Tracé de Rayons,Ombres et Éclairage Global

Séance 4

Images et Sons de Synthèse

Tracé de Rayons

Tracé de Rayons

- Introduction
- Camera and ray generation
- Ray-plane intersection
- Ray-sphere intersection

Ray Casting

For every pixel
Construct a ray from the eye For every object in the scene Find intersection with the ray Keep if closest

Ray Casting

For every pixel
Construct a ray from the eye For every object in the scene Find intersection with the ray Keep if closest

Shading

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade depending on light and normal vector

Ray Tracing

- Secondary rays (shadows, reflection, refraction)

Ray representation?

Ray representation

- Two vectors:
- Origin
- Direction (normalized is better)
- Parametric line
$-P(t)=$ origin $+t$ * direction

P(t)
direction
origin

Ray Tracing

- Original Ray-traced image by Whitted (1981)
- Image computed using the Dali ray tracer by Henrik Wann Jensen
- Environment map by Paul Debevec

Ray casting

For every pixel
Construct a ray from the eye For every object in the scene

Find intersection with the ray
Keep if closest
Shade depending on light and normal vector

Finding the intersection and normal is the central part of ray casting

Overview of today

- Introduction
- Camera and ray generation
- Ray-plane intersection
- Ray-sphere intersection

Cameras

For every pixel
Construct a ray from the eye For every object in the scene Find intersection with the ray
Keep if closest

braham Bosse, Les Perspecteurs. Gravure extraite de la M

Pinhole camera

- Box with a tiny hole
- Inverted image
- Similar triangles
- Perfect image if hole infinitely small
- Pure geometric optics
- No depth of field

Simplified pinhole camera

- Eye-image pyramid (frustum)
- Note that the distance/size of image are arbitrary

Camera description

- Eye point e
- Orthobasis u, v, w
- Image distance s
- Image rectangle (u0, v0, u1, v1)
- Deduce c (lower left)
- Deduce a and b

- Screen coordinates in $[0,1] *[0,1]$
$-A$ point is then $c+x a+y b$

Ray Casting

- Introduction
- Camera and ray generation
- Ray-plane intersection
- Ray-sphere intersection

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
First we will study ray-plane intersection

Recall: Ray representation

- Two vectors:
- Origin
- Direction (normalized)
- Parametric line
$-P(t)=$ origin $+t$ * direction
$\mathrm{P}(\mathrm{t})$
direction
origin

3D plane equation

- Implicit plane equation $H(p)=A x+B y+C z+D=0$
- Gradient of H ?

3D plane equation

- Implicit plane equation

$$
H(p)=A x+B y+C z+D=0
$$

- Gradient of H ?
- Plane defined by
- Po(x,y,z,1)
- $n(A, B, C, 1)$

Explicit vs. implicit?

- Plane equation is implicit
- Solution of an equation
- Does not tell us how to generate a point on the plane
- Tells us how to check that a point is on the plane
- Ray equation is explicit
- Parametric
- How to generate points
- Harder to verify that a point is on the ray

Plane-point distance

- Plane $H p=0$
- If n is normalized $d=H P$
- Signed distance!

Line-plane intersection

- Insert explicit equation of line into implicit equation of plane

Additional house keeping

- Verify that intersection is closer than previous
- Verify that it is in the allowed range (in particular not behind the camera, $\mathrm{t}<0$)

Normal

- For shading (recall, diffuse: dot product between light and normal)
- Simply the normal to the plane

- Image by Henrik Wann Jensen using Ray Casting
- Introduction
- Camera and ray generation
- Ray-plane intersection
- Ray-sphere intersection

Sphere equation

- Sphere equation (implicit): $\|P\|^{2}=r^{2}$
- (assume centered at origin, easy to translate)

Ray-Sphere Intersection

- Sphere equation (implicit): $\|P\|^{2}=r^{2}$
- Ray equation (explicit): $P(t)=R+t D$ with $|\mid D \|=1$
- Intersection means both are satisfied

Ray-Sphere Intersection

$$
\begin{aligned}
0 & =\mathbf{P} \cdot \mathbf{P}-r^{2} \\
& =(\mathbf{R}+t \mathbf{D}) \cdot(\mathbf{R}+t \mathbf{D})-r^{2} \\
& =\mathbf{R} \cdot \mathbf{R}+2 t \mathbf{D} \cdot \mathbf{R}+t^{2} \mathbf{D}^{2}-r^{2} \\
& =t^{2}+2 t \mathbf{D} \cdot \mathbf{R}+\mathbf{R} \cdot \mathbf{R}-r^{2}
\end{aligned}
$$

Ray-Sphere Intersection

- This is just a quadratic $a t^{2}+b t+c=0$, where

$$
\begin{aligned}
& -a=1 \\
& -b=2 D \cdot R \\
& -c=R \cdot R-r^{2}
\end{aligned}
$$

- With discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions

$$
t_{ \pm}=\frac{-b \pm d}{2 a}
$$

Ray-Sphere Intersection

- Discriminant

$$
d=\sqrt{b^{2}-4 a c}
$$

- Solutions

$$
t_{ \pm}=\frac{-b \pm d}{2 a}
$$

- Three cases, depending on sign of $b^{2}-4 a c$
- Which root (t+ or t-) should you choose?
- Closest positive! (usually t-)

Ray-Sphere Intersection

- So easy that all ray-tracing images have spheres!

Precision

- What happens when
- Origin is on an object?
- Grazing rays?
- Problem with floating-point approximation

The evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface (no false positive)
- Because secondary rays
- Requires epsilons

The evil ε : a hint of nightmare

- Edges in triangle meshes
- Must report intersection (otherwise not watertight)
- No false negative

Ray-polygon intersection

- Ray-plane intersection
- Test if intersection is in the polygon
- Solve in the 2D plane

Point inside/outside polygon

- Ray intersection definition:
- Cast a ray in any direction
- (axis-aligned is smarter)
- Count intersection
- If odd number, point is inside
- Works for concave and star-shaped

Precision issue

- What if we intersect a vertex?
- We might wrongly count an intersection for each adjacent edge
- Decide that the vertex is always above the ray

Winding number

- To solve problem with star pentagon
- Oriented edges
- Signed number of intersection
- Outside if 0 intersection

Alternative definitions

- Sum of the signed angles from point to vertices
- 360 if inside, 0 if outside
- Sum of the signed areas of point-edge triangles
- Area of polygon if inside, 0 if outside

How do we project into 2D?

