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Ray Casting
For every pixel 

Construct a ray from the eye 
For every object in the scene

Find intersection with the ray 
Keep if closest
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Shading
For every pixel 

Construct a ray from the eye 
For every object in the scene

Find intersection with the ray 

Keep if closest

Shade depending on light and normal vector

e.g. diffuse shading:
dot product N.L
a.k.a. Lambertian

L

N



Ray Tracing

• Secondary rays (shadows, reflection, 
refraction)

reflection

refraction



Ray representation?



Ray representation
• Two vectors:

– Origin
– Direction (normalized is better)

• Parametric line
– P(t) = origin + t * direction

origindirection

P(t)



Ray Tracing
• Original Ray-traced 

image by Whitted
(1981)

• Image computed 
using the Dali ray 
tracer by Henrik
Wann Jensen

• Environment map 
by Paul Debevec



Ray casting
For every pixel 

Construct a ray from the eye 
For every object in the scene

Find intersection with the ray
Keep if closest

Shade depending on light and normal vector

L
N

Finding the 
intersection and 
normal is the central 
part of ray casting
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Cameras
For every pixel 

Construct a ray from the eye 
For every object in the scene

Find intersection with the 
ray 

Keep if closest



Pinhole camera

• Box with a tiny hole
• Inverted image
• Similar triangles

• Perfect image if hole 
infinitely small

• Pure geometric optics
• No depth of field 

issue



Simplified pinhole camera

• Eye-image pyramid (frustum)
• Note that the distance/size of image are 

arbitrary



Camera description

– Eye point e
– Orthobasis u, v, w
– Image distance s
– Image rectangle 

(u0, v0, u1, v1)

– Deduce c (lower left)
– Deduce a and b
– Screen coordinates in [0,1]*[0,1]
– A point is then c + x a +y b
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Ray Casting
For every pixel 

Construct a ray from the eye 
For every object in the scene

Find intersection with the ray 
Keep if closest

First we will study ray-plane intersection



Recall: Ray representation

• Two vectors:
– Origin
– Direction (normalized)

• Parametric line
– P(t) = origin + t * direction

origindirection

P(t)



3D plane equation

• Implicit plane equation
H(p) = Ax+By+Cz+D = 0

• Gradient of H?

P
H



3D plane equation

• Implicit plane equation
H(p) = Ax+By+Cz+D = 0

• Gradient of H?
• Plane defined by 

– P0(x,y,z,1)
– n(A, B, C, 1)

HP0P



Explicit vs. implicit?

• Plane equation is implicit 
– Solution of an equation
– Does not tell us how to generate a point on the plane
– Tells us how to check that a point is on the plane

• Ray equation is explicit
– Parametric
– How to generate points
– Harder to verify that a point is on the ray



Plane-point distance

• Plane Hp=0
• If n is normalized

d=HP
• Signed distance!

P’

P0

P

H



Line-plane intersection

• Insert explicit equation of line into
implicit equation of plane

origindirection

P(t)



Additional house keeping

• Verify that intersection is closer than previous
• Verify that it is in the allowed range

(in particular not behind the camera, t<0)

origindirection

P(t)



Normal

• For shading (recall, diffuse: dot product between 
light and normal)

• Simply the normal to the plane

origindirection

P(t)
normal



• Image by Henrik Wann Jensen using Ray Casting
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Sphere equation

• Sphere equation (implicit): ||P||2 = r2

• (assume centered at origin, 
easy to translate)

RD



Ray-Sphere Intersection

• Sphere equation (implicit): ||P||2 = r2

• Ray equation (explicit): P(t) = R+tD
with ||D|| = 1

• Intersection means both are satisfied

RD



Ray-Sphere Intersection

RD



Ray-Sphere Intersection

• This is just a quadratic at2 + bt + c = 0, 
where
– a = 1
– b = 2D.R
– c = R.R – r2

• With discriminant

• and solutions



Ray-Sphere Intersection

• Discriminant
• Solutions
• Three cases, depending on sign of b2 –4ac
• Which root (t+ or t-) should you choose?

– Closest positive! (usually t-)
RD



Ray-Sphere Intersection

• So easy that all ray-tracing images have 
spheres!

