
Walkthroughs with Corrective Texturing
Marc Stamminger Jörg Haber Hartmut Schirmacher Hans-Peter Seidel

Computer Graphics Group
Max-Planck-Institut für Informatik

Im Stadtwald, 66123 Saarbrücken, Germany
Email:

���������	��
�����������������������������	���
��������	������
������� 
@

����
�!���#"$�����%"&���

Abstract. We present a new hybrid rendering method for interactive walk-
throughs in photometrically complex environments. The display process starts
from some approximation of the scene rendered at high frame rates using graphics
hardware. Additional computation power is used to correct this rendering towards
a high quality ray tracing solution during the walkthrough. This is achieved by
applying corrective textures to scene objects or entire object groups. These cor-
rective textures contain a sampled representation of the differences between the
hardware generated and the high quality solution. By reusing the textures, frame-
to-frame coherence is exploited and explicit reprojections of point samples are
avoided. Finally, we describe our implementation, which can display interactive
walkthroughs of fairly complex scenes including high quality global illumination
features.

1 Introduction

Photorealistic rendering has a major drawback: its performance is far from interactive.
In contrast, hardware-assisted rendering allows walkthroughs in complex environments
at interactive frame rates, but lacks the visual complexity and quality of sophisticated
global illumination solutions.

Approaches exist for pushing photorealistic rendering towards interactivity, as well
as for increasing the realism of interactive hardware-assisted visualization systems.
Both directions of research have advanced drastically over the past few years. Yet it
can be foreseen that even with the fast increase of computation power and graphics
hardware capabilities, the gap between interactive rendering and global illumination
will not vanish in the near future.

In this paper, we propose a way to bridge this gap. A scene is first rendered by
means of graphics hardware. This rendering can include global illumination effects,
e.g. shadows, but most importantly, it guarantees a certain frame rate. Although this
approximate rendering contains all geometric features of the scene (which is important
for navigation), it can in general not cover the whole range of lighting effects, as for
example multiple reflections and refractions, or complex reflection characteristics. In
the following we will refer to this rendering as the interactive solution.

More desirable, however, is a high quality solution, which is typically obtained
by ray tracing-based algorithms. Depending on the employed technique, these high
quality solutions exhibit both important and subtle global illumination effects, usually at
high computational costs. Clearly, we cannot trace every pixel in an interactive display
loop, but we can use additional computation power — in between the display of frames
or, if available, on parallel processors — to correct the interactive solution towards a
photorealistic, view-dependent image.



Fig. 1. Corrective texturing example. Left: interactive solution that can be displayed at high
frame rates. Center: high quality solution obtained by applying corrective textures that represent
the differences between the interactive solution and the high quality samples. Right: corrective
texture of the hourglass.

To this end, high quality samples are acquired asynchronously. The resulting er-
ror values, i.e. the differences between these samples and the interactive solution, are
stored in corrective textures which are mapped onto the corresponding object during
the interactive display process (cf. Fig. 1).

Using textures has three major advantages. First, corrections are restricted to the
object (or cluster) the texture is assigned to. Second, intra-frame coherence is exploited,
since the texture resolution can be adapted to match the current sample density from the
high quality solution, and a single corrective texel can affect several pixels, using the
graphics hardware for texture reprojection and filtering. Finally, inter-frame coherence
is also exploited, since the corrections will not change drastically for small camera
movements. This is why we can reuse most of the textures, and only need to adapt
some of the corrections for each new view point.

2 Previous Work

Allowing interactive exploration of high quality global illumination solutions (so-called
walkthroughs) is an important goal in many application areas (e.g. architecture, lighting
design, simulation). Two major problems have to be addressed: geometric complexity,
which is the number of geometric primitives to be processed for a view, and photometric
complexity, which is the time needed for computing the actual view-dependent appear-
ance of a surface. The latter can be split further into the local illumination computation
(called shading) and the determination of global illumination effects such as indirect
illumination.

A photometrically simple kind of a walkthrough scene consists of purely diffuse
polygonal objects, e.g. the solution of a hierarchical radiosity computation [3]. Since
the appearance of the objects does not depend on the viewpoint, this kind of scene can
be rendered at high frame rates using off-the-shelf graphics hardware.

