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Abstract

Realistic modeling of reverberant sound is crucial in 3D virtual
worlds, providing users important cues for localizing sound sources
and understanding the geometric and material properties of the en-
vironment. Unfortunately, current geometric acoustic modeling
systems do not accurately simulate reverberant sound. Instead,
they model only direct transmission and specular reflection, while
diffraction is either ignored or modeled through statistical approx-
imation. However, diffraction is extremely important for correct
interpretation of acoustic environments, especially where the direct
path between sound source and receiver is often occluded.

The Geometrical Theory of Diffraction (GTD) extends geomet-
rical optics with diffraction phenomena. When a ray hits a wedge, it
produces diffracted rays. Thus, wedges become secondary sources
of diffracted rays that in turn may be reflected and diffracted.
In this paper, we extend earlier beam-tracing methods to include
diffraction, using the GTD for deriving secondary diffracted rays
and associated diffraction coefficients. Our main contributions are:
1) a beam tracing algorithm that uses adjacencies stored in a spatial
subdivision to find diffracting edges and trace diffraction beams;
2) a method for computing reverberation paths, incorporating spec-
ular reflection, transmission, and diffraction; and 3) a real-time au-
ralization system demonstrating that diffraction improves dramati-
cally the audio quality in virtual environments.

Keywords: Spatialized Sound, Sound Visualization, Virtual Envi-
ronments, Geometrical Theory of Diffraction, Beam Tracing.

1 Introduction

Realistic modeling of the acoustic environment is of crucial impor-
tance when a user is immersed in a 3D virtual world. Reverber-
ant sound provides important cues of its dimensions and material
properties. In a large cathedral we expect significant reverberation,
while in a small room with lush carpeting and heavy drapes we
expect a ”dry” sound. Furthermore, we depend on accurate spatial-
ization to locate the direction and position of a sound source and
to get a sense of immersion [4]. Unfortunately, current geometri-
cal acoustic modeling techniques fail to accurately simulate sound
in complex virtual environments because they do not account for
diffraction effects except by crude approximations.

Figure 1: Sketch in Newton'sPrincipia (1686)illustrating the con-
cept of diffraction. The wave propagating through the apertureBC
is going to “illuminate” regions lying in the geometrical shadow
regions from the sourceA (above lineBP and below lineCQ).

Diffraction is a form of scattering by objects whose size is of
the same order of magnitude as the wavelength of the wave phe-
nomena. Usually neglected for lighting simulation, diffraction is a
fundamental aspect of sound propagation, because the wavelength
of audible sound is in the range from 0.02 to 17 meters. Without
accurate modeling of diffraction around occluding surfaces, we ex-
perience abrupt changes in the simulated sound as we turn a corner
and the sound source disappears from the line of sight. By adding
diffraction, the transition appears smooth. Furthermore, in densely
occluded situations, the first wavefront reaching the listener, fun-
damental for sound localization, is generally a diffracted wave [4].
Thus, accurate modeling of diffraction is extremely important, es-
pecially in building interiors and urban environments where the di-
rect path between a sound source and the receiver is often occluded.

Historically, diffraction has been modeled separately from re-
flection since it was not described by the classical ray theory of
wave propagation [5]. It was only in 1962 that Keller proposed the
Geometrical Theory of Diffraction (GTD) [20], which extends ge-
ometrical optics to include diffraction phenomena. It treats wedges
(an edge and its two adjacent surfaces) of the model as secondary
sources of diffracted rays, that can propagate into the shadow re-
gions (Figure 1), and that in turn can be reflected and diffracted
before reaching the receiver.

We propose an efficient way for generating diffraction paths pro-
duced by wedges in complex polyhedral models. There are three
major contributions in the paper. The first is an extension to the
beam tracing algorithm introduced in [12, 13], using adjacencies
stored in a spatial subdivision to quickly find diffracting edges and
trace diffraction beams originating from these edges. Second, we
derive a method for computing reverberation paths, incorporating
specular reflection, transmission, and diffraction according to the
GTD. Finally, we describe a real-time auralization system that pro-
duces realistic sound during interactive walkthroughs in complex
environments.

We demonstrate that 1) beam tracing is an efficient way to find
diffraction sequences in densely occluded environments for moder-
ate number of diffraction events, 2) it is possible to construct cor-
responding propagation paths in real-time, and 3) diffraction im-
proves dramatically the audio quality in virtual environments. To
our knowledge, this is the first time the GTD is used for sound ren-
dering and the first time it is used in combination with specular
reflections to produce sound at interactive rates in a complex rever-
berant virtual environment.
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Figure 2: Overview of our approach: (a) Virtual environment with sourceS, receiverR, and spatial subdivision marked in pink. (b) Sample
reflected and diffracted beam (cyan) containing the receiver. (c) Path generated for the corresponding sequence of faces (green), portals
(purple), wedges (magenta). (d) The procedure repeated for all beams containingR.