RD



Precision

• What happens when 
– Origin is on an object?
– Grazing rays?

• Problem with floating-point approximation



The evil ε

• In ray tracing, do NOT report intersection for 
rays starting at the surface (no false positive)
– Because secondary rays
– Requires epsilons

reflection

refraction



The evil ε: a hint of nightmare

• Edges in triangle meshes
– Must report intersection (otherwise not watertight)
– No false negative



Ray-polygon intersection
• Ray-plane intersection
• Test if intersection is in the polygon

– Solve in the 2D plane

D

R



Point inside/outside polygon

• Ray intersection definition:
– Cast a ray in any direction 

• (axis-aligned is smarter)

– Count intersection
– If odd number, point is inside

• Works for concave and star-shaped



Precision issue

• What if we intersect a vertex?
– We might wrongly count an intersection for each 

adjacent edge
• Decide that the vertex is always above the ray



Winding number

• To solve problem with star pentagon 
• Oriented edges
• Signed number of intersection
• Outside if 0 intersection

+ -+
-



Alternative definitions

• Sum of the signed angles from point to vertices
– 360 if inside, 0 if outside

• Sum of the signed areas of point-edge triangles
– Area of polygon if inside, 0 if outside



How do we project into 2D?

• Along normal
– Costly

• Along axis
– Smarter (just drop 1 coordinate)
– Beware of parallel plane

D

R

D

R



Ray triangle intersection

• Use ray-polygon
• Or try to be smarter

– Use barycentric coordinates

a b

P
RD

c



Barycentric definition of a plane
[Möbius, 1827]

• P( α, β, γ)=αa+βb+γc
with α + β + γ =1

c

P

a b



Barycentric definition of a 
triangle

• P( α, β, γ)=αa+βb+γc
with α + β + γ =1
0< α <1
0< β <1
0< γ <1

c

a b

P



Given P, how can we compute α, β, 
γ ?

• Compute the areas of the opposite subtriangle
– Ratio with complete area

α=Aa/A,      β=Ab/A γ=Ac/A
Use signed areas for points outside the triangle

c

a b

P Ta
T



Intuition behind area formula
• P is barycenter of a and Q
• A is the interpolation coefficient on aQ
• All points on line parallel to bc have the same α
• All such Ta triangles have same height/area

c

a b

P Q



Simplify

• Since α + β + γ =1
we can write α =1− β − γ

• P(β, γ)=(1−β−γ) a + βb +γc
c

a b

P



Simplify

• P(β, γ)=(1−β−γ) a + βb +γc
• P(β, γ)=a + β(b-a) +γ(c-a)
• Non-orthogonal coordinate system of the plane

c

a b

P



How do we use it for 
intersection?

• Insert ray equation into barycentric expression of 
triangle

• P(t)= a+β (b-a)+γ (c-a)
• Intersection if β+γ<1;    0<β   and    0<γ

a b

P
RD

c



Intersection

• Rx+tDx= ax+β (bx-ax)+γ (cx-ax)
• Ry+tDy= ay+β (by-ay)+γ (cy-ay)
• Rz+tDz= az+β (bz-az)+γ (cz-az)

a b

P
RD

c



Matrix form
• Rx+tDx= ax+β (bx-ax)+γ (cx-ax)
• Ry+tDy= ay+β (by-ay)+γ (cy-ay)
• Rz+tDz= az+β (bz-az)+γ (cz-az)
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Cramer’s rule

• | | denotes the determinant

• Can be copied mechanically in the code
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Advantage
• Efficient
• Store no plane equation
• Get the barycentric coordinates for free

– Useful for interpolation, texture mapping

a b

P
RD

c



More Effects



Extra rays needed for these 
effects:

• Distribution Ray Tracing
– Soft shadows
– Anti-aliasing (getting rid of jaggies)
– Glossy reflection
– Motion blur
– Depth of field (focus)



Shadows

• one shadow ray per 
intersection per point 
light source

no shadow rays

one shadow ray



Soft Shadows

• multiple shadow rays 
to sample area light 
source

one shadow ray

lots of shadow rays



Antialiasing – Supersampling
jaggies w/ antialiasing

• multiple 
rays per 
pixel

point light

area light



Reflection

• one reflection ray per intersection

perfect 
mirror

θθ



Glossy Reflection

• multiple reflection 
rays

polished 
surface

θθ

Justin Legakis



Motion Blur

• Sample objects 
temporally

Rob Cook



Depth of Field
• multiple rays per pixel

focal lengthfilm
Justin Legakis



Algorithm Analysis
cost  ≤ height * width * 

num primitives * 
intersection cost * 
num shadow rays *
supersampling *
num glossy rays *              
num temporal samples *
max recursion depth *
. . .