Unfortunately, the number of polygons the graphics hardware can render at a certain
frame rate is limited. Geometry-based or image-based level-of-detail (LOD) techniques
can be used to reduce the polygon count. Impostors [14, 19, 5, 21], for example, replace
a number of distant objects by a single textured polygon. The impostor assignment has
to take into account the depth range and apparent size of the objects. LOD techniques
generally only take into accound geometric properties and not photometric features.



Another way of increasing the frame rate for rendering is given by techniques like
post-rendering 3D warp [16, 15]. Here the display process generates additional in-
between frames by reprojecting from neighbouring images. However, only a relatively
small speedup is achieved and a number of warping artifacts are introduced.

A variety of methods exists for computing high quality non-diffuse global illumi-
nation effects, see for instance [8] for a good overview. Since most of them perform a
large number of view-dependent computations and trace light paths through the scene,
these algorithms require computation times which are far from interactive frame rates.
Several techniques have been proposed that decouple view-independent (e.g. diffuse)
and view-dependent (e.g. specular, glossy) global illumination effects and employ some
kind of multi-pass global illumination technique [25, 12, 22, 23, 13]. Despite a consid-
erable speedup, most of these methods are still not fast enough for interactive use.

With increasing bandwidth and additional features in todays graphics hardware,
more and more high quality shading effects can be computed at interactive frame rates
using multi-pass OpenGL rendering. This includes different types of shadows, specular
and glossy reflections on planar and curved objects, sampled approximations of arbi-
trary reflection functions, and bump maps and normal maps [20, 17, 6, 10, 2, 26, 1].
Each of theses techniques solves a very special subset from the broad range of lighting
effects, and it is not always obvious how to combine them all. Usually a number of con-
straints are imposed on the scene, e.g. number and shape of light sources and reflectors,
distance between objects and the reflected environment, and so on.

Finally, some viewing applications perform massively parallel computations, some-
times loosely coupled with a progressive display process [18, 29]. Udeshi and Hansen
use a combination of hardware-assisted techniques for shadow and indirect lighting,
plus ray tracing for specular objects [24]. They exploit both parallel CPU power and
parallel graphics pipelines, and reuse results from the hardware-assisted rendering for
speeding up the software ray tracing step.

Walter et al. [27] describe a fully decoupled display process, the so-called render
cache, which maintains and reprojects the current set of samples and replaces outdated
samples by newer ones from the ray tracing clients using a sophisticated importance-
weighted, diffusion-like sampling strategy. The render cache can be used for nearly
any kind of per-pixel global illumination computation. The down side of this is that
during camera motion, a large fraction of the pixels appear as black holes, as long as no
information is available for them from the ray tracing processes. The work presented
in this paper was motivated by the results of the render cache. Our goal was to build a
similar system, that avoids these warping holes by rendering the scene in hardware with
full geometric detail, and adding the lighting obatined by ray tracing.

3 Corrective Texturing

Corrective texturing provides a means for refining an approximate, interactive solution
with corrective samples obtained from a high-quality global illumination computation.
In our approach, we maintain a set of textures that represent the difference between
those two computations. The corrective textures are updated through an adaptive and
lazy sample tracing. The actual display process draws the approximate interactive so-
lution, augmented by the corrective textures.
Our method consist of several collaborating tasks that are sketched in Figure 2:

� the sample clients deliver high quality samples using a ray tracing-based ap-
proach;



sample client
�

...

sample client �

master

textures

camera

display

Fig. 2. The main components of our rendering system. The master task keeps track of the
camera movements and requests high quality samples from the sample clients. Furthermore, it
inserts the resulting samples into the textures which are used by the display task for correcting
the approximate solution.

� the master task adaptively requests and collects the samples, and assigns, creates,
and updates the corrective textures;

� the display task renders the hardware-accelerated fast approximation of the scene
and applies the corrective textures.

The master task uses an adaptive scheme to request high quality ray samples in image
regions where the error of the current scene rendering is probably large. It processes
the data returned from the tracing clients and finds the texture assigned to the sample’s
corresponding scene point. Next, it computes the error of the currently displayed value
with respect to the high quality sample and splats the corresponding correction into the
texture. The texture resolution is adapted to the chosen sample density, and textures are
assigned to scene objects or clusters based on their appearance in the current view. The
master also “ages” the texels with respect to the amount of camera movement, so that
fresh samples replace older ones.

