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Abstract. Modeling light reflection off surfaces, although extensively studied
in computer graphics, remains a challenging problem when simulating wave phe-
nomena. In particular, diffraction has receivedlittle attention until very recently,
when an analytical model based on the wave theory of light was proposed [24].

It is commonly believed in the computer graphics community that diffraction
phenomena cannot be captured using a ray-based theory of light. However, an
extension to geometrical optics, known as theGeometrical Theory of Diffraction
(GTD), was introduced in 1962, giving a solution to the problem.

In this paper, we give an introduction to the GTD and show that this theory
can be successfully used to derive procedural shaders for simple diffracting sur-
faces. We also discuss how the GTD can be integrated into a ray-based virtual
gonio-spectro-photometer to derive Bidirectional Reflectance Distribution Func-
tions incorporating diffraction effects for more general types of surfaces.

1 Introduction

Simulation of surface reflectance properties continues to be one of the important and
challenging aspects of photo-realistic computer graphics. Two types of approaches
have been proposed to model surface properties: analytical methods and distributed
ray-tracing estimations (virtual gonio-spectro-photometry).

Analytical methods derive analytical formulas for the surface Bidirectional Re-
flectance Distribution Function (BRDF), usually using the Kirchoff integral theorem
and statistical properties of the surface micro-geometry (typically modeled as a ran-
dom height-field) [7]. Although most analytical approaches are limited to isotropic sur-
faces, several extensions have been proposed for anisotropic surfaces, as in [9]. Poulin
and Fournier [17] simulate small cylinders added to (or subtracted from) the surface to
model anisotropy. Finally, Ward [26] fits analytical models to measurements for a given
class of materials: reflected light is in this case measured from a real sample using a
gonio-spectro-photometer. Until recently, no wave effects (e.g. interference, diffrac-
tion) were modeled. In 1992, Smits and Meyer described an analytical model treating
thin film interference [22]. In 1999, Stam [24] introduced a unified analytical model,
based on the scalar Kirchoff integral theorem, dealing with anisotropy and diffraction
caused by micro-gratings on the surface. He can treat more general,non-random height
fields by relating the scattered intensity to the spectral density of a function of the sur-
face height. The major advantage of analytical approaches is that they are computation-
ally efficient and usually offer some control parameters. Their main drawback is the
lack of generality since they model surfaces as height fields. While remaining a valid
assumption in most cases, this limitation prevents modeling of more complex, layered
or pigment-based, materials.
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Distributed ray-tracing approaches are inspired by measurement methods which use
a real gonio-spectro-photometer. They basically simulate such a physical setup by
casting a large number of incident rays on a sample 3D model of the surface micro-
geometry [2, 27, 6]. The rays are traced as they are reflected or refracted inside the
micro-model. Their contributions are accumulated in a direction-dependent structure
when they exit the sample. The operation is repeated for each possible incident direc-
tion thus leading to the sampled BRDF of the material. The major advantage of such
techniques is that they impose no restriction on the surface micro-geometry, allowing
to model complex layered surfaces. However, they are very time consuming, solve the
problem for one particular surface and, similar to real measurements, lead to a very
large data set. Thus, further processing is usually needed to either fit an analytical
model to these virtual measurements or to compress the information using directional
basis functions (spherical harmonics, wavelets,etc.) [2, 27, 20]. Distributed ray-tracing
is usually applied on themilliscalegeometry (feature size around 0.1 mm) for which
classic ray optics is a valid approximation. This means that the local behavior of the
surface must already be approximated by some reflectance function that models the
microscaleeffects (feature size around 1�m) [27]. Consequently, interference and
diffraction are rarely considered explicitly, since they should be taken intoaccount on
the microscale level. Several approaches have been proposed to model interference due
to layered media or pigments in a ray-tracing context [4, 5, 19]. They deal with mi-
croscale features, such as pigments in iridescent paints, which scattering effects cannot
be modeled by previous analytical models. In this context, only Snell's law is used for
local reflection/refraction but rays carry phase information and possibly polarization
information [28, 25] used to obtain interference. However, none of the previous work
incorporating wave phenomena considered diffraction which is likely to have a strong
influence at this scale. This is mainly due to the lack of a model describing the effects
of diffraction in a geometrical ray formalism.

Fig. 1. A picture computed with our GTD diffraction shader. The surface micro-geometry is a
grating and colors are the result of interference between several diffracted paths.

In this paper we show that diffraction effects can be modeled with a geometrical ray-
based approach. Indeed, in 1962, Joseph Keller introduced an extension of geometrical
optics to account for diffraction phenomena: the Geometrical Theory of Diffraction
(GTD) [11]. Curiously, this theory seems to have receivedlittle attention in optics and
does not appear in classic optics monographs [8, 1], while it has been extensively used
and refined in radio-wave channel modeling and acoustics [10, 14, 18, 12].