• Ray casting
• Lots of primitives
• Recursive
• Distributed Ray 

Tracing Effects
– Soft shadows
– Anti-aliasing
– Glossy reflection
– Motion blur
– Depth of field

can we reduce this?



Accelerating RT

• Reduce the number of pixels traced
– Render cache

• Reduce the number of intersections
– Spatial subdivision data structures



Reduce the number of pixels traced

• Render Cache
– EG Workshop on Rendering 99 (Walter et al.)
– Only trace a small number of rays
– Separate display loop and render loop
– Interpolate a cache of reprojected points

• More details at publication page
• demo

http://www-sop.inria.fr/reves/publications/data/1999/WDP99


Reduce the number of intersections

• Bounding Boxes
– of each primitive
– of groups
– of transformed primitives

• Spatial Acceleration Data Structures
• Flattening the transformation hierarchy



Acceleration of Ray Casting

• Goal: Reduce the 
number of 
ray/primitive 
intersections



Conservative Bounding Region

• First check for an 
intersection with a 
conservative 
bounding region

• Early reject



Conservative Bounding Regions

axis-aligned 
bounding 
box

non-aligned 
bounding box

bounding 
sphere

arbitrary convex region 
(bounding half-spaces)

• tight → avoid
false positives

• fast to intersect



Intersection with Axis-Aligned 
Box

• For all 3 axes, 
calculate the intersection 
distances t1 and t2

• tnear = max (t1x, t1y, t1z)
tfar = min (t2x, t2y, t2z)

• If tnear> tfar, 
box is missed

• If tfar< tmin, 
box is behind

• If box survived tests, 
report intersection at tnear

y=Y2

y=Y1

x=X1 x=X2

tnear

tfar

t1x

t1y

t2x

t2y



Bounding Box of a Triangle
(xmax, ymax, zmax)

(xmin, ymin, zmin)

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

= (max(x0,x1,x2),
max(y0,y1,y2),
max(z0,z1,z2))

= (min(x0,x1,x2), 
min(y0,y1,y2),
min(z0,z1,z2))



Bounding Box of a Sphere

(xmax, ymax, zmax)

r

(x, y, z)

= (x+r,  y+r,  z+r)

(xmin, ymin, zmin)
= (x-r,  y-r,  z-r)



Bounding Box of a Plane
(xmax, ymax, zmax)
= (+∞, +∞, +∞)*

n = (a, b, c)

ax + by + cz = d

(xmin, ymin, zmin)
= (-∞, -∞, -∞)*

* unless n is exactly perpendicular to an axis



Bounding Box of a Group
(xmax, ymax, zmax)

(xmin_b, ymin_b, zmin_b)

(xmin_a, ymin_a, zmin_a)

(xmax_b, ymax_b, zmax_b)
(xmax_a, ymax_a, zmax_a) = (max(xmax_a,xmax_b), 

max(ymax_a,ymax_b),
max(zmax_a,zmax_b))

(xmin, ymin, zmin) = (min(xmin_a,xmin_b), 
min(ymin_a,ymin_b),
min(zmin_a,zmin_b))



Bounding Box of a Transform
(x'max, y'max, z'max)

(x'min, y'min, z'min)
= (min(x0,x1,x2,x3,x4,x5,x6,x7), 

min(y0,y1,y2,y3,y4,x5,x6,x7),
min(z0,z1,z2,z3,z4,x5,x6,x7))

M

(xmin, ymin, zmin)
(x0,y0,z0) = 
M (xmin,ymin,zmin)