2 Previous work

There are three major theories for solving diffraction problems: the
Huygens-Fresnel diffraction theory, boundary integral representa-
tions using the Helmoltz-Kirchoff integral theorem, and the Geo-
metrical Theory of Diffraction.

According to Huygens' construction, every point on a wavefront
can be regarded as a source of a secondary disturbance (a spher-
ical wavelet). The wavefront is at any instant defined by the en-
velope of these wavelets. Fresnel supplemented this principle by
adding interference between the wavelets to treat diffraction phe-
nomena [5]. He also defined a subdivision of space between the
source and the receiver into concentric ellipsoids with frequency-
dependent radii: the Fresnel ellipsoids. By modeling diffraction
effects as a loss in signal intensity, Bertoni [3] and Tsingos and
Gascuel [38] used Fresnel ellipsoids to determine relevant obstacles
at any given frequency. By replacing the binary geometrical visi-
bility by an extended visibility term between 0 and 1, they achieve
frequency-dependent sound “muffling”. This removes abrupt cuts
in simulated sound, producing more pleasing sound. However, such
simulations are very crude approximations, limited to direct sound
attenuation.

The Helmoltz-Kirchoff integral theorem is a formalization of the
Huygens-Fresnel principle [5, 9]. It expresses the scattered field
at any point in space as a function of the field on the surface of the
diffracting objects. Mathematically, it can be expressed as a surface
integral and solved by numerical methods such as Boundary Ele-
ment Methods (BEM) [16, 18] that discretize surfaces into patches.
BEM allow for very accurate treatment of sound diffraction but are
far too compute intensive for interactive sound rendering. More-
over, the extent of the patches must be less than the wavelength
to obtain correct interference effects. In some cases the integral
can be solved analytically [35], such as for height fields or periodic
surfaces, assuming the listener remains far (compared to the wave-
length) from diffracting surfaces. However, in the case of virtual
environments, neither of these assumptions is usually valid.

The Geometrical Theory of Diffraction (GTD) incorporates
diffraction effects into the ray theory of light [20]. The wedges
of the model act as secondary sources and generate new diffracted
rays. Each diffracted ray is attenuated by a diffraction coefficient in
the same way a reflected ray is attenuated by a reflection coefficient.
As for reflected rays, diffracted rays follow Fermat's principle: if
the propagation medium is homogeneous, the rays follow the short-
est path from the source to the receiver, stabbing the diffracting
edges. Thus, incident and diffracted rays make equal angle with the
edge direction.

GTD has been applied successfully in acoustics for solitary
wedges [24, 32, 17]. In particular, Kawai shows that it gives good
agreement with measurements for noise barrier assessments [19].
In such applications, a simple geometric model is sufficient and
audio rendering is not required. Moreover, most sound barrier sim-

ulations are limited to non-reverberant spaces and do not combine
effects of reflected and diffracted sound, or do so for only one sur-
face (when ground effects are taken into account). For virtual envi-
ronments, we are interested in treating complex reverberant spaces
for which both reflected and diffracted sound is crucial.

In general polyhedral environments, finding diffracted paths is
closely related to finding the shortest 3D Euclidean path avoiding
a set of obstacles. Unfortunately, this well-known motion planning
problem is NP-hard [6] and has no straightforward solution. For ra-
dio wave propagation, Rajkumaret al. [34] proposed a ray-tracing
technique using the GTD in which diffracted rays are broadcast
when a ray “intersects” an edge. This approach is prone to alias-
ing due to difficulties in detecting intersections between rays and
edges, which are both infinitely thin. “Thick” rays must be used to
avoid this, leading to other types of sampling errors [27].

Beam tracing is also used for radio wave propagation by [21],
who find the ray/edge intersections without sampling errors, but
simulate edge diffraction by a set of point sources along the diffract-
ing edge. To reduce spatial aliasing, multiple overlapping beams
must be broadcast from the edges. The complexity in managing
the large number of diffracted beams precludes this method from
real-time applications. However, beam tracing has been shown to
be well suited for real-time applications [12, 13], particularly in ar-
chitectural environments. But, beam tracing needs to be extended
to include non-point sources, in particular edge sources, to model
diffractions correctly.

3 Overview of our approach

Our approach extends the beam tracing algorithm described in
[12, 13] to incorporate diffraction. It is decomposed into four
phases (see Figure 2). First, we precompute a spatial subdivision
data structure to be used for efficient space traversal. Second, we
trace conservative beams inside this structure to find possible prop-
agation sequencesfrom a source to a receiver. Third, from the list of
all possible sequences, we compute the valid 3D propagation paths.
Finally, we evaluate the contribution of every path to the impulse
response and render the audio accordingly.