3.1 Why Textures?

The corrective textures are used to spread corrections across several pixels within the
same frame (intra-frame coherence), as well as for reusing the same corrections in fur-
ther frames until fresher samples are acquired (inter-frame coherence). Our approach
of using textures brings along advantages over approaches like the render cache [27],
which stores point samples that have to be reprojected and splatted for every frame.

First, the performance of our rendering process is almost independent of the screen
resolution due to the use of hardware texture mapping. A single corrective texel can
affect several pixels through the use of hardware-assisted texture reprojection and fil-
tering.

Second, we remove the problem of holes in the displayed image caused by under-
sampling and missing information. The interactive solution visualizes all geometric
features of the scene, and the corrective textures always map a dense set of corrections
onto the objects. By using separate textures for different objects, these corrections are
restricted to the object boundaries. This guarantees that the corrections will not be
mapped onto the wrong object, as it can occur with warping approaches if the visibility
situation changes. However, this also requires a well chosen hierarchy for the texture
assignment (see below).

Third, we can afford to splat new samples adaptively into their corrective texture and
to blend the new samples with their neighbours, resulting in visually pleasant, smooth
textures. These relatively expensive operations cannot be employed if the point samples



have to be reprojected and splatted for every new frame as in warping-based display
algorithms. Furthermore, the texture resolution can be adapted to match the density of
the high quality samples.

3.2 Texture Projection

We use two different modes for applying textures to their associated scene objects,
both based on texture projection. Projective texture mapping [20] projects the texture
onto the specified scene objects from some virtual point or direction (for perspective or
parallel projections, respectively). The projection can either be attached to the object’s
coordinate system (object-local) or to the current camera system (camera-local).

For flat objects, i.e. objects with only slightly varying normal, we use object-local
parallel projection along the surface normal. By this, we have a simple automatic way
to parameterize entire object groups (e.g. many triangles in a mesh). Because of the
object-local projection, the texture is “glued” onto the object. This means that view
independent corrections (e.g. caustics on diffuse surfaces) are reprojected correctly into
novel views.

If the textured object is not flat or not even convex, an object-local projection leads
to serious problems, since any texel may map to multiple scene points, and surfaces
parallel to the projection direction are undersampled.

Instead, for such non-flat objects as well as for object clusters we employ a camera-
local texture projection. By placing the center of projection into the current eye point,
ambiguity problems are avoided completely. Only visible parts of the scene are as-
signed corrective samples (which makes the mapping bijective), and one single texture
is sufficient per object. We define our texture mapping by projecting a bounding vol-
ume of the object into camera space and then using its bounding rectangle on the image
plane as the valid texture coordinate domain. This is a sheared perspective transfor-
mation which can be applied by the graphics hardware. Furthermore, for camera-local
textures we can easily adjust the texture sampling rate to match that of the image.

Our texturing approach shares some ideas with image impostor methods [14, 19],
but instead of replacing an object cluster by a single textured polygon, we augment
the original geometry and appearance by a photometric correction texture. Note that
the two approaches fit together well, allowing photometric corrections on simplified
geometry.

The drawback of camera-local projection is that it changes with the view point,
which means that the texture floats in front of the object rather than sticking onto it.
If the object is concave, the correspondence between texel and surface point can even
be discontinuous. This is weakened by the fact that typical camera movements in a
walkthrough application only lead to a very small texture flow. Furthermore, this kind
of artifact mainly affects clusters close to the viewer. Such clusters, however, tend to be
split and textured on a lower level (see next Section 3.3).

3.3 Texture Assignment

Textures are not only assigned to single geometric primitives, but also to composite
scene objects and object clusters, e.g. provided by spatial subdivision schemes and the
scene’s modeling hierarchy.

The assignment of textures to scene nodes is adapted on the fly for each novel
view point by traversing the scene hierarchy top-down and verifying the validity of the
current allocation. The observed motion of a point depends on that point’s distance to



the camera, so different parts of the object move in a different way (parallax effect).
Using a single image-plane texture would cause the texture to float on the geometry.