= (max(x0,x1,x2,x3,x4,x5,x6,x7), 
max(y0,y1,y2,y3,y4,x5,x6,x7),
max(z0,z1,z2,z3,z4,x5,x6,x7))

(x1,y1,z1) = 
M (xmax,ymin,zmin)

(x2,y2,z2) = 
M (xmin,ymax,zmin)

(x3,y3,z3) =  
M (xmax,ymax,zmin)

(xmax, ymax, zmax)



Reduce the number of intersections

• Bounding Boxes
• Spatial Acceleration Data Structures

– Regular Grid
– Adaptive Grids
– Hierarchical Bounding Volumes

• Flattening the transformation hierarchy



Regular Grid



Create grid

• Find 
bounding 
box of 
scene

• Choose 
grid 
spacing

• gridx need 
not = gridy

Cell (i, j)

gridy

gridx



Insert primitives into grid
• Primitives 

that overlap 
multiple 
cells?

• Insert into 
multiple cells 
(use 
pointers)



For each cell along a ray 
• Does the cell 

contain an 
intersection?

• Yes: return 
closest
intersection

• No: continue



Preventing repeated 
computation

• Perform the 
computation once, 
"mark" 
the object 

• Don't 
re-intersect 
marked 
objects



Don't return distant intersections
• If intersection t 

is not within the 
cell range, 
continue (there 
may be 
something 
closer)



Where do we start?
• Intersect ray 

with scene 
bounding box

• Ray origin 
may be inside
the scene 
bounding box

tmin

tnext_v

tnext_h

tmin

tnext_vtnext_h

Cell (i, j)



Is there a pattern to cell 
crossings?

• Yes, the 
horizontal 
and vertical 
crossings 
have regular 
spacing

dtv = gridy / diry

dth = gridx / dirx
gridy

gridx

(dirx, diry)



What's the next cell?
Cell (i+1, j)

if   tnext_v <  tnext_h

i  +=  signx

tmin =  tnext_v

tnext_v +=  dtv

else
j  +=  signy

tmin =  tnext_h

tnext_h +=  dth

Cell (i, j)

dtv
dth

tmin

tnext_v

tnext_h

(dirx, diry)

if (dirx > 0) signx = 1 else signx = -1

if (diry > 0) signy = 1 else signy = -1



What's the next cell? 

• 3DDDA – Three 
Dimensional 
Digital 
Difference 
Analyzer



Pseudo-code
create grid 
insert primitives into grid
for each ray r

find initial cell c(i,j), tmin, tnext_v & tnext_h
compute dtv, dth, signx and signy
while c != NULL

for each primitive p in c
intersect r with p
if intersection in range found

return
c = find next cell



Regular Grid Discussion

• Advantages?
– easy to construct
– easy to traverse

• Disadvantages?
– may be only sparsely filled
– geometry may still be clumped



Reduce the number of intersections

• Bounding Boxes
• Spatial Acceleration Data Structures

– Regular Grid
– Adaptive Grids
– Hierarchical Bounding Volumes

• Flattening the transformation hierarchy



Adaptive Grids

Nested Grids Octree/(Quadtree)

• Subdivide until each cell contains no more than 
n elements, or maximum depth d is reached



Primitives in an Adaptive Grid
• Can live at intermediate levels, or

be pushed to lowest level of grid

Octree/(Quadtree)



Adaptive Grid Discussion

• Advantages?
– grid complexity matches geometric density

• Disadvantages?
– more expensive to traverse (especially octree)



Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse



Bounding Volume Hierarchy
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• Split objects into two groups
• Recurse



Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse



Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse



Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse



Where to split objects?
• At midpoint    OR
• Sort, and put half of the objects on each side    OR
• Use modeling hierarchy



Intersection with BVH

• Check subvolume with closer intersection first



Intersection with BVH

• Don't return intersection immediately if the 
other subvolume may have a closer intersection



Bounding Volume Hierarchy 
Discussion

• Advantages
– easy to construct
– easy to traverse
– binary

• Disadvantages
– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning 



Ombres



• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes



Why are Shadows Important?