However, each of the four phases is substantially different from
Funkhouser's work: 1) spatial subdivision must be extended to in-
corporate spatial adjacency information in order to retrieve diffract-
ing wedges efficiently, 2) beam tracing must be extended to handle
diffracted beams following the Geometrical Theory of Diffraction
(GTD), with an edge span as a single source to avoid broadcasting
multiple beams, 3) propagation paths can no longer be constructed
with simple methods previously used for specular reflections, but
require an optimization process. Finally, 4) for each diffracted path
contributing to the impulse response, a diffraction coefficient must
be computed each time the path stabs a wedge.

In the following four sections, we further detail each phase.
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4 Extended spatial subdivision

The goal of this precomputation phase is to partition space into con-
vex polyhedral cells whose boundaries are aligned with the poly-
gons of the 3D input model and to encode the topological adjacen-
cies of the vertices, edges, faces, and cells in a data structure that
enables output-sensitive traversals of 3D space. The key contribu-
tion over previous beam tracing methods is that topological infor-
mation (edge-face adjacencies) is used to construct wedges between
adjacent faces. We call the new spatial subdivision awinged-pair
representation.

The winged-pair data structure stores topological adjacencies
in fixed-size records associated with vertices, edges, faces, cells,
and face-edge pairs. As such, it is very similar to the well-known
winged-edge data structure [2], but it describes topological struc-
tures one dimension higher. Our representation is also similar to
the facet-edge representation described by Dobkin and Laszlo [8]
and to the polyhedral subdivision used by Fortune [10].

Every vertex stores its 3D location and a reference to one at-
tached edge; every edge stores references to its two vertices and one
attached face-edge pair; every face stores references to its two cells
and one attached face-edge pair; and, every cell stores a reference
to one attached face. The face-edge pairs store references to one
edgeE and to one faceF along with adjacency relationships re-
quired for topological traversals. Specifically, they store references
(spin) to the two face-edge pairs reached by spinningF aroundE
clockwise (CW) and counter-clockwise (CCW) (see Figure 3) and
to the two face-edge pairs (clock) reached by moving aroundF in
clockwise and counter-clockwise directions fromE (see Figure 3).

Spin(Pair(F,E),CW) = F1,E
Spin(Pair(F,E),CCW) = F2,E

Clock(Pair(F,E),CW) = F,E1
Clock(Pair(F,E),CCW) = F,E2

FE

F
1

F
2

E2

E1

CW

CW

Figure 3: Winged-pair structure.

The winged-pair data structure is crucial for our application. In
particular, we find all faces adjacent to a given edge, a critical oper-
ation for finding diffracted edges, by following thespin references
in face-edge pairs.

We build the winged-pair data structure for any 3D model using
a Binary Space Partition (BSP) [11] using the method described
in [30]. As BSP cells are split by a polygonP , the corresponding
winged-pair cells are split along the plane supportingP , and the
faces and edges on the boundary of each split cell are updated to
maintain a 3-manifold in which every face is convex and entirely
inside or outside every input polygon. As faces are created, they
are labeled according to whether they are opaque (coincide with an
input polygon) or transparent (split free space). The binary splitting
process continues until no input polygon intersects the interior of
any BSP cell, leading to a set of convex polyhedral cells whose
faces are all convex and cumulatively contain all the input polygons.

5 Tracing Diffraction Beams

We trace beams containing potential reverberation paths using an
extension to the algorithm by Funkhouseret al.[12, 13]. Briefly, we
trace beams from each sound source along reverberation paths by
traversing the cell-face and face-edge adjacency relationships in the
winged-pair structure. The algorithm starts in a cell with an omni-
directional source and a beam representing the entire cell. Then, it
visits adjacent cells iteratively, considering different permutations
of transmissions, specular reflections and diffractions due to the

faces and edges on the boundary of the “current” cell. As each new
cell is visited, we update incrementally a polyhedral beam, conser-
vatively including potential reverberation paths along the current
traversal sequence.

The novel beam tracing contribution of this paper is a method for
tracing beams along paths of diffraction. According to the Geomet-
rical Theory of Diffraction (GTD), an acoustic field, incident upon
an edge between two non-coplanar surfaces, forms a diffracted
wave that propagates from the intersected part of the edge in a cone-
shaped pattern of reverberation paths, as shown in Figure 4.
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Figure 4: Rays diffracted by a 3D wedge. At oblique incidence, an
incoming ray gives rise to a cone of diffracted rays. The angle of
the cone�d is equal to the angle between the incident ray and the
edge�i. At normal incidence (�i = �

2
), diffracted rays form a disk

of omnidirectional coplanar rays in a plane orthogonal to the edge.