- Along normal
- Costly
- Along axis
- Smarter (just drop 1 coordinate)
- Beware of parallel plane

Ray triangle intersection

- Use ray-polygon
- Or try to be smarter
- Use barycentric coordinates

Barycentric definition of a plane

[Möbius, 1827]

- $P(\alpha, \beta, \gamma)=\alpha a+\beta b+\gamma c$ with $\alpha+\beta+\gamma=1$

$$
\begin{array}{ccc}
& \circ & \\
& P_{\bullet} & \\
& \circ & \\
a & & q
\end{array}
$$

Barycentric definition of a triangle

- $\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$ with $\alpha+\beta+\gamma=1$ $0<\alpha<1$ $0<\beta<1$ $0<\gamma<1$

Given P, how can we compute α, β,
 $$
\gamma ?
$$

- Compute the areas of the opposite subtriangle
- Ratio with complete area

$$
\alpha=A_{a} / A, \quad \beta=A_{b} / A \quad \gamma=A_{c} / A
$$

Use signed areas for points outside the triangle

Intuition behind area formula

- P is barycenter of a and Q
- A is the interpolation coefficient on aQ
- All points on line parallel to bc have the same α
- All such Ta triangles have same height/area

Simplify

- Since $\alpha+\beta+\gamma=1$ we can write $\alpha=1-\beta-\gamma$
- $P(\beta, \gamma)=(1-\beta-\gamma) a+\beta b+\gamma c$

Simplify

- $P(\beta, \gamma)=(1-\beta-\gamma) a+\beta b+\gamma c$
- $P(\beta, \gamma)=a+\beta(b-a)+\gamma(c-a)$
- Non-orthogonal coordinate system of the plane

How do we use it for intersection?

- Insert ray equation into barycentric expression of triangle
- $P(t)=a+\beta(b-a)+\gamma(c-a)$
- Intersection if $\beta+\gamma<1 ; \quad 0<\beta$ and $0<\gamma$

Intersection

- $R_{x}+t D_{x}=a_{x}+\beta\left(b_{x}-a_{x}\right)+\gamma\left(c_{x}-a_{x}\right)$
- $R_{y}+t D_{y}=a_{y}+\beta\left(b_{y}-a_{y}\right)+\gamma\left(c_{y}-a_{y}\right)$
- $\mathrm{R}_{\mathrm{z}}+\mathrm{tD}_{\mathrm{z}}=\mathrm{a}_{\mathrm{z}}+\beta\left(\mathrm{b}_{\mathrm{z}}-\mathrm{a}_{\mathrm{z}}\right)+\gamma\left(\mathrm{c}_{\mathrm{z}}-\mathrm{a}_{\mathrm{z}}\right)$

Matrix form

- $R_{x}+t D_{x}=a_{x}+\beta\left(b_{x}-a_{x}\right)+\gamma\left(c_{x}-a_{x}\right)$
- $R_{y}+D_{y}=a_{y}+\beta\left(b_{y}-a_{y}\right)+\gamma\left(c_{y}-a_{y}\right)$
- $\mathrm{R}_{\mathrm{z}}+\mathrm{DD}_{\mathrm{z}}=\mathrm{a}_{\mathrm{z}}+\beta\left(\mathrm{b}_{\mathrm{z}}-\mathrm{a}_{\mathrm{z}}\right)+\gamma\left(\mathrm{c}_{\mathrm{z}}-\mathrm{a}_{\mathrm{z}}\right)$

$$
\left[\begin{array}{ccc}
a_{x}-b_{x} & a_{x}-c_{x} & D_{x} \\
a_{y}-b_{y} & a_{y}-c_{y} & D_{y} \\
a_{z}-b_{z} & a_{z}-c_{z} & D_{z}
\end{array}\right]\left[\begin{array}{c}
\beta \\
\gamma \\
t
\end{array}\right]=\left[\begin{array}{c}
a_{x}-R_{x} \\
a_{y}-R_{y} \\
a_{z}-R_{z}
\end{array}\right]
$$

Cramer's rule

- || denotes the determinant

$$
\beta=\frac{\left|\begin{array}{ccc}
a_{x}-R_{x} & a_{x}-c_{x} & D_{x} \\
a_{y}-R_{y} & a_{y}-c_{y} & D_{y} \\
a_{z}-R_{z} & a_{z}-c_{z} & D_{z}
\end{array}\right|}{|A|} \gamma=\frac{\left|\begin{array}{ccc}
a_{x}-b_{x} & a_{x}-R_{x} & D_{x} \\
a_{y}-b_{y} & a_{y}-R_{y} & D_{y} \\
a_{z}-b_{z} & a_{z}-R_{z} & D_{z}
\end{array}\right|}{|A|} \quad t=\frac{\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-c_{x} & a_{x}-R_{x} \\
a_{y}-b_{y} & a_{y}-c_{y} & a_{y}-R_{y} \\
a_{z}-b_{z} & a_{z}-c_{z} & a_{z}-R_{z}
\end{array}\right|}{|A|}
$$

- Can be copied mechanically in the code

Advantage

- Efficient
- Store no plane equation
- Get the barycentric coordinates for free
- Useful for interpolation, texture mapping

More Effects

Extra rays needed for these effects:

- Distribution Ray Tracing
- Soft shadows
- Anti-aliasing (getting rid of jaggies)
- Glossy reflection
- Motion blur
- Depth of field (focus)

Shadows

- one shadow ray per intersection per point light source

Soft Shadows

- multiple shadow rays to sample area light source
area light source

Antialiasing - Supersampling jaggies
 w/ antialiasing

- multiple rays per pixel point light

area light

Reflection

- one reflection ray per intersection

Glossy Reflection

- multiple reflection rays

Motion Blur

- Sample objects temporally

Rob Cook

Depth of Field

- multiple rays per pixel

Justin Legakis

Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
- Soft shadows
- Anti-aliasing
- Glossy reflection
- Motion blur
- Depth of field

Accelerating RT

- Reduce the number of pixels traced - Render cache
- Reduce the number of intersections
- Spatial subdivision data structures

Reduce the number of pixels traced

- Render Cache
- EG Workshop on Rendering 99 (Walter et al.)
- Only trace a small number of rays
- Separate display loop and render loop
- Interpolate a cache of reprojected points
- More details at publication page
- demo