To avoid this artifact, we estimate the parallax effect by computing the depth range�
� of the textured object in relation to its distance � to the viewer. An object is assigned

a single texture if
�

��������� , with � being a parallax threshold. In our tests, values of�
	��� ������� � led to parallax distortions that were hardly visible. The threshold is
used to control the number of allocated textures, which is reduced further by simple
visibility frustum culling. Figure 5 depicts the textures assigned to various objects on a
table, with a constant threshold of ��	��� � .

Also the projected size of the object can be included into this test. In this way,
also for a large object with no parallax artifacts several textures will be assigned. If the
sample density is strongly varying over the object, the texture resolutions can thus be
selected separately for different parts of the object (see below).

Building a proper hierarchy for this process is a difficult problem on its own, which
has a large impact on the quality of the results. We use the modeling hierarchy for this
purpose or a modified hierarchical bounding volume method that does not only consider
spatial criteria, but also material properties.

3.4 Sample Insertion

Every texture contains color correction values
�����

which approximate the difference
between the high quality solution

���
and the basic interactive solution

����
:
�������

����� � ��
. When a new sample is to be inserted, it should affect a certain texture area

rather than a single texel, because we assume some amount of spatial coherence of the
approximation error. Ideally, the sampling density determines how far the correction
is spread. Therefore we restrict the splat region of a sample to its cell in a Voronoi
diagram of the sample points on the texture.

This can be achieved rather easily by an approach similar to the discrete Dirichlet
domain creation described in [11]. Every texel ! is assigned a validity value " � , which
is basically the negative distance of the texel to the sample that is responsible for the
texel’s value. If we want to insert a new sample, the corresponding texel is inserted with
maximum validity 0. Then neighbored texels # with distance � are examined. If the
validity of # is smaller than

� � , the texel gets replaced with the new, more appropriate
sample and new validity

� � . This is continued for growing distances � until for one
neighborhood ring no texel could be updated. We call the radius of the last updated
ring splat radius � . Blending between new and old values according to their respective
validity smoothes out harsh boundaries between the splats. Figure 3 shows an example
obtained by splatting 20 and 100 samples into a texture.

3.5 Texel Aging

In addition to this purely distance-based splatting criterion, the age of the existing texels
has to be taken into account. To avoid updating every texel for each new view point, ev-
ery texture has one current global maximum validity value "�$&%�' . The validity/distance
values for inserting new texels start with "($&%�' rather than � at the sample’s center texel,
so that newer texels gain priority over the rest of the texture.

If the camera changes, "($&%�' is modified accordingly. The offset reflects both the
texture flow appearing for projected textures and an estimated possible change of the
correction due to the new viewing directions. The first is zero for object-local projec-
tions. For floating projections, it is estimated by the ratio of the visual depth over the
distance to the viewer. The latter is estimated by the maximum change of the object’s



Fig. 3. Sample insertion: Splatting 20 (left) and 100 (center) samples into a texture using our
validity measure. Right: reference solution containing exactly one sample per texel.

BRDFs. We use heuristics for combining these two. This way glossy surfaces age
quickly, whereas textures on diffuse objects with fixed textures do not age at all, and
the samples remain valid for all possible new view points.

3.6 Texture Resolution

The average splat radius of the last samples inserted into a texture is a valuable hint
about the relation between sample density and texture resolution. If the radius is large,
the texture resolution is probably too high compared to the number of samples. As a
result, inserting a single sample is expensive. On the other hand, a very small average
splat radius indicates that the texture resolution is too low, so information gets lost if
two samples share one texel.

After each sample insertion, we test the average of previous splat radii against a
lower and an upper threshold value. If one threshold is exceeded, the resolution of
the texture is increased or decreased by a factor of two. This way, the initially coarse
textures become finer the higher the density of the received samples is. If the splat size
increases again, for example after aging (cf. Sec. 3.4), this indicates that there is no
high frequency detail in the texture, and so the resolution is decreased again to speed
up the splatting process. For those textures mapped into the image plane directly (cf.
Sec. 3.2), the maximal texture resolution can be derived from twice the sampling rate of
the the screen. By using bilinear interpolation for texture refinement and box filtering
for texture coarsening a smooth transition between the resolution levels is obtained.