For a given beamB traced through a cellC, we quickly find
the diffracting edges as they must be: 1) on the boundary ofC, 2)
intersected byB, and 3) shared by two faces on the boundary of
C that are either non-coplanar or have different acoustic properties
(e.g., one is transparent and the other opaque). For each such edge
", we trace a new diffraction beamB0, whose source isB \ " and
whose polyhedral extent contains the cone of potential diffraction
paths bounded by the solid wedge of opaque surfaces sharing the
edge (see Figure 5). This conservatively approximate beam con-
tains all potential paths of sound initially traveling alongB and then
diffracted by". Using the adjacency information in the winged-pair
structure, the beams are constructed in constant time.
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D
φ

Ta
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S

Dφ
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Figure 5: Example beam tree. A beam traced from sourceS in cell
C is transmitted through the transparent portala, then specularly
reflected by surfacesb andc, and finally diffracted twice by edges
" and� reaching cellD. Full cone of diffracted rays is shown for
each edge while we trace diffracted beams only in shadow regions.

For efficiency reasons, we trace only a portion of the diffracted
beam. Tracing diffracted beams in all directions around the edge
would result in a combinatorial explosion of the beam tree. We
restrict our diffracted beams to shadow regions (Figure 5) since:
1) we are most interested in providing the acoustic field missing
in those regions, and 2) the amplitude of the diffracted sound field
is largest in that region and quickly falls off in the illuminated re-
gion (see also Figure 7). Even though this approximation results in
sound field discontinuities at shadowboundaries, in practice these
discontinuities are not perceivable.
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As diffraction beams are traced along paths of reflections and
transmissions for a sequence of convex polygons, their interior vol-
ume can become quite complex, bounded by quadric surfaces due to
triple-edge (EEE) events [37]. Rather than modeling these complex
volumes exactly, we over-estimate the potential space of paths from
each diffracting edge with a bowtie-shaped polytope, as in [36].
We compensate for this approximation later by validating each se-
quence of reflections and diffractions when constructing explicit re-
verberation paths.

All beams are traced in priority order, either during an off-line
precomputation (as in [12]) or in real-time using multiple asyn-
chronous processes (as in [13]). They are stored in abeam treedata
structure [15, 12] augmented to contain nodes representing diffrac-
tion. An example of a partial beam tree is shown in Figure 5.

6 Construction of diffracted paths

In a third phase, in which the user interactively navigates a simu-
lated observer (receiver) through a virtual environment,reverber-
ation sequencesto the moving receiver pointR are generated via
lookup in the beam trees. First, we find the cell containing the
receiver point by logarithmic-time search of the BSP spatial subdi-
vision. Then, we check each beam tree node,T , associated with
that cell for whether the beam stored withT contains the receiver
point. If it does, we have a potential reverberation sequence from
the source to the receiver, and the ancestors ofT in the beam tree
explicitly encode the set of reflections, transmissions, and diffrac-
tions through the boundaries of the spatial subdivision. From this
sequence of surfaces, wedges and portals, we now construct the
corresponding propagation path.

Since we are only considering diffraction and specular reflection
and the source and receiver are points, only one propagation path
exists for a particular sequence of faces and wedges. This is a re-
sult of the angle constraints associated with specular reflection and
diffraction. Moreover, according to the GTD, this path is the short-
est among all possible paths stabbing the surfaces and edges in the
sequence. The difficulty in constructing this path is to find the re-
flecting points on the surfaces and diffracting points on the edges
for the given position of the source and receiver.

For sequences of specular reflection only, the construction of the
reflected points is trivial and can be achieved by successively mir-
roring the source relative to the reflecting surfaces [1].

For sequences of diffraction only, the problem is more difficult
and diffraction points on edges cannot be easily determined. One
approach may be to successively intersect diffraction cones with
the next edge in the sequence. But, assuming we obtain two in-
tersections each time, this could lead to as many as(2n � 1) tests
for a sequence ofn wedges. Moreover, deciding if the receiving
point lies on a diffraction cone is prone to aliasing. For a hybrid
sequence of reflections and diffractions, the problem is even more
complicated since intersection of diffraction cones and surfaces re-
sults in an infinite number of points.

Hence, it is more efficient to build the path by solving a non-
linear system expressing angle constraints between the edges and
the incident/diffracted directions [7]. For a single wedge, the
diffraction pointM on the edge satisfies the equation (see insert
in Figure 6):

��!
MS �

�!
E =

��!
MR � (�

�!
E );

where� denotes the dot product,S is the source point,R the re-

ceiving point and
�!
E the edge direction vector (all vectors areunit

vectors).
�!
E is oriented such that

�!
E �

�!
W =

�!
N , where

�!
W is a

vector that lies in the plane of one of the two polygons (arbitrarily
chosen) of the wedge, normal to the edge and directed away from

S
R

E

−E

M

!!!!!!!!!
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F1
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M1

M2
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−M(  )
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  E 1

Figure 6: Construction of hybrid diffracted and specular reflected
paths (top-view). We express the angle constraints (marked in yel-
low) using mirror-images of the edges. The insert shows the case
of a single diffraction.