• Depth cue
• Scene

Lighting
• Realism
• Contact 

points



Shadows as a Depth Cue



For Intuition about Scene 
Lighting

• Position of the light (e.g. sundial)
• Hard shadows vs. soft shadows
• Colored lights
• Directional light vs. point light



Shadows as the Origin of 
Painting



Shadows and Art
• Only in Western pictures (here Caravaggio)



• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes



Shadows

• One shadow ray per 
intersection per point 
light source

no shadow rays

one shadow ray



Soft Shadows
• Caused by 

extended light 
sources

• Umbra 
– source 

completely 
occluded

• Penumbra 
– Source partially 

occluded

• Fully lit



Soft Shadows

• Multiple shadow rays 
to sample area light 
source

one shadow ray

lots of shadow rays



Shadows in Ray Tracing

• Shoot ray from visible point to light source
• If blocked, discard light contribution
• Optimization?

– Stop after first 
intersection (don’t 
worry about tmin)

– Coherence: remember 
the previous occluder,
and test that object first



Traditional Ray Tracing



Ray Tracing + Soft Shadows



• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes



Cast Shadows on Planar 
Surfaces

• Draw the object primitives a second time, 
projected to the ground plane



Limitations of Planar Shadows

• Does not produce self-shadows, shadows 
cast on other objects, shadows on curved 
surfaces, etc.



Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps

– Texture Mapping
– Shadow View Duality

• Shadow Volumes



Texture Mapping

• Don't have to represent everything with 
geometry



Shadow/View Duality

• A point is lit if it 
is visible from 
the light source

• Shadow 
computation 
similar to view 
computation



Fake Shadows using Projective 
Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver

Image from light source BW image of obstacle Final image
Figure from Moller & Haines “Real Time Rendering”



Shadow maps

• In Renderman
– (High-end production software)



Shadow Mapping

• Texture mapping with depth information
• ≥ 2 passes through the pipeline

– Compute shadow 
map (depth from 
light source) 

– Render final image
(check shadow map 
to see if points are 
in shadow)

Figure from Foley et al. “Computer Graphics Principles and Practice”



Shadow Map Look Up
• We have a 3D point (x,y,z)WS

• How do we look up 
the depth from the 
shadow map?

• Use the 4x4 
perspective projection 
matrix from the light 
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?

Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x',y',z')LS



Shadow Maps

• Can be done in hardware
• Using hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix
– Modern hardware permits tests on texture values



Limitations of Shadow Maps

1. Field of View

2. Bias (Epsilon)

3. Aliasing



1. Field of View Problem

• What if point to 
shadow is outside 
field of view of 
shadow map?
– Use cubical 

shadow map
– Use only 

spot lights!



2. The Bias (Epsilon) Nightmare

• For a point visible 
from the light source
ShadowMap(x’,y’) ≈ z’

• How can we 
avoid erroneous 
self-shadowing?
– Add bias (epsilon) 



2. Bias (Epsilon) for Shadow 
Maps

ShadowMap(x’,y’) + bias < z’
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias



3. Shadow Map Aliasing

• Under-sampling of the shadow map
• Reprojection aliasing – especially bad when the 

camera & light are pointing towards each other



Shadow Map Filtering

• Should we filter the depth?  
(weighted average of neighboring depth 
values)

• No...  filtering depth is not meaningful



Percentage Closer Filtering

• Instead filter the result of the test
(weighted average of comparison results)

• But makes the bias issue more tricky



Percentage Closer Filtering

• 5x5 samples
• Nice antialiased 

shadow
• Using a bigger 

filter produces 
fake soft 
shadows

• Setting bias 
is tricky



Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al., 
“Hardware Shadow Mapping”

NVIDIA SDK White Paper



Shadow Map Demo

• Demo1 hardware shadow map
• Demo2 hardware shadow map



Perspective Shadow Maps

• Change the projection for the light source
– Adapt the resolution of the shadow map 

according to the view
– SIGGRAPH 2002 (Stamminger & Drettakis)
– More details at the publication page

http://www-sop.inria.fr/reves/publications/data/2002/SD02


shadow map aliasing

• perspective aliasing
parallel light

okay aliasedaliased okay



shadow map aliasing

• perspective aliasing
– smooth transition

al
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shadow map aliasing

• projection aliasing

parallel light



shadow map aliasing

• projection aliasing
– very local
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perspective transformation
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perspective shadow map