Reduce the number of intersections

- Bounding Boxes
- of each primitive
- of groups
- of transformed primitives
- Spatial Acceleration Data Structures
- Flattening the transformation hierarchy

Acceleration of Ray Casting

- Goal: Reduce the number of ray/primitive intersections

Conservative Bounding Region

- First check for an intersection with a conservative bounding region
- Early reject

Conservative Bounding Regions

- tight \rightarrow avoid false positives
- fast to intersect

arbitrary convex region (bounding half-spaces)

axis-aligned bounding box

Intersection with Axis-Aligned

Box

- For all 3 axes, calculate the intersection distances t_{1} and t_{2}
- $t_{\text {near }}=\max \left(t_{1 x}, t_{1 y}, t_{1 z}\right)$ $t_{\text {far }}=\min \left(t_{2 x}, t_{2 y}, t_{2 z}\right)$
- If $t_{\text {near }}>t_{\text {far }}$, box is missed
- If $t_{\text {far }}<t_{\text {min }}$, box is behind
- If box survived tests, report intersection at $t_{\text {near }}$

Bounding Box of a Triangle

Bounding Box of a Sphere

Bounding Box of a Plane

$$
\begin{aligned}
& \left(x_{\min }, y_{\min }, z_{\min }\right) \\
& =(-\infty,-\infty,-\infty)^{*}
\end{aligned}
$$

* unless n is exactly perpendicular to an axis

Bounding Box of a Group

$\left(x_{\max }, y_{\max }, z_{\max }\right)$
$=\left(\max \left(x_{\text {max_}-}, X_{\text {max_ }}\right)\right.$, $\max \left(y_{\text {max_a }}, y_{\text {max_b }}\right)$, $\left.\max \left(Z_{\text {max _a }}, Z_{\text {max _b }}\right)\right)$
$\left(x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right)=\left(\min \left(x_{\text {min_} _}, x_{\text {min_ } b}\right)\right.$, $\min \left(y_{\text {min _a }}, y_{\text {min_ } b}\right)$, $\left.\min \left(Z_{\text {min }}, Z_{\text {min }}\right)\right)$

Bounding Box of a Transform

Reduce the number of intersections

- Bounding Boxes
- Spatial Acceleration Data Structures
- Regular Grid
- Adaptive Grids
- Hierarchical Bounding Volumes
- Flattening the transformation hierarchy

Regular Grid

Create grid

- Find bounding box of scene
- Choose grid spacing
- grid $_{x}$ need not $=$ grid $_{y}^{\text {grid }_{y}}$

Insert primitives into grid

- Primitives that overlap multiple cells?
- Insert into multiple cells (use pointers)

For each cell along a ray

- Does the cell contain an intersection?
- Yes: return closest intersection
- No: continue

Preventing repeated computation

- Perform the computation once, "mark" the object
- Don't re-intersect marked objects

Don't return distant intersections

- If intersection t is not within the cell range, continue (there may be something closer)

Where do we start?

- Intersect ray with scene bounding box
- Ray origin may be inside the scene bounding box

Is there a pattern to cell crossings?

- Yes, the horizontal and vertical crossings have regular spacing

What's the next cell?

if $\boldsymbol{t}_{\text {next_v }}<\boldsymbol{t}_{\text {next_h }}$ $i+=\operatorname{sign}_{x}$
$t_{\text {min }}=t_{\text {next_v }}$ $t_{\text {next_v }}+=d t_{v}$ else

$$
\begin{aligned}
& j+=\operatorname{sign}_{y} \\
& t_{\min }=t_{n e x t _h} \\
& t_{\text {next_h }}+=d t_{h}
\end{aligned}
$$

if $\left(\right.$ dir $\left._{x}>0\right)$ sign $_{x}=1$ else $\operatorname{sign}_{x}=-1$
if $\left(\right.$ dir $\left._{y}>0\right) \operatorname{sign}_{y}=1$ else sign $y_{y}=-1$

What's the next cell?

- 3DDDA - Three Dimensional
Digital
Difference
Analyzer

Pseudo-code

create grid
insert primitives into grid
for each ray r
find initial cell $c(i, j), t_{\text {min }}, t_{\text {next_v }} \& t_{\text {next_h }}$ compute $\mathrm{dt}_{\mathrm{v}}, \mathrm{dt}_{\mathrm{h}}, \operatorname{sign}_{\mathrm{x}}$ and $\operatorname{sign}_{\mathrm{y}}$ while c != NULL
for each primitive p in c
intersect r with p
if intersection in range found return
$c=$ find next cell

Regular Grid Discussion

- Advantages?
- easy to construct
- easy to traverse
- Disadvantages?
- may be only sparsely filled
- geometry may still be clumped

Reduce the number of intersections

- Bounding Boxes
- Spatial Acceleration Data Structures
- Regular Grid
- Adaptive Grids
- Hierarchical Bounding Volumes
- Flattening the transformation hierarchy

Adaptive Grids

- Subdivide until each cell contains no more than n elements, or maximum depth d is reached

Nested Grids

Octree/(Quadtree)

Primitives in an Adaptive Grid

- Can live at intermediate levels, or be pushed to lowest level of grid

Octree/(Quadtree)

Adaptive Grid Discussion

- Advantages?
- grid complexity matches geometric density
- Disadvantages?
- more expensive to traverse (especially octree)

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side $O R$
- Use modeling hierarchy

Intersection with BVH

- Check subvolume with closer intersection first

Intersection with BVH

- Don't return intersection immediately if the other subvolume may have a closer intersection

Bounding Volume Hierarchy Discussion

- Advantages
- easy to construct
- easy to traverse
- binary
- Disadvantages
- may be difficult to choose a good split for a node
- poor split may result in minimal spatial pruning

Ombres

- Why are Shadows Important?
- Shadows \& Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Shadow Volumes

Why are Shadows Important?

- Depth cue
- Scene Lighting
- Realism
- Contact points

Shadows as a Depth Cue

For Intuition about Scene Lighting

- Position of the light (e.g. sundial)
- Hard shadows vs. soft shadows
- Colored lights
- Directional light vs. point light

Shadows as the Origin of Painting

Shadows and Art

- Only in Western pictures (here Caravaggio)

- Why are Shadows Important?
- Shadows \& Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Shadow Volumes

Shadows

- One shadow ray per intersection per point light source

Soft Shadows

- Caused by extended light sources
- Umbra
- source completely occluded
- Penumbra
- Source partially occluded
- Fully lit

Soft Shadows

- Multiple shadow rays to sample area light source
area light source

Shadows in Ray Tracing

- Shoot ray from visible point to light source
- If blocked, discard light contribution
- Optimization?
- Stop after first intersection (don't worry about tmin)
- Coherence: remember the previous occluder, and test that object first

Traditional Ray Tracing

Ray Tracing + Soft Shadows

- Why are Shadows Important?
- Shadows \& Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Shadow Volumes

Cast Shadows on Planar Surfaces

- Draw the object primitives a second time, projected to the ground plane

Limitations of Planar Shadows

- Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.