the edge.
�!
N is the unit normal of the chosen wedge surface (see

insert in Figure 8).
For a sequence ofnwedges, a system ofn equations is obtained:8>>>><

>>>>:

��!
M1S �

�!
E1 =

����!
M1M2 � (�

�!
E1)

����!
M2M1 �

�!
E2 =

����!
M2M3 � (�

�!
E2)

...
������!
MnMn�1 �

�!
En =

���!
MnR � (�

�!
En)

(1)

Parameterizing the edges,Mi = Pi + ti
�!
Ei (wherePi is a refer-

ence point on edgei, for example, the midpoint), system (1) can be
rewritten in terms ofn unknownsti and solved within a specified
tolerance using a non-linear system solving scheme. In our im-
plementation we used Broyden's scheme, which has a complexity
O(n2) in the number of unknowns [33].

In the case of a hybrid specularly reflected and diffracted path,
we have to include specular reflection constraints. If we add a se-
quence ofk mirror surfacesFi between two consecutive edges, we
can use successive mirror images of the first edge to rewrite the
previous system as:8>><
>>:

��!
M1S �

�!
E1 =

�������!
M(M1)M2 � (�

����!
M(E1))

�������!
M2M(M1) �

�!
E2 =

����!
M2M3 � (�

�!
E2)

...

(2)

where the operatorM expresses mirroring according to thek suc-
cessive mirrorsFi in front order fromF1 toFk (see Figure 6).

We solve the system assuming all edges to be infinite. Then we
perform two validity checks. First we ensure that all diffraction
points lie inside the finite edge spans, just as it is usually done for
specular reflection. If a diffraction point lies outside an edge span,
we declare the path invalid. Next we check for visibility, in partic-
ular that paths go through the transparent portals (see Figure 2(c)),
since the beams are overestimating.

7 Auralization of diffracted paths

In order to render the virtual sound field, we compute a digital fil-
ter, theimpulse responseof the environment [22, 28]. The impulse
response reproduces correct reverberation effects when convolved
with “dry” (anechoic) input signals. Whenever we find a valid path
between the source and the receiver, we compute its contribution to
the impulse response. Each path makes a contribution to the final
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signal, with a delay proportional to the path length and an ampli-
tude proportional to the combined attenuation of the diffraction and
reflection coefficients of the encountered wedges and surfaces.

In this section we focus on the evaluation of diffraction coeffi-
cients and the diffracted acoustic field. For acoustic reflection co-
efficients and the reflected field, we refer the reader to classic texts
such as [25, 31] and previous work on real-time auralization [12].

GTD provides an analytic expression of the diffraction coeffi-
cient only for infinite wedges. Keller's original expression suf-
fers from severe singularities making it useless for simulation pur-
poses (see Figure 7). Koujoumjan and Pathak solved this problem
by introducing the Uniform GTD [23], and a new expression for
the diffraction coefficient. In our implementation, we use Uniform
GTD expression described in Appendix A.

SS

Figure 7: Visualization of diffraction coefficients, calculated by
GTD and Uniform GTD, for a “flat-wedge” diffraction from
a point source. The cones of diffracted rays (red) are repre-
sented for several incidence directions (blue), with segments of
length equal to the diffraction coefficient modulus. Note the sin-
gularities in Keller's expression (left) which approaches infinity
near shadow/reflection boundaries. The Uniform GTD expression
(right) is well-defined everywhere.

For a monochromatic harmonic wave in complex notation, the
acoustic pressure field diffracted by a wedge can be expressed in
terms of the incident field on the edge,Eincident(M), as:

Edi�racted(R) = Eincident(M)D A(r; �) e�ikr; (3)

whereR is the receiver location,M is the diffraction point on
the edge,k = 2�=� is the wave number,� is the wavelength,
A =

p
�r=(�+ r) is a scalar distance attenuation term along the

diffracted path, andD is the diffraction coefficient, calculated ac-
cording to the Uniform GTD. The complex exponential represents
phase variation along the propagation path (see Figure 8 for other
notation). The diffraction coefficient,D, is a complex number ac-
counting for amplitude and phase changes due to diffraction and
depends on both the incident and diffracted direction on the edge
and the corresponding angles�i and�d (Figure 8).
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nπ
αd
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ρ

r
direct field limit

reflected field limit

wedge

Figure 8: Notations and edge-fixed coordinate system definition for
the Uniform GTD wedge diffraction coefficient. The choice of the
wedge surface used as reference is arbitrary and will not change the
value of the diffraction coefficient.

Equation (3) is applied successively for every diffracting wedge
along the path, the diffracted field of one wedge becoming the inci-
dent field on the next wedge or on a reflecting surface.