3.7 Adaptive Sample Acquisition

For acquiring the necessary high quality samples at a reasonable rate, it is imperative to
use an adaptive scheme that focuses on image regions with large error. It is important
to account for the present approximate correction value

�����
. Therefore we measure

the error
� ��� 	 ������� ������ �������

, which is the difference of the high quality sample���
and the value of the currently displayed and corrected pixel

����	� �����
. Note that in

this step we have to check whether the object visible through that pixel is the same in
the interactive and in the high-quality solution. In order to converge against the desired
solution, the sampling scheme must make sure to cover all pixels of the image if the
user stands still long enough.

The heart of the master process is a priority queue that contains sampling requests,
sorted according to their anticipated importance for an improved solution. Each request���

in this queue contains a sampling direction, a domain radius 

�
, which denotes the

size of the image domain this request represents, and its priority value.



The queue is initially filled with several requests of high priority which are uni-
formly distributed over the image. The domain radius of these requests is given by their
average distance. Then the master iteratively removes the sampling request with the
highest priority from the queue and sends it to the sample tracer(s). The new correction
value

�����
gets splatted into the appropriate texture.

After request
���

has been processed
completely, we generate a number of

�

child requests that cover the affected do-
main more densely. The domain radius 
��
of such a next-generation request � is set
to 

� � � �

, since the domain area is in-
versely proportional to the number of re-
quests. The product of the parent’s cor-
rection error

� �
and the new radius 
��

yields the new priority for request � . If
this priority is too small, the request is
discarded, otherwise it is inserted into the
priority queue.
For each frame, a number � sig of the most
significant samples are memorized sep-
arately, where the sample’s significance
is determined by its correction error

� �
alone. Each time the camera changes,
these significant samples are reprojected
into the novel view and added to the pri-
ority queue as requests (cf. Fig. 4) with
high priority. Thus the sampling is di-
rected into regions exhibiting large errors
in the previous frame.
If the queue has been processed com-

start

add � glob global requests

process & update request queue

camera changed?

y

clear request queue

add � sig significant samples

n

Fig. 4.: The sampling process adds global requests and
processes the request queue as long as the user stands
still. If the camera moves, some significant samples
from the previous frame are reused to yield a faster up-
date in visually important regions.

pletely, new randomly positioned global requests with high priorities are inserted with
the goal to detect new features that require correction.

If the camera stands still long enough, every pixel of the image finally corresponds
to the value of the high-quality solution. We use a mask of sampled pixel positions
to immediately discard new requests belonging to already sampled pixels. So after a
region is sampled at image resolution, the sampling also spreads to less erroneous parts
of the image. If most pixels of the image are covered, the sampling process creates a
special queue containing the remaining pixels, thereby avoiding to spend too much time
on finding free pixel positions for the last few requests.

4 Implementation

4.1 Interactive and High Quality Solutions

In our implementation we display the result of a hierarchical radiosity preprocess as the
interactive solution, which can be rendered at high frame rates by the graphics hardware.
It contains soft shadows, but completely lacks effects like glossy highlights, mirroring,
and refraction.

For the high quality samples, we use standard distributed ray tracing [4], i.e. at non-
diffuse surfaces an eye ray spawns several reflection rays which are traced recursively



up to a user defined depth. Illumination due to area light sources is computed by casting
stochastic shadow rays.

For each high quality sample, the difference to the interactive solution is required.
Unfortunately, reading back the frame buffer content is still a fairly expensive operation
on almost all current graphics platforms. To avoid this step, we compute the difference
value for each high quality sample by performing the Gouraud interpolation of the
radiosity value in software.

Using the above setting reveals an interesting effect. Because we use Monte-Carlo
sampling for the area light sources in the high quality solution, the penumbra regions
are noisy and mostly less accurate than in the radiosity solution. Especially the noise in
the “reference” solution imposes severe problems, because it is considered as fine detail
in the illumination. As a result, many high quality samples are wasted to capture this
supposed detail. Furthermore, the splatting of the noisy corrections produces visually
unsatisfactory results, unless the entire penumbra is sampled densely.