Today

- Why are Shadows Important?
- Shadows \& Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Texture Mapping
- Shadow View Duality
- Shadow Volumes

Texture Mapping

- Don't have to represent everything with geometry

Shadow/View Duality

- A point is lit if it is visible from the light source

- Shadow computation similar to view computation

Fake Shadows using Projective Textures

- Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

Image from light source BW image of obstacle

Final image

Figure from Moller \& Haines "Real Time Rendering"

Shadow maps

- In Renderman
- (High-end production software)

Shadow Mapping

- Texture mapping with depth information
- ≥ 2 passes through the pipeline
- Compute shadow map (depth from light source)
- Render final image (check shadow map to see if points are in shadow)

Figure from Foley et al. "Computer Graphics Principles and Practice"

Shadow Map Look Up

- We have a 3D point (x, y, z)
- How do we look up the depth from the shadow map?
- Use the 4×4 perspective projection matrix from the light source to get ($\left.x^{\prime}, y^{\prime}, z^{\prime}\right)_{L S}$
- ShadowMap(x^{\prime}, y^{\prime}) < z^{\prime} ?

Foley et al. "Computer Graphics Principles and Practice"

Shadow Maps

- Can be done in hardware
- Using hardware texture mapping
- Texture coordinates u,v,w generated using 4x4 matrix
- Modern hardware permits tests on texture values

Limitations of Shadow Maps

1. Field of View
2. Bias (Epsilon)
3. Aliasing

1. Field of View Problem

- What if point to shadow is outside field of view of shadow map?
- Use cubical shadow map

- Use only spot lights!

2. The Bias (Epsilon) Nightmare

- For a point visible from the light source
ShadowMap $\left(x^{\prime}, y^{\prime}\right) \approx z^{\prime}$
- How can we avoid erroneous self-shadowing?
- Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps

ShadowMap(x',y') + bias < z'
Choosing a good bias value can be very tricky

Correct image

Not enough bias

Way too much bias

3. Shadow Map Aliasing

- Under-sampling of the shadow map
- Reprojection aliasing - especially bad when the camera \& light are pointing towards each other

Shadow Map Filtering

- Should we filter the depth? (weighted average of neighboring depth

a) Ordinary texture map filtering. Does not work for depth maps.

Percentage Closer Filtering

- Instead filter the result of the test (weighted average of comparison results)
- But makes the bias issue more tricky

Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky

Projective Texturing + Shadow Map

Light's View

Depth/Shadow Map

Eye’s View

Images from Cass Everitt et al.,
"Hardware Shadow Mapping"
NVIDIA SDK White Paper

Shadow Map Demo

- Demo1 hardware shadow map
- Demo2 hardware shadow map

Perspective Shadow Maps

- Change the projection for the light source
- Adapt the resolution of the shadow map according to the view
- SIGGRAPH 2002 (Stamminger \& Drettakis)
- More details at the publication page

shadow map aliasing

- perspective aliasing
parallel light

shadow map aliasing

- perspective aliasing
- smooth transition

[^0]
shadow map aliasing

- projection aliasing

shadow map aliasing

- projection aliasing
- very local

aliased oversampled

perspective transformation

perspective shadow map

- standard shadow map • perspective shadow map

perspective shadow map

- standard shadow map • perspective shadow map

perspective shadow map

- shadow map in post-perspective space
- just another shadow map projection
- reduces perspective aliasing
- regeneration per frame necessary

light source transformation

- parallel light becomes point 10nt

Results

Perspective Shadow Map Demo

- Demo

Shadows in Production

- Often use shadow maps
- Ray casting as fallback in case of robustness issues

Figure 12. Frame from Luxo Jr.

- Why are Shadows Important?
- Shadows \& Soft Shadows in Ray Tracing
- Planar Shadows
- Shadow Maps
- Shadow Volumes
- The Stencil Buffer

Shadow Volumes

- Explicitly represent the volume of space in shadow
- For each polygon
- Pyramid with point light as apex
- Include polygon to cap
- Shadow test similar to clipping

volume

Shadow Volumes

- If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light
- Naive implementation: \#polygons * \#lights

Shadow Volumes

- Shoot a ray from the eye to the visible point
- Increment/decrement a counter each time we intersect a shadow volume polygon (check z buffer)
- If the counter $\neq 0$, the point is in shadow

Stencil Buffer

- Tag pixels in one rendering pass to control their update in subsequent rendering passes
- "For all pixels in the frame buffer" \rightarrow "For all tagged pixels in the frame buffer"
- Used for real-time mirrors (\& other reflective surfaces), shadows \& more!
from NVIDIA's stencil buffer tutoria (http://developer.nvidia.com)

Stencil Buffer

- Can specify different rendering operations for each of the following stencil tests:
- stencil test fails
- stencil test passes \& depth test fails
- stencil test passes \& depth test passes
image from NVIDIA's stencil buffer tutorial (http://developer.nvidia.com)

Shadow Volumes w/ the Stencil

 BufferInitialize stencil buffer to 0

Draw scene with ambient light only
Turn off frame buffer \& z-buffer updates
Draw front-facing shadow polygons If z-pass \rightarrow increment counter
Draw back-facing shadow polygons If z-pass \rightarrow decrement counter
Turn on frame buffer updates
Turn on lighting and redraw pixels with counter $=0$

If the Eye is in Shadow...