• standard shadow map • perspective shadow
map

shadow map

im
ag

e



perspective shadow map

• standard shadow map • perspective shadow
map
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perspective shadow map

• shadow map in post-perspective space
• just another shadow map projection
• reduces perspective aliasing
• regeneration per frame necessary



light source transformation

• parallel
light
becomes
point
light




Results




Perspective Shadow Map Demo

• Demo



Shadows in Production

• Often use 
shadow maps

• Ray casting as 
fallback in case 
of robustness 
issues



• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes

– The Stencil Buffer



Shadow Volumes

• Explicitly represent the volume 
of space in shadow

• For each polygon
– Pyramid with point 

light as apex
– Include polygon to cap

• Shadow test similar 
to clipping



Shadow Volumes
• If a point is inside a shadow 

volume cast by a particular light, 
the point does not receive any 
illumination from that light

• Naive implementation:
#polygons * #lights



Shadow Volumes
• Shoot a ray from the eye to 

the visible point
• Increment/decrement a 

counter each time we 
intersect a shadow 
volume polygon 
(check z buffer)

• If the counter ≠ 0,
the point is 
in shadow

+1-1

+1



Stencil Buffer

• Tag pixels in one rendering pass to control their 
update in subsequent rendering passes

• "For all pixels in the frame buffer" →
"For all tagged pixels in the frame buffer"

• Used for real-time mirrors 
(& other reflective surfaces),
shadows & more!

from NVIDIA's stencil buffer tutorial 
(http://developer.nvidia.com)



Stencil Buffer

• Can specify different rendering operations
for each of the following stencil tests:
– stencil test fails
– stencil test passes & 

depth test fails
– stencil test passes & 

depth test passes

image from NVIDIA's stencil buffer 
tutorial (http://developer.nvidia.com)



Shadow Volumes w/ the Stencil 
Buffer 

Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons

If z-pass → increment counter
Draw back-facing shadow polygons

If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and 

redraw pixels with 
counter = 0

0
+2

+1



If the Eye is in Shadow...
• ... then a counter of 0 does 

not necessarily mean lit
• 3 Possible Solutions:

1.  Explicitly test eye 
point with respect 
to all shadow volumes

2.  Clip the shadow 
volumes to the 
view frustum

3.  "Z-Fail" shadow 
volumes

-1
0

-1



1. Test Eye with Respect to 
Volumes

• Adjust initial 
counter value

Expensive

0
+1

0

+1



2. Clip the Shadow Volumes
• Clip the shadow volumes to the view frustum 

and include these new polygons  
• Messy CSG



3. "Z-Fail" Shadow Volumes
Start at infinity

...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

...
0

+1

0



3. "Z-Fail" Shadow Volumes

0
+1

0

• Introduces problems 
with far clipping plane

• Solved by clamping the 
depth during clipping



Optimizing Shadow Volumes

• Use silhouette edges only  (edge where 
a back-facing & front-facing polygon meet)

L

A



Limitations of Shadow Volumes

• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Limited precision of stencil buffer (counters) 

– for a really complex scene/object, 
the counter can overflow

• Objects must be watertight to use silhouette trick
• Rasterization of polygons sharing an edge 

must not overlap & must not have gap



Shadow Volume Demo

• Stencil buffer shadow volume demo



Global Illumination:
Radiosity and 

Monte Carlo Methods



Today
• Radiosity methods

– Why Radiosity
– Global Illumination:  The Rendering Equation
– Radiosity Equation/Matrix
– Calculating the Form Factors
– Progressive Radiosity

• Monte Carlo methods
– Expected value and variance
– Analysis of Monte-Carlo integration
– Monte-Carlo in graphics
– Importance sampling
– Stratified sampling
– Global illumination
– Advanced Monte-Carlo rendering



Radiosity

• Why Radiosity
– The Cornell Box 
– Radiosity vs. Ray Tracing

• Global Illumination:  The Rendering 
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity



Rendering Recap

• Ray-tracing
– For each pixel, for each object

• Graphics pipeline, scan conversion
– For each object, for each pixel

• Local lighting models
– Diffuse, Phong

• Shadows
– Ray casting, shadow maps, shadow volumes

• Reflection, refraction



Why global illumination?

