2004.



D. Bourguignon, R. Chaine, M.-P. Cani, and G. Drettakis / Relief: A Modeling by Drawing Tool

propriate for “quick and dirty” modeling than it is for pre-
cise editing. In that respect, it could be the modeling equiv-
alent of a sketchbook, which is more appropriate for raw
doodles than for polished drawings. Beyond the extensive
work remaining in improving the interface and the internal
algorithms of the system, three areas are of high interest for
future work.

First, we are aware that the point-set surface representa-
tion could be improved. In fact, we perform a full surface
reconstruction each time the point set is modified, while we
could imagine a local surface reconstruction that considers
only surface areas that have been invalidated by the last mod-
ifications. Since the reconstruction algorithm is based on the
3D Delaunay triangulation of the point set, the well-known
locality property of this data structure is a strong incentive
to investigate in this direction.

Second, we have not explored an alternative way to han-
dle thin parts (see Fig. 10a). In fact, according to the defi-
nition given in Sec. 4, three-dimensional thin parts are cou-
pled oriented facets that both meet the Gabriel criterion. Cur-
rently, when vertices are pushed or pulled, the corresponding
thin parts behave as single pieces of surface (see Fig. 10b).
However, an interesting modeling alternative would allow
the separation of thin parts into two pieces of surface, by
doubling the corresponding set of vertices (see Fig. 10c). In
some sense, this could be considered as “blowing air” in be-
tween the coupled oriented facets.

This alternative approach would influence the depth infer-
ence algorithm (see Sec. 6). In fact, since the resulting sur-
face would always be made of single-faced polygons, simple
backface culling using the graphics hardware would remove
backfacing polygons from the depth buffer, thus allowing
more intuitive depth inference. As a result, this would maybe
reduce the need for the frisket mode (see Sec. 7.5).

Third, the adaptive sampling algorithm described in Sec. 5
creates surface discontinuities at the boundaries of the drawn
shape. In order to prevent them, we could define displace-
ment regions differently by replacing the current binary map,
used for masking the displacement map, with a grayscale
map with progressive boundary attenuation. We could also
take into account in the error metric higher-order properties
of the displacement map, such as the curvature of the equiv-
alent height field.

In fact, addressing the adaptive sampling issue could in-
volve two distinct solutions, depending whether sampling
is used when editing existing surfaces, or when creating
new surface patches, connected or not to existing surfaces.
In the latter case, our image-space solution would still
be used, while, in the former case, an object-space solu-
tion [ZPKG02] could be found more appropriate, since it
would allow adaptive resampling of the existing surface ac-
cording to displacement values.

(a) (b) (c)

Figure 10: Handling thin parts. In (a), the result of the convection
process is a set of oriented edges entirely made of thin parts. Then,
vertices in the middle are pulled upward, with two possible out-
comes. In (b), the corresponding thin parts behave as single pieces
of curve (current modeling approach). In (c), the corresponding thin
parts are split into two pieces of curve, by doubling the correspond-
ing set of vertices (alternative modeling approach).
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