- ... then a counter of 0 does

not necessarily mean lit
- 3 Possible Solutions:

1. Explicitly test eye point with respect to all shadow volumes
2. Clip the shadow volumes to the view frustum
3. "Z-Fail" shadow volumes

1. Test Eye with Respect to Volumes

- Adjust initial counter value

Expensive

2. Clip the Shadow Volumes

- Clip the shadow volumes to the view frustum and include these new polygons
- Messy CSG

3. "Z-Fail" Shadow Volumes

Start at infinity

Draw front-facing shadow polygons
If z-fail, decrement counter
Draw back-facing shadow polygons
If z-fail, increment counter

3. "Z-Fail" Shadow Volumes

- Introduces problems with far clipping plane
- Solved by clamping the depth during clipping

Optimizing Shadow Volumes

- Use silhouette edges only (edge where a back-facing \& front-facing polygon meet)

Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
- for a really complex scene/object,
the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap \& must not have gap

Shadow Volume Demo

- Stencil buffer shadow volume demo

Global Illumination: Radiosity and
 Monte Carlo Methods

Today

- Radiosity methods
- Why Radiosity
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Monte Carlo methods
- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carln renderina

Radiosity

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity

Rendering Recap

- Ray-tracing
- For each pixel, for each object
- Graphics pipeline, scan conversion
- For each object, for each pixel
- Local lighting models
- Diffuse, Phong
- Shadows
- Ray casting, shadow maps, shadow volumes
- Reflection, refraction

Why global illumination?

- Simulate all light inter-reflections (indirect lighting)
- e.g. in a room, a lot of the light is indirect: it is reflected by walls.
- How have we dealt with this so far?
- Ambient term to fake some uniform indirect light

Direct illumination

Global Illumination

Why Radiositv?

- Sculpture by John Ferren
- Diffuse panels
photograph:

All visible surfaces, white.

Radiosity vs. Ray Tracing

Original sculpture by John Ferren lit by daylight from behind.

Ray traced image. A standard ray tracer cannot simulate the interreflection of light between diffuse surfaces.

Image rendered with radiosity. note color bleeding effects.

Two approaches for global illumination

- Radiosity
- View-independent
- Diffuse only
- Monte-Carlo Ray-tracing
- Send tons of indirect rays

Radiosity vs. Ray Tracing

- Ray tracing is an image-space algorithm
- If the camera is moved, we have to start over
- Radiosity is computed in object-space
- View-independent (just don't move the light)
- Can pre-compute complex lighting to allow interactive walkthroughs

Radiosity

Lightscape
http://www.lightscape.com

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

$L\left(x^{\prime}, \omega^{\prime}\right)$ is the radiance from a point on a surface in a given direction ω^{\prime}

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

$E\left(x^{\prime}, \omega^{\prime}\right)$ is the emitted radiance from a point: E is non-zero only if x ' is emissive (a light source)

The Rendering Equation $\omega^{\boldsymbol{K}}$,

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}
$$

Sum the contribution from all of the other surfaces in the scene

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}(\omega, \omega}\left(\omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x, compute $L(x, \omega)$, the radiance at point x in the direction ω (from x to x^{\prime})

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$
scale the contribution by
$\rho_{\mathrm{x}^{\prime}}\left(\omega, \omega^{\prime}\right)$, the reflectivity
(BRDF) of the surface at x^{\prime}

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$
For each x, compute $V\left(x, x^{\prime}\right)$, the visibility between x and x^{\prime} :
1 when the surfaces are unobstructed along the direction ω, 0 otherwise

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}(\omega, \omega}\left(\omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x, compute $G\left(x, x^{\prime}\right)$, which describes the on the geometric relationship between the two surfaces at x and x '

Intuition about $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?

Older Radiosity Images (1989)

Museum simulation. Program of Computer Graphics, Cornell University. 50,000 patches. Note indirect lighting from ceiling.

Radiosity

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity

Radiosity Overview

- Surfaces are assumed to be perfectly Lambertian (diffuse)
- reflect incident light in all directions with equal intensity
- The scene is divided into a set of small areas, or patches.
- The radiosity, B_{i}, of patch i is the total rate of energy leaving a surface. The radiosity over a patch is constant.
- Units for radiosity: Watts / steradian * meter ${ }^{2}$

Radiosity Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

Radiosity assumption: perfectly diffuse surfaces (not directional)

$$
B_{x^{\prime}}=E_{x^{\prime}}+\rho_{x^{\prime}} \int \quad B_{x} \quad G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)
$$

Continuous Radiosity Equation

G: geometry term V : visibility term

No analytical solution, even for simple configurations

Discrete Radiosity Equation

Discretize the scene into n patches, over which the radiosity is constant

$$
B_{i}=E_{i}+\stackrel{\downarrow}{\rho_{i}} \sum_{j=1}^{n} F_{i j} B_{j}
$$

- discrete representation
- iterative solution
- costly geometric/visibility calculations

The Radiosity Matrix
 $$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}
$$

n simultaneous equations with n unknown B_{i} values can be written in matrix form:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \\
\vdots & & \ddots & \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

A solution yields a single radiosity value B_{i} for each patch in the environment, a view-independent solution.

Solving the Radiosity Matrix

The radiosity of a single patch i is updated for each iteration by gathering radiosities from all other patches:

$$
\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{i} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{i} \\
\vdots \\
E_{n}
\end{array}\right]+\left[\begin{array}{lllll}
\\
& & & \\
\rho_{i} F_{i 1} & \rho_{i} F_{i 2} & \cdots & \rho_{i} F_{i n} \\
& & &
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{i} \\
\vdots \\
B_{n}
\end{array}\right]
$$

This method is fundamentally a Gauss-Seidel relaxation

Computing Vertex Radiosities

- B_{i} radiosity values are constant over the extent of a patch.
- How are they mapped to the vertex radiosities (intensities) needed by the renderer?
- Average the radiosities of patches that contribute to the vertex
- Vertices on the edge of a surface are assigned values extrapolation

Radiosity 1988

Factory simulation. Program of Computer Graphics, Cornell University. 30,000 patches.

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity

Radiosity Patches are Finite Elements

- We are trying to solve an the rendering equation over the infinite-dimensional space of radiosity functions over the scene.
- We project the problem onto a finite basis of functions: piecewise constant over patches

Calculating the Form Factor F_{ij}

- $\mathrm{F}_{\mathrm{ij}}=$ fraction of light energy leaving patch j that arrives at patch i
- Takes account of both:
- geometry (size, orientation \& position)
- visibility (are there any occluders?)

Remember Diffuse Lighting?

$$
\begin{aligned}
& L_{o}=k_{d}(\mathbf{n} \cdot \mathbf{I}) \frac{L_{i}}{r^{2}} \\
& d A=d B \cos \theta_{i}
\end{aligned}
$$

Surface

Calculating the Form Factor F_{ij}

- $F_{i j}=$ fraction of light energy leaving patch j that arrives at patch I

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.