The first solution is to increase the number of shadow rays, which works well,
but has to be bought by more expensive high quality samples. For performance crit-
ical scenes, we solve the problem differently: The high quality ray tracing step itself
reuses the diffuse components computed in the radiosity precomputation and only com-
putes specular reflection additionally. This implies that the radiosity solution is precise
enough. Furthermore, with this combination it can be guaranteed that all corrections
are positive, which speeds up hardware rendering significantly on some platforms (see
Sec. 4.3).

4.2 Parallelization

We have tested our implementation of the components sketched in Figure 2 on several
different machines running under either IRIX or Solaris. In our computing environ-
ment, we use a single-processor ����� Octane (MIPS R12000) with hardware-supported
texture mapping (EMXI graphics board) as the display process host. The master process
and the ray tracing processes run on either a cluster of ����� workstations connected to a
common 100 MBit-Ethernet, or on a Sun Enterprise 10000 server with 8 available pro-
cessors and shared-memory communication. The communication between the master
process and the ray tracers is implemented using the Message-Passing Interface [9] for
both the cluster and the shared-memory approach. Due to the lack of interoperability
between different vendor implementations of MPI, we use a standard UNIX protocol
and sockets for the communication between the master and the display process. This
communication is mostly unidirectional: only upon camera movement, a message con-
taining the new camera parameters has to be sent from the display process to the master.
The master process, on the other hand, sends all the ray traced samples along with their
texture coordinates to the display process.

4.3 Texturing

The corrective texturing has been implemented through the basic blending functions
provided by OpenGL. More specifically, we use an additional blending equation pro-
vided by the ���	��
� ��� ��������� OpenGL extension. This approach requires the scene
to be drawn three times: first with the original color and texture, a second time for
adding positive correction values, and a third time for subtracting corrections where the
approximation appears too bright. While this method runs on all contemporary ����� ma-
chines, it has of course the drawback of requiring three rendering passes of the scene.
If the interactive solution and the high quality solution are selected appropriately (see



above), all corrections will be positive, so the third pass can be omitted. Some newly
available graphics boards such as the

�����������
GeForce system support multi-texturing

with general combiner functions. In that case the entire rendering, including additive
and subtractive correction, only requires a single rendering pass, and should allow con-
siderably higher frame rates.

5 Results

To test our implementation, we have created several scenes of different geometric com-
plexity. The number of geometric primitives (i.e. the objects our ray tracer can handle
as entities) in our test scenes varies between 3,500 and almost 60,000. The correspond-
ing number of triangles generated by our hierarchical radiosity algorithm lies between
15,000 and 415,000. All our test scenes contain several photometrically complex mate-
rials with properties such as anisotropic reflection [28], perfect mirroring, and refractive
transmission.

We displayed the scenes on a single processor ����� Octane R12000 with EMXI
graphics board at a resolution of 1024 � 1024 pixels. The master process and the sample
clients ran on a remote Sun Enterprise 10000 with 8 processors available (cf. Sec. 4.2).
Our ray tracer uses BSP trees [7] for spatial subdivision and distributed ray tracing [4]
for light rays and reflection rays.

Using all of the 8 processors on the Sun we were able to move through our scenes
at a frame rate of 1.5–5 fps. The lower frame rate is achieved for our most complex
scene with 4,000 samples being traced and splatted within each frame, while the higher
frame rate corresponds to 1,000 samples per frame and our simplest scene. As soon as
the camera stopped moving, the displayed images started converging at a frame rate of
2–6.5 fps.

The percentage of time for rendering, sampling and texture update (splatting the
samples, refining and coarsening) within each frame depends heavily on the complexity
of the scene and the number of ray traced samples. As long as the geometric complexity
of the scene is not too high, the balance of rendering : sampling : texture update is about
30:60:10 for 1,000 samples and 10:70:20 for 4,000 samples. For our most complex
scene we obtained a balance of 60:30:10 for 1,000 samples and 35:50:15 for 4,000
samples.

The convergence of our method is visualized in Figure 6. Starting from a radiosity
solution, more and more samples are traced and added into the corrective textures. The
last image in this series is visually almost identical to a fully converged image. Note
that our ray tracer can handle shadows of transparent objects and therefore brightens
the dark shadow of the glass from the radiosity solution.