• Simulate all light inter-reflections
(indirect lighting)
– e.g. in a room, a lot of the light is indirect: it is 

reflected by walls. 

• How have we dealt with this so far?
– Ambient term to fake some uniform indirect 

light



Direct illumination



Global Illumination



Why Radiosity?

eye

• Sculpture by John Ferren
• Diffuse panels

diagram 
from above:

photograph:



Radiosity vs. Ray Tracing

Ray traced image. A standard
ray tracer cannot simulate the
interreflection of light between 
diffuse surfaces.

Image rendered with radiosity. 
note color bleeding effects.

Original sculpture by 
John Ferren lit by 
daylight from behind.



Two approaches for global 
illumination

• Radiosity
– View-independent
– Diffuse only

• Monte-Carlo Ray-tracing
– Send tons of indirect rays



Radiosity vs. Ray Tracing

• Ray tracing is an image-space
algorithm
– If the camera is moved, we have to start over

• Radiosity is computed in object-space
– View-independent 

(just don't move 
the light)

– Can pre-compute 
complex lighting to 
allow interactive 
walkthroughs



Radiosity

Lightscape http://www.lightscape.com



Today

• Why Radiosity
– The Cornell Box 
– Radiosity vs. Ray Tracing

• Global Illumination:  The Rendering 
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity
• Advanced Radiosity



The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

L (x',ω') is the radiance from a point 
on a surface in a given direction ω'



The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

E(x',ω') is the emitted radiance 
from a point: E is non-zero only 
if x' is emissive (a light source)



The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

Sum the contribution from all of 
the other surfaces in the scene



The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

For each x, compute L(x, ω), the radiance 
at point x in the direction ω (from x to x') 



The Rendering Equation

scale the contribution by 
ρx'(ω,ω'), the reflectivity 

(BRDF) of the surface at x'

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA



The Rendering Equation

For each x, compute V(x,x'), 
the visibility between x and x':  

1 when the surfaces are unobstructed 
along the direction ω,  0 otherwise 

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA



The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

For each x, compute G(x, x'), which 
describes the on the geometric relationship 

between the two surfaces at x and x’



Intuition about G(x,x')? 
• Which arrangement of two surfaces will yield the 

greatest transfer of light energy?  Why?



Older Radiosity Images (1989)

Museum simulation.  Program of Computer Graphics, Cornell University.
50,000 patches.  Note indirect lighting from ceiling.



Radiosity

• Why Radiosity
– The Cornell Box 
– Radiosity vs. Ray Tracing

• Global Illumination:  The Rendering 
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity



Radiosity Overview
• Surfaces are assumed to be 

perfectly Lambertian (diffuse)
– reflect incident light in all directions with equal 

intensity

• The scene is divided into a set 
of small areas, or patches. 

• The radiosity, Bi, of patch i is the 
total rate of energy leaving a 
surface.  The radiosity over a 
patch is constant. 

• Units for radiosity: 
Watts / steradian * meter2

x'

ω'



Radiosity Equation
L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

Bx' =    Ex' +     ρx' ∫ Bx G(x,x')V(x,x')

Radiosity assumption: 
perfectly diffuse surfaces (not directional)



Continuous Radiosity Equation
reflectivity

x

x’

form factor

Bx' = Ex' + ρx' ∫ G(x,x') V(x,x') Bx

G: geometry term
V: visibility term

No analytical solution, 
even for simple configurations



Discrete Radiosity Equation
Discretize the scene into n patches, over which the radiosity is constant

reflectivity

A

iA

j ∑
j=1

iρ
n

= +iB iE ijF jB

form factor

• discrete representation
• iterative solution
• costly geometric/visibility
calculations



The Radiosity Matrix
∑+=
j=1

jijiii BFEB ρ
n

n simultaneous equations with n unknown Bi values can be written
in matrix form:

1

2

n

B
B

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

1

2

n

E
E

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
=

1 11 1 12 1 1

2 21 2 22

1

1
1

1

n

n n n nn

F F F
F F

F F

ρ ρ ρ
ρ ρ

ρ ρ

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

L

M O

L L

A solution yields a single radiosity value Bi for each patch in the 
environment, a view-independent solution.