Hemicube Algorithm

- A hemicube is constructed around the center of each patch
- Faces of the hemicube are divided into "pixels"
- Each patch is projected (rasterized) onto the faces of the hemicube
- Each pixel stores its pre-computed form factor The form factor for a particular patch is just the sum of the pixels it overlaps
- Patch occlusions are handled similar to z-buffer rasterization

Form Factor from Ray Casting

- Cast n rays between the two patches
$-n$ is typically between 4 and 32
- Compute visibility
- Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch

Lightscape
http://www.lightscape.com

Radiosity

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity

Stages in a Radiosity Solution

Progressive Refinement

- Goal: Provide frequent and timely updates to the user during computation
- Key Idea: Update the entire image at every iteration, rather
 than a single patch
- How? Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.

Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:

$$
\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
B_{n}
\end{array}\right]+\left[\begin{array}{lc}
\cdots & \rho_{1} F_{1 i} \\
\cdots & \rho_{2} F_{2 i} \\
& \\
& \\
\cdots & \rho_{n} F_{n i}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\cdots \\
\\
\cdots
\end{array}\right]\left[\begin{array}{c}
\\
\vdots \\
B_{i} \\
\vdots \\
\end{array}\right]
$$

This method is fundamentally a Southwell relaxation

Progressive Refinement w/out Ambient Term

Progressive Refinement with Ambient Term

Lightscape
http://www.lightscape.com

Monte Carlo Methods

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

A little bit of eye candy for motivation

- Glossy material rendering
- Random reflection rays around mirror direction
- 1 sample per pixel

A little bit of eye candy for motivation

- Glossy material rendering
- Random reflection rays around mirror direction
- 256 sample per pixel

Monte Carlo Images

- Image from the ARNOLD Renderer by Marcos Fajardo

Expected value

$$
\begin{gathered}
E[x]=\int_{-\infty}^{\infty} x p(x) d x \\
E[f(x)]=\int_{-\infty}^{\infty} f(x) p(x) d x
\end{gathered}
$$

- Expected value is linear

$$
E\left[f_{1}(x)+a f_{2}(x)\right]=E\left[f_{1}(x)\right]+a E\left[f_{2}(x)\right]
$$

Variance

$\sigma^{2}=E\left[(x-E[x])^{2}\right]=\int_{-\infty}^{\infty}(x-E[x])^{2} p(x) d x$

- Measure of deviation from expected value
- Expected value of square difference (MSE)
- Standard deviation σ :
square root of variance (notion of error, RMS)

Variance

$$
\sigma^{2}=E\left[(x-E[x])^{2}\right]=E\left[x^{2}\right]-(E[x])^{2}
$$

- Proof:

$$
\begin{aligned}
& \sigma^{2}=E\left[(x-E[x])^{2}\right] \\
& =E\left[x^{2}-2 x E[x]+E[x]^{2}\right]
\end{aligned}
$$

- Note that $\mathrm{E}[\mathrm{x}]$ is a constant. By linearity of E we have:

$$
\begin{gathered}
\sigma^{2}=E\left[x^{2}\right]-(2 E[x]) E[x]+(E[x])^{2} \\
\sigma^{2}=E\left[x^{2}\right]-(E[x])^{2}
\end{gathered}
$$

Monte Carlo Methods

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

Monte Carlo integration

- Function $f(x)$ of $\mathbf{x} 2$ [a b] $I=\int_{a}^{b} f(x) d x$
- We want to compute
- Consider a random variable x
- If x has uniform distribution, $I=E[f(x)]$
- By definition of the expected value

Sum of Random Variables

- Use N independent identically-distributed (IID) variables x_{i}
- Share same probability (uniform here)
- Define

$$
F_{N}=\frac{1}{N} \sum_{j=1}^{n} f\left(x_{i}\right)
$$

- By linearity of the expectation:
$E\left[F_{N}\right]=E[f(x)]$

Study of variance

$\sigma^{2}\left[F_{N}\right]=\sigma^{2}\left[\sum_{j=1}^{n} \frac{f\left(x_{i}\right)}{N}\right]$

- Recall $\sigma^{2}[x+y]=\sigma^{2}[x]+\sigma^{2}[y]+2 \operatorname{Cov}[x, y]$ - We have independent variables: $\operatorname{Cov}[x i, x]]=0$ if $i \neq j$
$\square \sigma^{2}[\mathrm{ax}]=\mathrm{a}^{2} \sigma^{2}[\mathrm{x}]$

$$
\sigma^{2}\left[F_{N}\right]=\frac{\sigma^{2}[f(x)]}{N}
$$

- i.e. stddev σ (error) decreases by

Example

$I=\int_{0}^{1} 5 x^{4} d x$

- We know it should be 1.0
- In practice with uniform samples:

Monte Carlo integration with probability

- Consider N random samples over domain with probability $p(x)$
- Define estimator < I > as:

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Probability p allows us to sample the domain more smartly

Monte-Carlo Recap

- Expected value is the integrand
- Accurate "on average"
- Variance decrease in $1 / \mathrm{N}$
- Error decreases in $1 / \sqrt{n}$
1-8

Advantages of MC Integration

- Few restrictions on the integrand
- Doesn't need to be continuous, smooth, ...
- Only need to be able to evaluate at a point
- Extends to high-dimensional problems
- Same convergence
- Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC

- Noisy
- Slow convergence
- Good implementation is hard
- Debugging code
- Debugging maths
- Choosing appropriate techniques

- Images by Veach and Guibas

Naïve sampling strategy

Optimal sampling strategy

Today's lecture

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

What can we integrate?

- Pixel: antialiasing

$$
\iiint \iint L(x, y, t, u, v) d x d y d t d u d v
$$

- Light sources: Soft shadows
- Lens: Depth of field
- Time: Motion blur
- BRDF: glossy reflection
- Hemisphere: indirect lighting

Domains of integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
- Work needed to ensure uniform probability
- Light source
- Same thing: make sure that the probabilities and the measures are right.

Example: Light source

- Integrate over surface or over angle
- Be careful to get probabilities and integration measure right!