In Figure 7, the same scene is first rendered from a a particular point of view. Then
the view changes without updating the corrective textures. The next image has been
generated after tracing 10,000 new samples. The distribution of these new samples is
visualized in the last image. One can clearly see that most of the samples concentrate
on the image regions where the error is large.

During an interactive session, the displayed solution can suffer from texture update
artifacts. Especially corrective textures that change rapidly with a new view point (for
instance on mirroring or refractive objects) need to be updated with quite a few samples.
If not enough time is available for acquiring these samples, flickering in the textures
becomes visible. Similar effects appear if small lighting details are missed by the initial
samples. Such effects then suddenly pop up later on, when they are hit by accident.



6 Conclusions and Future Work

We presented a technique for augmenting hardware-accelerated rendering by results
obtained from expensive pixel-based ray tracing methods. The corrections are applied
to the objects through textures that are continuously adapted during a walkthrough. By
this, we always have full geometric detail, whereas the richness of lighting depends on
the available additional computation power. We thus blend between the interactive and
the high quality solution. In the worst case, the user sees the interactive solution, but
the more computation power is available, the closer we get to the desired high quality
solution.

With our resulting system we achieve good frame rates, but if not enough com-
putation power is available and the sampling is too coarse, the lighting still changes
visibly. After rapid view changes, it takes about one second until the lighting converged
visually, so that later corrections are still noticable, but subtle.

Our method is in the spirit of the render cache or the Holodeck. However, we
additionally exploit graphics hardware, and only spend additional computation power
where the hardware-based solution is erroneous. Working with this approach revealed
several benefits, but also some limitations.

One major feature is that we can incorporate arbitrary interactive lighting algorithms
and exploit the high pixel fill rates from graphics hardware. In contrast to previous
approaches, we removed the need of reprojecting samples and filling holes manually.
From this point of view, our method is well suited for high screen resolution as long as
the graphics hardware supplies sufficiently high frame rates. On the down side, for some
interactive rendering methods our approach forces a frame buffer read-back, which is
expensive for technical reasons.

In our implementation, we avoid reading the framebuffer by recomputing the frame-
buffer values for desired samples on the fly. For more sophisticated interactive render-
ing methods this is probably not feasible. For complex test scenes with about half a
million polygons, the interactive rendering time becomes the limiting factor in our im-
plementation. However, this limit could be pushed a lot using more recent graphics
hardware (fewer rendering passes), and an improved rendering method (e.g. visibil-
ity/occlusion culling). We also did not yet integrate more elaborated interactive render-
ing techniques, e.g. geometric level-of-detail methods, or multi-pass OpenGL rendering
for special lighting effects.

References

1. R. Bastos, K. Hoff, W. Wynn, and A. Lastra. Increased photorealism for Interactive Ar-
chitectural Walkthroughs. In 1999 Symp. Interactive 3D Graphics, pages 182–190, April
1999.

2. B. Cabral, M. Olano, and P. Nemec. Reflection Space Image Based Rendering. In Computer
Graphics (Proc. SIGGRAPH ’99), pages 165–170, August 1999.

3. M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Synthesis. Academic Press,
London, 1993.

4. R. L. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. In Computer Graphics
(Proc. SIGGRAPH ’84), pages 137–145, July 1984.

5. X. Decoret, G. Schaufler, F. X. Sillion, and J. Dorsey. Multi-Layered Impostors for Acceler-
ated Rendering. In Computer Graphics Forum (Proc. Eurographics ’99), volume 18, pages
C61–C72, September 1999.

6. P. J. Diefenbach and N. I. Badler. Multi-pass Pipeline Rendering: Realism For Dynamic
Environments. In 1997 Symp. Interactive 3D Graphics, pages 59–70, April 1997.



7. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible Surface Generation by a priori Tree
Structures. In Computer Graphics (Proc. SIGGRAPH ’80), pages 124–133, July 1980.

8. A. S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, San
Francisco, CA, 1995.

9. W. Gropp, E. Lusk, and A. Skjellum. Using MPI — Portable Parallel Programming with the
Message-Passing Interface. The MIT Press, Cambridge, MA, 1994.