To achieve interactive rates, we implemented a prototype fre-
quency independent system using scalar sound amplitude rather
than complex sound pressure. We use a scalar version of Equa-
tion (3):

Adi�racted = Aincident D̂ A(�; r);

whereAdi�racted andAincident are scalar amplitudes, and̂D is a
“diffractivity” coefficient, computed as the modulus of the diffrac-
tion coefficient at a representative frequency (e.g., 1 kHz). We
could also use an average of the coefficient over the audible fre-
quency spectrum.

8 Experimental results

The 3D data structures and algorithms described in the preceding
sections have been implemented in C++ and run both on Silicon
Graphics and PC/Windows computers. We have integrated them
into a prototype system that allows a user to move through a virtual
environment interactively, while images and spatialized audio are
rendered in real-time according to the user's simulated viewpoint.

 Source
Location

*

A

B C

D

E

F

G

HI
J

 Receiver
Trajectory

Figure 9: Experimental setup.

To test if our beam tracing approach is practical for modeling
diffraction in typical virtual environments, and to evaluate the bene-
fits of incorporating diffraction into real-time auralization, we ran a
series of tests computing reverberation paths both with and without
diffraction. During each test, we used the experimental setup in Fig-
ure 9. The virtual environment is a 3D model with 1,762 polygons
representing one floor of a building (Soda Hall). For simplicity, we
assume that every polygon in the 3D model is 80% reflective and
acoustically opaque (no transmission). Before each test, we traced
100,000 beams in breadth-first order from a stationary sound source
(located at the white dot in Figure 9) and stored them in a beam tree
data structure (see Section 5). Then, as a receiver moves at three
inch increments along the trajectory (the pink line in Figure 9), we
compute reverberation paths from source to receiver and update an
impulse response (see Sections 6 and 7). All the tests were run on
a Silicon Graphics Onyx2 workstation using one195MHz R10000
processor.

This test sequence was executed three times, once for each of the
following beam tracing constraints:

1. Specular reflection only: We traced 100,000 beams along
paths of specular reflection, with no diffraction. The results
represent the state-of-the-art prior to this paper [12, 13].

2. Diffraction only: We traced 100,000 beams along paths of
diffraction (around silhouette edges into shadow regions),
with no specular reflections.

3. Both specular reflection and diffraction: We traced
100,000 beams along paths representing arbitrary permuta-
tions of specular reflection and diffraction.
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Figure 10 shows plots with the number of reverberation paths
found between source and receiver (the top plot) and the log power1

of resulting impulse responses (the bottom plot), for each receiver
location along the test trajectory. Note that since traversal is
breadth-first with a fixed number of beams, the paths obtained with
both diffraction and reflection are not the sum of the paths obtained
by reflection and diffraction alone (Figure 10(a)).
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Figure 10: Plots showing the number of reverberation paths found
(top) and the log power of the corresponding impulse responses
(bottom) for every receiver position along the test trajectory for
specular reflection only (red), diffraction only (blue), and both spec-
ular reflection and diffraction (purple). Note how adding diffraction
gives a smoothly varying sound level as the receiver moves.

From these plots, we confirm that specular reflection alone is
not adequate to produce realistic spatialized sound in typical virtual
environments. The red curves in Figure 10 show that the number
of reverberation paths and the power in the corresponding impulse
responses varied dramatically with small changes in receiver loca-
tion. The cause of this effect is easily understood by examining
the top-left image of Figure 11(a), which shows the set of beams
traced from the source location during the test with only specular
reflection. Note the pattern of thin beams crossing the hallways. As
the receiver walks down the hallway along the test trajectory, s/he
moves in and out of distinct reflection beams, leading to sharp dis-
continuities in the computed reverberations. Even worse, there are
several locations along the receiver trajectory with no specular re-
flection paths, and thus the power of auralized sound drops to zero
for short periods. These locations are marked with capital letters on
the horizontal axis of the plots in Figure 10 and along the pink tra-
jectory line in Figure 9, and they correspond to the visible “holes”
in the beam coverage in Figure 11(a). These “dead-zones” are par-
ticularly troublesome to users during a walkthrough, as they clearly
fail to match real-world acoustical experiences.

In contrast, we note that tracing beams only along paths of
diffraction leads to smoothly varying reverberations (the blue

1 log power is computed as10 � log
P

n

i=1
a
2

i
wheren is the number of

reverberation paths andai the amplitude along theith path.

(a) Specular reflection only.

(b) Diffraction only.

(c) Both specular reflection and diffraction.