Sampling the source uniformly source

Sampling the hemisphere uniformly

- Image by Henrik Wann Jensen

Today's lecture

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

Important issues in MC rendering

- Reduce variance!
- Choose a smart probability distribution
- Choose smart sampling patterns
- And of course, cheat to make it faster without being noticed

Example: Glossy rendering

- Integrate over hemisphere
- BRDF times cosine times incoming light

Slide courtesy of Jason Lawrence

Sampling a BRDF

5 Samples/Pixel

$P\left(\omega_{i}\right)$

Slide courtesy of Jason Lawrence

Sampling a BRDF

25 Samples/Pixel

Slide courtesy of Jason Lawrence

Sampling a BRDF

75 Samples/Pixel

$P\left(\omega_{i}\right)$

Slide courtesy of Jason Lawrence

Importance sampling

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Choose p wisely to reduce variance
$-p$ that resembles f
- Does not chanae converaence rate (still sart)

Questions?

1200 Samples/Pixel

Traditional importance function

Better importance by Lawrence et al.

Today's lecture

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

Stratified sampling

- With uniform sampling, we can get unlucky
- E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_{i}
- Each region is called a stratum
- Take one random sample per Ω_{i}

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

Example

- Borrowed from Henrik Wann Jensen

$$
\begin{array}{rr}
f(x)=e^{\sin \left(3 x^{2}\right)} \\
& \\
\mathrm{N} & \mathrm{I} \\
\hline 1 & 2.75039 \\
10 & 1.9893 \\
100 & 1.79139 \\
1000 & 1.75146 \\
10000 & 1.77313 \\
100000 & 1.77862 \\
\hline
\end{array}
$$

$$
\begin{array}{rr}
f(x)=e^{\sin \left(3 x^{2}\right)} \\
\hline \mathrm{N} & \mathrm{l} \\
\hline 1 & 2.70457 \\
10 & 1.72858 \\
100 & 1.77925 \\
1000 & 1.77606 \\
10000 & 1.77610 \\
100000 & 1.77610 \\
\hline
\end{array}
$$

Unstratified
$O(1 / \sqrt{N})$

Stratified
$O(1 / N)$

Stratified sampling - bottomline

- Cheap and effective
- Typical example: jittering for antialiasing
- Signal processing perspective: better than uniform because less aliasing (spatial patterns)
- Monte-Carlo perspective: better than random because lower variance (error for a given pixel)
- Image from the ARNOLD Renderer by Marcos Fajardo

Monte Carlo Methods

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

Recall The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

Ray Casting

- Cast a ray from the eye through each pixel

Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Accumulate radiance contribution

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Monte-Carlo

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Monte-Carlo

- Systematically sample primary light

Results

Monte Carlo Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel
- (performs antialiasing as well)

- 10 paths/pixel

Results

Think about it : we compute an infinite-dimensional integral with 10 samples!!!

- 10 path/Results. glossy

Results: glossy

- 10 paths/pixel

Results: glossy

- 100 paths/pixel

Importance of sampling the light

1 path per pixel
Without explicit light sampling

With explicit

Why use random numbers?

- Fixed random sequence
- We see the structure in the error

Convergence speed

- Vintage path tracing by Kajiya (1986, introduction of the rendering equation)

Radiosity vs. Monte Carlo

- We have an integral equation on an infinite space
- Finite elements (Radiosity)
- Project onto finite basis of functions
- Linear system
- View-independent (no angular information)
- Monte Carlo
- Probabilistic sampling
- View-dependent (but angular information)

Today's lecture

- Expected value and variance
- Analysis of Monte-Carlo integration
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Global illumination
- Advanced Monte-Carlo rendering

Path Tracing is costly

- Needs tons of rays per pixel

Direct illumination

Global Illumination

Indirect illumination: smooth

Irradiance cache

- The indirect illumination is smooth

Irradiance cache

- The indirect illumination is smooth

Irradiance cache

- The indirect illumination is smooth
- Interpolate nearby values

Irradiance cache

- Store the indirect illumination
- Interpolate existing cached values
- But do full calculation for direct lighting

Irradiance caching

- Yellow dots: computation of indirect diffuse contribution

Photon mapping

- Preprocess: cast rays from light sources
- Store photons

Photon mapping

- Preprocess: cast rays from light sources
- Store photons (position + light power + incoming direction)

Photon map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Photon mapping - rendering

- Cast primary rays
- For secondary rays
- reconstruct irradiance using adjacent stored photon
- Take the k closest photons
- Combine with irradiance caching and a number of other techniques

Photon map results

Photon mapping - caustics

- Special photon map for specular reflection and refraction

- 1000 paths/pixel

- Photon mapping

References

- Eric Veach's PhD dissertation http://graphics.stanford.edu/papers/veach thesi
- Physically Based Rendering by Matt Pharr, Greg Humphreys

References

Advanced Global Illumination

Philip Dutré Philippe Bekaert Kavita Bala

RTulsic RNT Thatich PETER SHIRLEY

Henrik Wann Jensen
Realistic Image Sunthesis Using Phatan Mapping

Foreword by Pat Hanrahan

Advanced Topics

- Advanced Radiosity
- Adaptive Subdivision
- Discontinuity Meshing
- Hierarchical Radiosity
- Other Basis Functions

Increasing the Accuracy of the Solution

What's wrong with this picture?

- The quality of the image is a function of the size of the patches
- The patches should be adaptively subdivided near shadow boundaries, and other areas with a high radiosity gradient
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance

Adaptive Subdivision of Patches

Coarse patch solution (145 patches)

Improved solution (1021 subpatches)

Adaptive subdivision (1306 subpatches)

Discontinuity Meshing

source

- Limits of umbra and penumbra
- Captures nice shadow boundaries
- Complex geometric computation
- The mesh is getting complex

Discontinuity Meshing

Discontinuity Meshing

10 minutes 23 seconds

Hierarchical Approach
 - Group elements when the light exchange is not important

- Breaks the quadratic complexity
- Control non trivial, memory cost

Other Basis Functions

- Higher order (non constant basis)
- Better representation of smooth variations
- Problem: radiosity is discontinuous (shadow boundary)
- Directional basis
- For non-diffuse finite elements
- E.g. spherical harmonics

Lightscape
http://www.lightscape.com

Radiosity today

- Used in architectural simulation (Lightscape software)
- Used for game lighting preprocessing (light maps)
- Not as hot a research topic
- Monte-Carlo Ray-tracing is hotter (more general)
- But "pre-computed radiance transfer" is very close: idea of projecting onto simpler basis functions (used e.g. in Max Payne 2)