10. W. Heidrich and H.-P. Seidel. Realistic, Hardware-accelerated Shading and Lighting. In
Computer Graphics (Proc. SIGGRAPH ’99), pages 171–178, August 1999.

11. K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast Computation of General-
ized Voronoi Diagrams Using Graphics Hardware. In Computer Graphics (Proc. SIGGRAPH
’99), pages 277–286, August 1999.

12. D. S. Immel, M. F. Cohen, and D. P. Greenberg. A Radiosity Method for Non-Diffuse
Environments. In Computer Graphics (Proc. SIGGRAPH ’86), pages 133–142, August 1986.

13. D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse synthetic scenes. In
Eurographics Rendering Workshop 1998, pages 301–314. Springer Wien, June.

14. P. W. C. Maciel and P. Shirley. Visual Navigation of Large Environments Using Textured
Clusters. In 1995 Symp. Interactive 3D Graphics, pages 95–102, April 1995.

15. Y. Mann and D. Cohen-Or. Selective pixel transmission for navigating in remote virtual
environments. volume 16, pages 201–206, 1997.

16. W. R. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D Warping. In 1997 Symp.
Interactive 3D Graphics, pages 7–16, April 1997.

17. E. Ofek and A. Rappoport. Interactive Reflections on Curved Objects. In Computer Graphics
(Proc. SIGGRAPH ’98), pages 333–342, July 1998.

18. S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. Smits, and C. D. Hansen. Interactive Ray
Tracing. In 1999 Symp. Interactive 3D Graphics, pages 119–126, April 1999.

19. G. Schaufler. Dynamically Generated Impostors. In Proc. GI Workshop MVD’95, pages
129–136, November 1995.

20. M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli. Fast Shadows and
Lighting Effects Using Texture Mapping. In Computer Graphics (Proc. SIGGRAPH ’92),
pages 249–252, July 1992.

21. J. W. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hierarchical Image
Caching for Accelerated Walkthroughs of Complex Environments. In Computer Graphics
(Proc. SIGGRAPH ’96), pages 75–82, August 1996.

22. F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A Global Illumination Solution
for General Reflectance Ditributions. In Computer Graphics (Proc. SIGGRAPH ’91), pages
187–196, July 1991.

23. W. Stürzlinger and R. Bastos. Interactive Rendering of Globally Illuminated Glossy Scenes.
In Proc. 8th EG Rendering Workshop, pages 93–102, 1997.

24. T. Udeshi and C. D. Hansen. Towards Interactive, Photorealistic Rendering of Indoor Scenes:
A Hybrid Approach. In Proc. 10th EG Rendering Workshop, pages 63–76, June 1999.

25. J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A Two-Pass Solution to the Rendering
Equation: A Synthesis of Ray Tracing and Radiosity Methods. In Computer Graphics (Proc.
SIGGRAPH ’87), pages 311–320, July 1987.

26. B. Walter, G. Alppay, E. P. F. Lafortune, S. Fernandez, and D. P. Greenberg. Fitting Virtual
Lights for Non-Diffuse Walkthroughs. In Computer Graphics (Proc. SIGGRAPH ’97), pages
45–48, August 1997.

27. B. Walter, G. Drettakis, and S. Parker. Interactive Rendering using the Render Cache. In
Proc. 10th EG Rendering Workshop, pages 27–38, June 1999.

28. G. J. Ward. Measuring and Modeling Anisotropic Reflection. In Computer Graphics (Proc.
SIGGRAPH ’92), pages 265–272, July 1992.

29. G. Ward Larson. The Holodeck: A Parallel Ray-Caching Rendering System. In Proc. 2nd
EG Workshop on Parallel Graphics and Visualization, pages 17–30, September 1998.



Fig. 5. Adaptive texture assignment according to the relative depth range of scene objects ac-
cording to the depth range of the objects.

Fig. 6. A radiosity solution (left) is corrected towards a ray tracing solution using 5,000 (0.48 %),
and 20,000 (1.9 %) ray tracing samples (center and right).

Fig. 7. Exploitation of frame-to-frame coherence: The top left view is obtained with corrective
textures. By moving the camera without updating the textures, the top right image is obtained.
The bottom left image shows the same view after shooting 10,000 samples (0.95 % of all pixels),
the distribution of which is visualized in the bottom right image.