Figure 11: Images of 100,000 beams traced in breadth-first order
(cyan) and reverberation paths (light yellow) from source (white
sphere) to receiver location `*' (dark yellow sphere). Note how
diffracted beams fill the entire space uniformly in contrast with
specular beams.

curves in Figure 10). The reason can be seen in Figure 11(b).
Diffraction beams tend to cover larger volumes of space than spec-
ular beams; and, in our test, they cumulatively cover all reachable
parts of the 3D environment (the light gray regions in the middle
of the model correspond to elevator and wiring shafts unreachable
by sound). Accordingly, the computed diffraction paths are very
“stable”, continuously tracking the receiver as s/he moves down
the hallway. In addition, diffraction paths often contain the short-
est reverberation path, critical for source localization. Moreover,
diffraction coefficients computed with the GTD vary smoothly as
the receiver moves, and thus we encounter no “drop-outs” or sud-
den discontinuities as the receiver moves during the second test.

Interestingly, although many diffraction paths reach the receiver
during the second test, the most direct path tends to contribute al-
most all the reverberant power. For instance, consider the receiver
location `*' highlighted in yellow in Figures 9 and 10. The receiver
has just passed by an open doorway near the source and has moved
behind an opaque wall. At this point, there is no direct sound path
from the source. But, there is a very short diffraction path, which
bends around an edge of a nearby door frame. That path appears as
a solitary blue spike in Figure 12. The other 73 diffraction paths,
which are shown in Figure 11(b), arrive much later and their con-
tribution is negligible since they are very long paths.

Looking at the results of the third test (the purple curves in Fig-
ure 10), we see that the power varied quite smoothly between suc-
cessive receiver locations, as one would expect. The nice features
of combining specular reflections and diffractions can be seen in
Figure 12(c). In that case, the impulse response contains not only
the shortest (diffracted) path from the source (the left-most spike),
but it also has many high-power early reverberations not found in
the other tests because they are reflections of previously diffracted
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waves, or diffractions of previously reflected waves. Those paths
are going to provide a quasi-direct sound in regions where the ac-
tual direct path is occluded.
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(a) Specular reflections only.
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(b) Diffractions only.
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(c) Both specular reflections and diffractions.

Figure 12: Impulse responses corresponding to the reverberation
paths computed in each test for the receiver location `*' . Note
how diffraction introduces new contributions in the beginning of
the response (c), that are going to provide a quasi-direct contribu-
tion while the actual direct path is occluded.

We also gathered computational statistics during the three tests
(Table 1). The first two columns contain compute rates. Specifi-
cally, Column 2 shows the rate (in beams/second) at which beams
are traced from the stationary source location in each test. Column
3 shows the rate (in paths/second)at which reverberation sequences
are computed and processed to form reverberation paths to the mov-
ing receiver location, including calculation of reflection and diffrac-
tion coefficients. The next three columns show the average number
of transmissions through transparent cell boundaries (Trans), spec-
ular reflections (Refl), and diffractions (Diff) along the computed
paths in Columns 4-6, respectively. Finally, the right-most column
(Update Time(s)) shows the time (in seconds) required to update
the impulse response for each new receiver location in each test.

Test Compute Rates Path Statistics Update
Name Beams/s Paths/s Trans Refl Diff Time (s)
Specular 5,028 12,020 5.2 4.6 0.0 0.012
Diffract 3,882 908 10.5 0.0 5.6 0.081
Both 4,500 3,311 5.6 2.0 1.6 0.059

Table 1: Beam tracing and path generation statistics.

We conclude that tracing paths of diffraction is quite practical
for interactive virtual environment applications. Although diffrac-
tion increases the time required to trace beams and construct re-
verberation paths, the system can stillupdate impulse responses at
interactive time steps (e.g., every 59ms) with our method. More to
the point, listening to sound auralized with impulse responses incor-
porating diffraction, we find that our simple frequency independent
prototype renderer provides a surprisingly good impression of the
environment. Please review the examples on the enclosed video.

Although space limitations preclude presentation of more de-
tailed quantitative results in this paper, we note that the combinato-
rial growth of beam trees with both specular reflection and diffrac-

tion is very large. In these experiments, tracing 100,000 beams in
breadth-first order we are able to model all permutations containing
up to 2 specular reflections and 2 diffractions while using around
100MB of memory. However, for instance, tracing all permuta-
tions with up to 4 specular reflections and 4 diffractions exceeds
the physical memory of our machine (2GB). For this reason, we
usually rely upon priority-driven beam tracing methods to prune
constructed beam trees to contain only the most significant rever-
beration paths [13].

9 Discussion

Our approach is limited to polyhedral environments and polygonal
wedges. GTD can be extended to treat curved wedges, but find-
ing diffracted paths becomes more difficult since they can contain
pieces of geodesic curves on the surface of the curved wedge.

Our current implementation is limited to diffraction by exterior
corners (silhouette edges). A more accurate simulation should also
treat interior corners but doing so would result in a combinatorial
explosion of the number of beams. Besides, diffraction by interior
wedges will produce strong exaggerated echoes only for high fre-
quencies and a listener close to the wedge (see [31] p. 500 for a
quantitative discussion on this subject).