In the first section we present an overview of the Geometrical Theory of Diffraction
(GTD). In particular, we show how new geometrical paths are introduced to account for
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diffraction effects and how to compute their contribution. We then present an applica-
tion of this theory to modeling reflection off diffracting surfaces. In section 3 we use the
GTD to build procedural “diffraction shaders” for particular types of micro-geometry
acting as diffraction gratings (e.g. a compact disc). In section 4, we discuss how the
GTD can be incorporated in a more complex distributed ray-tracing framework, allow-
ing the treatment of diffraction effects in virtual gonio-spectro-photometers. Finally,
we discuss some limitations and further refinements of the proposed approach.

2 Computing the wedge-diffracted light field using the GTD

The Geometrical Theory of Diffraction (GTD) [11] adds diffraction effects to the ray
theory of light. It assumes that wedges (i.e. an edge and a pair of adjacent polygons)
act as secondary sources, scattering new diffracted rays. The diffracted field is obtained
by summing the contribution of these new rays, taking their relative phase into account.
Colorful diffraction patterns are created by the interferences between all possible prop-
agation paths (i.e. combinations of reflections and diffraction). Similar to reflected
rays, diffracted rays follow Fermat's principle: if the propagation medium is homoge-
neous, the rays follow the shortest path from the source to the receiver, stabbing the
diffracting edges. For a point source, a point receiver and any sequence of combined
diffractions by edges and specular reflections off surfaces, this defines a unique path.
Besides, for every wedge, incident and diffracted rays make equal angles with the edge
direction1. Equivalently, a ray incident on a diffracting edge gives rise to a cone of
diffracted rays all around the edge (Figure 2), the existence of which has been veri-
fied experimentally [21]. Diffracted rays follow the laws of geometrical optics and can
therefore be reflected and diffracted before reaching the receiver. They are subject to
binary visibility tests and their contribution is removed if they hit an obstacle.
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Fig. 2. Rays diffracted by a 3D wedge. At oblique incidence, an incoming ray gives rise to a
cone of diffracted rays whose central axis is the edge. The aperture angle of the cone�d is equal
to the angle between the incident ray and the edge�i. At normal incidence (�i = �

2
), diffracted

rays form a disk of omnidirectional coplanar rays in a plane orthogonal to the edge.

Each diffracted ray is modulated by a diffraction coefficient in the same way a re-
flected ray is modulated by a reflection coefficient. The GTD alone does not give an
expression for the diffraction coefficient. Keller obtained a result in the case of a wedge,
by identification of his solution with an exact analytical solution previously obtained by
Sommerfeld [23]. Unfortunately, Keller's coefficient becomes singular as the diffracted
direction grazes geometrical shadow regions or specular reflectionboundaries created

1If the incident ray gets diffracted into a different medium, the usual law of refraction applies to the
incident and diffracted angles.
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by the wedge (Figure 3). In 1974, Kouyoumjian and Pathak gave a new, well defined ex-
pression for the diffraction coefficient in their Uniform Geometrical Theory of Diffrac-
tion (UTD) [13, 16]. We used this expression in our implementation (see Appendix A
for the exact expression). It can be observed that the diffraction coefficient amplitude
increases with the wavelength. Thus, low frequencies get more diffracted than high
frequencies, which is coherent with the fact that for high frequencies (relative to the
feature size) classic geometrical optics remains a good approximation.

The contribution of a diffracted ray to the total field at the receiving point for plane
wave incidence is given by:

Ediffracted(R) = Eincident(M ) D̂ eikr;

= A D̂ eik(�+r)
(1)

whereR is the receiver location,M is the diffraction point on the edge,k = 2�=�
is the wave number,� is the wavelength,A is the amplitude of the incident wave,
and D̂ is the diffraction coefficient, calculated according to the UTD. The complex
exponentialaccounts for the classic phase variation along the ray, which depends on
the total optical path length�+r (see also Figure 3 for other notations). The diffraction
coefficient,D̂, is itself a complex number accounting for amplitude and phase changes
due to diffraction and depends on both the incident and diffracted direction on the edge
and the corresponding angles�i, �i and�d (Figures 2, 3 and Appendix A). These
parameters can be determined using an edge fixed coordinate system and one of the two
wedge surfaces as reference, as shown on Figure 3.
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Fig. 3. Notations and edge-fixed coordinate system definition for the Uniform GTD wedge
diffraction coefficient. The choice of the wedge surface used as reference is arbitrary and will not
change the value of the diffraction coefficient.