Practical problems with radiosity

- Meshing (memory, robustness)
- Form factors (computation)
- Diffuse limitation (extension to specular takes too much memory)
- Fast extensions (hierarchical) can be hard to control

Fin

Durer's Ray casting machine

- Albrecht Durer, $16^{\text {th }}$ century

Oldest illustration

- From. R. Gemma Frisius, 1545

Camera Obscura

Orthographic camera

- Parallel projection
- No foreshortening
- No vanishingpoint

Orthographic camera description

Orthographic camera

description

- Direction
- Image center

Orthographic ray generation

- Direction is constant
- Origin $=$ center $+(x-0.5) *$ size*up $+(y-$ $0.5)^{*}$ sideretchion

Other weird cameras

- E.g. fish eye, omnimax, panorama

Geometric ray-sphere intersection

- Try to shortcut (easy reject)
- e.g.: if the ray is facing away from the sphere
- Geometric considerations can help
- In general, early reject is important

Geometric ray-sphere intersection

- What geometric information is important?
- Inside/outside
- Closest point
- Direction

Geometric ray-sphere intersection

- Find if the ray's origin is outside the sphere
$-R^{2}>r^{2}$
- If inside, it intersects
- If on the sphere, it does not intersect (avoid degeng

Geometric ray-sphere intersection

- Find if the ray's origin is outside the sphere
- Find the closest point to the sphere center

$$
-t_{p}=\text { RO.D }
$$

$$
- \text { If } t_{p}<0,
$$

Geometric ray-sphere intersection

- Find if the ray's origin is outside the sphere
- Find the closest point to the sphere center
- If $t_{p}<0$, no hit
- Else find squared distance d^{2}
- Pythdyborabodifit $\mathrm{R}^{2}-\mathrm{t}_{\mathrm{p}}^{2}$
$-\ldots$

Geometric ray-sphere intersection

- Find if the ray's origin is outside the sphere
- Find the closest point to the sphere center
- If $\mathrm{t}_{\mathrm{p}}<0$, no hit
- If outside $t=t_{p}-t^{\prime}$
$-\mathrm{t}^{\prime 2}+\mathrm{d}^{2}=\mathrm{r}^{2}$
- If inside $t=t_{p}+t^{\prime}$
- Else find squared distance d^{2}

Geometric vs. algebraic

- Algebraic was more simple (and more generic)
- Geometric is more efficient
- Timely tests
- In particular for outside and pointing away

Normal

- Simply Q/||Q||

D R
Q

Special Case: Transformed

 Can we do better? Triangle

Special Case: Transformed

Triangle

$$
\begin{aligned}
& \left(x_{\max }, y_{\max }, z_{\max }\right) \\
& =\left(\max \left(x_{0}^{\prime}, x_{1}, x_{2}^{\prime}\right),\right. \\
& \quad \max \left(y_{0}^{\prime}, y^{\prime},{ }_{1}^{\prime}, y_{2}^{\prime}\right), \\
& \left.\quad \max \left(z_{0}{ }_{0}, z_{1}^{\prime}, z_{1}^{\prime},{ }_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right) \\
& =\left(\min \left(x_{0}{ }_{0}, x_{1}, x_{2}^{\prime}\right),\right. \\
& \quad \min \left(y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right), \\
& \left.\quad \min \left(z_{0}^{\prime}{ }_{0}, z_{1}{ }_{1}, z_{2}^{\prime}{ }_{2}\right)\right)
\end{aligned}
$$

Non-linearity of variance

$$
\sigma^{2}=E\left[(x-E[x])^{2}\right]=\int_{-\infty}^{\infty}(x-E[x])^{2} p(x) d x
$$

- Variançe jer xq t linear !!!!
$\square \sigma^{2}[a x]=$

Non-linearity of variance

$$
\begin{aligned}
& \sigma^{2}\left(x_{1}+x_{2}\right)=E\left[\left(x_{1}+x_{2}\right)^{2}\right]-\left(E\left[x_{1}+x_{2}\right]\right)^{2} \\
& =E\left[x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}\right]-\left(E\left[x_{1}\right]+E\left[x_{2}\right]\right)^{2} \\
& =E\left[x_{1}^{2}\right]+2 E\left[x_{1} x_{2}\right]+E\left[x_{2}^{2}\right]-E\left[x_{1}\right]^{2}-2 E\left[x_{1}\right] E\left[x_{2}\right]-E\left[x_{2}\right]^{2} \\
& =\sigma^{2}\left[x_{1}\right]+\sigma^{2}\left[x_{2}\right]+2 E\left[x_{1} x_{2}\right]-2 E\left[x_{1}\right] E\left[x_{2}\right]
\end{aligned}
$$

- We define the covariance
$\operatorname{Cov}\left[x_{1}, x_{2}\right]=E\left[x_{1} x_{2}\right]-E\left[x_{1}\right] E\left[x_{2}\right]$
$\sigma^{2}\left[x_{1}+x_{2}\right]=\sigma^{2}\left[x_{1}\right]+\sigma^{2}\left[x_{2}\right]+2 \operatorname{Cov}\left[x_{1}, x_{2}\right]$

Non-linearity of variance, covariance

- Consider two random variable x_{1} and x_{2}
- We define the covariance
$\operatorname{Cov}\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]=\mathrm{E}\left[\mathrm{x}_{1} \mathrm{x}_{2}\right]-\mathrm{E}\left[\mathrm{x}_{1}\right] \mathrm{E}\left[\mathrm{x}_{2}\right]$
- Tells how much they are big at the same time
- Null if variables are independent
$\square \sigma^{2}\left[x_{1}+x_{2}\right]=\sigma^{2}\left[x_{1}\right]+\sigma^{2}\left[x_{2}\right]+2 \operatorname{Cov}\left[x_{1}, x_{2}\right]$

Recap

- Expected value is linear
$-\mathrm{E}\left[\mathrm{ax}_{1}+\mathrm{bx} \mathrm{x}_{2}\right]=\mathrm{aE}\left[\mathrm{x}_{1}\right]+\mathrm{bE}\left[\mathrm{x}_{2}\right]$
- Variance is not
- For two independent variables
$-\sigma^{2}\left[x_{1}+x_{2}\right]=\sigma^{2}\left[x_{1}\right]+\sigma^{2}\left[x_{2}\right]$
- If not independent, needs covariance
- $\sigma^{2}[a x]=a^{2} \sigma^{2}[x]$

[^0]: рәјdшеяıəло
 aliased