One could argue that diffuse reflection could produce a smooth-
ing of the sound field by scattering rays in all directions. Although
our beam tracing technique can be easily extended to trace diffuse
reflection beams (i.e., beams reflected into an entire half-space), it
remains disputable if diffuse reflection is a proper model for acous-
tics. Even if waves are scattered in several directions from a surface,
it is very unlikely for the scattering to be isotropic. That explains
the difficulty to find diffuse acoustic reflection coefficients for sur-
faces [26]. Moreover, it is unclear how to correctly auralize diffuse
reflection.

Finally, our real-time auralization system is still frequency inde-
pendent and limited in audio resolution (11 kHz). However, hard-
ware that is now becoming widely available on PCs, makes it pos-
sible to perform real-time frequency dependent convolution using
different coefficients for several frequency bands at compact disc
quality.

Apart from the virtual acoustics applications, we believe that
GTD can be successfully applied to computer graphics problems.
Modeling of reflectance functions (BRDFs) [39, 14, 35] from sur-
faces acting as diffraction gratings could be treated using this the-
ory. Its major advantage is that, because it is based on the ray-theory
of light, it can be integrated in a ray-tracing framework, removing
limitations of previous related work [35].

10 Conclusion

In this paper we introduce a novel, efficient technique for incorpo-
rating diffraction effects in interactive audio simulations for virtual
environments. Relying upon the Geometrical Theory of Diffraction
(GTD), we extend a beam-tracing approach to construct combined
diffracted and reflected paths. We demonstrate that it is possible to
construct these paths in real-time and that diffraction dramatically
improves the realism and quality of the audio experience.

This is the first instance where: 1) GTD is used to produce sound
at interactive rates in a complex environment, 2) GTD is used for
auralization, and 3) realistic diffraction is introduced in virtual envi-
ronments. By simulating diffraction, we have removed the disturb-
ing ”cuts” in the audio that occur when a sound source is occluded
by an acoustically opaque surface, and made it possible to localize
occluded sound sources.

Based on our initial experiences with this system, diffraction is
essential for realistic acoustical modeling, and we feel this work
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makes a significant step towards realistic acoustics in interactive
virtual environments. We are continuing this research, aiming to-
wards increased sense of presence in virtual environments by in-
vestigating the perceptual trade-offs between visual and acoustical
effects. We are also investigating the GTD for computing BRDFs
for surfaces acting as diffraction gratings.

A Computing diffraction coefficients
The Uniform GTD [23, 29] expresses the acoustic diffraction coefficient for an infinite
wedge as:

D(n;k; �; r; �i; �i; �d) = � e
�i �4

2n
p
2k� sin �ih

tan�1
�
�+(�d��i)

2n

�
F
�
kLa+(�d � �i)

�
+ tan�1

�
��(�d��i)

2n

�
F
�
kLa�(�d � �i)

�
+

n
tan�1

�
�+(�d+�i)

2n

�
F
�
kLa+(�d + �i)

�
+ tan�1

�
��(�d+�i)

2n

�
F
�
kLa�(�d + �i)

�oi
;

(4)

where (see also Figures 4 and 8)

k is the wave number.k = 2�=�;
n is such that the exterior wedge angle isn�;
� is the source to diffraction point distance;
r is the receiver to diffraction point distance;
�i is the azimuthal angle (in the plane of the edge) between

the edge vector
�!
E and the incident direction.�i 2 [0; �];

�i is the elevation angle between vector
�!
W

and the incident direction.�i 2 [0; n�];

�d is the elevation angle between vector
�!
W

and the diffracted direction.�d 2 [0; n�];

and where:

F (X) = 2i
p
XeiX

Z +1

p
X

e�i�
2
d�; (5)

L =
�r

� + r
sin2 �i; (6)

a�(�) = 2 cos2
�
2�nN� � �

2

�
; (7)

N� is the integer that satisfies more closely the relations:

2�nN+ � � = � and 2�nN� � � = �� (8)

Several approximations exist in the related literature, useful for implementation of
Eq. 4. In particular, relations (8) reduce to:

N+ =

n
0 for � � �(n � 1)
1 for � > �(n � 1)

;

N� =

(
�1 for � < �(1 � n)

0 for �(1 � n) � � � �(1 + n)
1 for � > �(1 + n)

;

(9)

and Kawai [19] gives an approximate rational expression for the integral in Eq. (5):
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Cotangent terms in Equation (4) are still singular at a reflection or shadowboundary
and cannot be evaluated numerically at these boundaries. However, in the vicinity of
such a boundary we can express the terms�i � �d as� = 2�nN� � (� � ").
The coefficient is continuous and its value can be computed using [23]:

tan�1
�
���
2n

�
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�
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�p
2�kLsgn(")� 2kL"e�i�=4

�
;

wheresgn(") = 1 if " > 0 and�1 otherwise.
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