Unfortunately, finding the diffraction paths is similar to a well known NP-complete
motion planning problem [3]: finding a 3D shortest path avoiding polyhedral obstacles.
We are not interested here in finding the absolute shortest path but rather a shortest
path going through an edge for every diffraction event (or possibly a sequence of edges
and surfaces for multiple combinations of reflections and diffractions). However, this
problem has no simple solution in the general case. In the next section we show that it
can be solved explicitly for a number of specific situations and present some results.

3 Building diffraction shaders using the GTD

GTD can be used to create procedural diffraction shaders by constructing explicitly
the diffraction paths for all diffracting wedges present in the microgeometry. In our
experiments, we limited ourselves to direct diffraction (i.e. we do not treat diffraction
of reflected rays or further reflection of diffracted rays).

The problem is to evaluate the diffracted component of the field,according to
Eq. (1), for given ingoing and outgoing directions. Our solution is to build, for every
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SpectrumcomputeDiffractedField( Vector in, Vector out )

SpectrumResult; Vectordi�Point;
VectorSRC = FAR DIST*(-in);
VectorDEST = FAR DIST*out;
complexS[NB WAVELENGTHS];
For every wavelength� S[�] = 0.0;
For every wedgeWEDGE
j float length = findShortestPath(WEDGE,SRC,DEST,&di�Point);
j For every wavelength�
j j complexD = diffractionCoefficient(SRC,DEST,di�Point,WEDGE,�);
j j float k = 2*�=�;
j j S[w] += D � ei�k�length;
For every wavelength� Result[�] = jS[�]j2;
return Result;

Fig. 4. Pseudo-code for a GTD shader. The procedurefindShortestPathfinds the shortest path
(if not obstructed) between the two pointsSRC andDEST that stabs the edge of the wedge W. It
returns the length of the path and the diffraction point on the edge. The parameterFAR DIST is
a distance that should be chosen large compared to the feature size of the micro-geometry. The
procedurediffractionCoefficient computes the diffraction coefficient as given in Appendix A.

possible wedge in the micro-geometry, the shortest path, stabbing the edge and connect-
ing a point source and a point receiver (assumed to be “far away” from the surface, w.r.t.
the wavelength) along the ingoing and outgoing directions. Figure 5 (c) illustrates this
process. Its two major difficulties are finding the path and determining its visibility to
the receiver. In the case of single wedge diffraction, an explicit geometrical construc-
tion exists for the diffracted path [11]. We first rotate the source and receiving point
around the edge so that both points and the edge lie in the same plane. Then the inter-
section between the source/receiver line and the edge gives the diffraction point. From
this construction, we obtain both the path length and a diffraction point on the edge. An
approximation to the shortest path can also be obtained through a distance minimiza-
tion process such as a binary search along the edge. Once the path is found, we check
that it does not intersect any obstacles. Finally, we compute the diffraction coefficient
according to the location of the diffraction point and use the path length to compute
interference between all contributions. The pseudo-code in Figure 4 summarizes the
whole procedure.

Figure 6 shows results of applying this approach to a CD-like surface. The micro-
geometry is modeled as continuous parallel strips (Figure 5 (a) and (b)). A procedural
GTD shader, based on the algorithm in Figure 4, is called for every pixel corresponding
to a diffracting surface. We set parameterFAR DIST to 10000�m. Paths are generated
for 2000 “tracks” (i.e. 4000 wedges) which correspond roughly to an extent of 3mm
(Figure 5 (c)).

(b) (c)(a)
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Fig. 5. Micro-geometry and diffracted paths used for our CD-like diffraction shader. (a) and (b):
We model the micro geometry of a CD-like surface by parallel strips. (c) For the 2 silhouette
edges of each strip we build a shortest path, passing through the edge, which connects a point
source and point receiver “far away” from the surface in the incoming and outgoing direction.
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(a) (b) (c) (d)
Fig. 6. Example of diffraction patterns from directional light sources. Pictures (a) and (b) use a
directional lighting normal to the CD surface and were computed with 20 wavelengths. Pictures
(c) and (d) use 3 directional sources and were computed using 40 wavelengths.

(a) (b) (c) (d)

Fig. 7. Examples with an additional environment map (40 wavelengths). (a) and (b) use 3 direc-
tional sources for the direct lighting. (c) and (d) use 3 point sources. Note: the environment map
is not used as a global radiance map.

We deal with the anisotropic orientation of the tracks across the surface by associ-
ating with every point a local referential [9, 24]. This referential is used to rotate the
in and out directions when evaluating the shader. In Figure 7, we added a mirror spec-
ular component to the shader and used it toaccess an environment map. The images
are 200�200 pixels (no oversampling) and computed using 40 wavelengths. We used
a uniform subdivision of the visible light spectrum between 380 and 775 nm. The re-
sulting color effects are due to the interferences between all diffraction paths ateach
wavelength (all sources have flat spectra). We tested two approaches for finding the
shortest path. First, using the explicit geometrical technique, computing times for the
pictures in Figure 7 range from 3 to 5 hours. Using a binary search foreach of the
4000 diffracting edges, computing times range between 7 and 16 hours (SGI R10000
195MHz) for similar picture quality. In the later case, we used anaccuracy of 10�6 �m
to check the convergence of the iterative minimization process. It is likely that a greater
threshold could be used but we did not investigate this point further, since we wanted
to make sure the interference effects are properly taken into account.

4 Extension to a distributed ray-tracing framework and discussion

In the previous section, we built the diffraction paths explicitly, knowing that such paths
are of minimal length amongst all possible paths stabbing the wedges. The advantage
of an explicit construction is that it is aliasing free. However, it is very time consuming
and is not applicable to complex surfaces or higher orders of combined reflection and
diffraction. Another approach, more suited to such applications, would be to construct
the paths implicitly, exploiting the fact that a ray impinging on a wedge will give rise
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to a cone of diffracted rays. Thus, a distributed ray-tracing approach, similar to the pre-
vious work on virtual gonio-photometry, could be easily extended to take intoaccount
diffraction effects. When a ray hits an edge, random diffracted rays are generated that
lie on the diffraction cone and their contributions are modulated by the corresponding
diffraction coefficients. To limit aliasing problems due to the computation of edge/ray
intersections, “thick” rays have to be used. Such an approach has been used with suc-
cess for radio wave channel modeling in urban environments [18, 12].

The GTD is in essence an approximation to the exact solution of the wave equa-
tion and is limited to cases where the size of the geometrical features is larger than
the wavelength. It is not straightforward to derive quantitative validity conditions and
thus to predict if the model is going to give satisfying results (at least from a perceptual
realism point of view). The theory proved to be useful for radio waves and acoustics.
From the experiments we ran, we are optimistic that the GTD can give good results
for computer graphics applications. However, an implementation in a ray-casting based
framework would lead to a more accurate model, since multiple scattering could be eas-
ily taken into account (in the case of a highly reflective material such as a CD metallic
coating layer, multiple scattering is likely to have a strong influence).

In this paper, we restricted ourselves to scalar wave theory and assumed surfaces
were perfectly reflecting. Extensions to the original GTD theory can be found in [13,
15, 16] to account for vector waves (i.e. polarization) and absorbent surfaces. The major
drawback of the GTD is that the expression of the diffraction coefficient is only known
for wedges. However, no limitation is placed on the micro-geometry and thus any
polygonal model could be used. For more complex geometries and especially curved
surfaces, the theory becomes highly complicated since rays comprising segments of
geodesic curves on the surfaces must be constructed.

5 Conclusion

Contrary to popular belief, geometrical techniques exist to handle diffraction phenom-
ena. In this paper, we showed that the Geometrical Theory of Diffraction can be suc-
cessfully used in computer graphics to create diffraction shaders. We focused on ex-
perimenting with simple situations to verify the applicability of the theory, which is
in essence an approximation to the exact solution of the wave equation. From those
experiments, we are convinced that this theory could be used in computer graphics ap-
plications to model BRDFs of complex diffracting surfaces. Since the GTD is based
on the geometrical optics principles, it can be used to complement existing ray-casting
based virtual gonio-spectro-photometry approaches. Consequently, it will allow for
treating more general surfaces and help derive new improved analytical models.
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A Computing diffraction coefficients

The Uniform GTD [13, 16] expresses the scalar wave diffraction coefficient for an infinite wedge
and hard boundary conditions on perfectly reflecting surfaces as:

D̂(n; k; r; �i; �i; �d) = � e
�i

�

4

2n
p
2k� sin �ih

tan�1
�
�+(�d��i)

2n

�
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�
kLa+(�d � �i)

�
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�
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� 	i
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(2)

where (see also Figures 2 and 3)

k is the wave number.k = 2�=�;
n is such that the exterior wedge angle isn�;
� is the source to diffraction point distance;
r is the receiver to diffraction point distance;
�i is the angle between

the edge vector
�!
E and the incident direction.�i 2 [0; �];

�i is the angle between vector
�!
W

and the incident direction.�i 2 [0; n�];

�d is the angle between vector
�!
W

and the diffracted direction.�d 2 [0; n�];

and where:
F (X) = 2i

p
XeiX

Z +1

p
X

e�i�
2

d�; (3)

L = r sin2 �i for plane wave incidence; (4)

a�(�) = 2 cos2
�

2�nN� � �

2

�
; (5)

N� is the integer that satisfies more closely the relations:

2�nN+ � � = � and 2�nN� � � = �� (6)

We refer the reader to [10, 13, 16] for useful details regarding how to implement the compu-
tation of this coefficient, in particular to evaluate the Fresnel integral in Eq.(3).
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