Solving the Radiosity Matrix
The radiosity of a single patch i is updated for each iteration by 
gathering radiosities from all other patches:

1

2

1

2

1

1 1

2

i i ii i i i i in

nn n

B
B

B E BF

B E
B

F F

B

E

B E

ρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

MM

M M M

M

L

This method is fundamentally a Gauss-Seidel relaxation



Computing Vertex Radiosities
• Bi radiosity values are 

constant over the extent of 
a patch.  

• How are they mapped 
to the vertex radiosities
(intensities) needed by the 
renderer?
– Average the radiosities

of patches that 
contribute to the vertex

– Vertices on the edge of 
a surface are assigned 
values extrapolation



Radiosity 1988

Factory simulation.  Program of Computer Graphics, Cornell University.
30,000 patches.



Today

• Why Radiosity
– The Cornell Box 
– Radiosity vs. Ray Tracing

• Global Illumination:  The Rendering 
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity



Radiosity Patches are Finite 
Elements

• We are trying to solve an the rendering equation over the 
infinite-dimensional space of radiosity functions over the 
scene.

• We project the problem onto a finite basis of functions: 
piecewise constant over patches

Ai

Aj

Area-to-area 
form factor

Ai

Aj

Point-to-area 
form factor



Calculating the Form Factor Fij

• Fij = fraction of light energy leaving patch j 
that arrives at patch i

• Takes account of both:
– geometry (size, orientation & position) 
– visibility (are there any occluders?)

patch i patch i patch i

patch jpatch j

patch j



Remember Diffuse Lighting?

Surface

θi

dB

dA

n

idBdA θcos=

2)(
r
LkL i

do ln ⋅=
l



Calculating the Form Factor Fij
• Fij = fraction of light energy leaving patch j that arrives at 

patch I

patch i

patch j

θi

θj

r

Fij =           ∫ ∫ Vij dAj dAi
cos θi cos θj

π r2
1
Ai Ai Aj



Form Factor Determination

Aj

Aj

r = 1 FdAi,Aj

dAi

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the
the unit circle that is formed by taking the projection of the patch onto the 
hemisphere surface and projecting it down onto the circle.



Hemicube Algorithm
• A hemicube is constructed around the center of each patch
• Faces of the hemicube are divided into "pixels"
• Each patch is projected (rasterized) onto the faces 

of the hemicube
• Each pixel stores its pre-computed form factor

The form factor for a particular 
patch is just the sum of 
the pixels it overlaps

• Patch occlusions are 
handled similar to 
z-buffer rasterization



Form Factor from Ray Casting

• Cast n rays between the two patches
– n is typically between 4 and 32
– Compute visibility
– Integrate the point-to-point form factor

• Permits the computation 
of the patch-to-patch 
form factor, as opposed 
to point-to-patch Ai

Aj



Lightscape http://www.lightscape.com



Radiosity

• Why Radiosity
– The Cornell Box 
– Radiosity vs. Ray Tracing

• Global Illumination:  The Rendering 
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity



Stages in a Radiosity Solution
Form Factor
Calculation

Solve the
Radiosity Matrix

Input 
Geometry

Visualization
(Rendering)

Radiosity Solution

Radiosity Image

Reflectance 
Properties

~ 0%

< 10%

> 90%
Calculation & 

storage of 
n2 form factors

Why so costly?

Camera 
Position & 
Orientation



Progressive Refinement
• Goal:  Provide frequent and 

timely updates to the user 
during computation

• Key Idea: Update the entire 
image at every iteration, rather 
than a single patch

• How?  Instead of summing the 
light received by one patch, 
distribute the radiance of the 
patch with the most undistributed 
radiance.



Reordering the Solution for PR
Shooting: the radiosity of all patches is updated for each iteration:

1 1 1 1

2 2 2 2

i

i

i

n n n ni

B B F
B B F

B

B B F
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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L

M

M

M

L L

M

M

This method is fundamentally a Southwell relaxation



Progressive Refinement w/out Ambient Term



Progressive Refinement with Ambient Term
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Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



A little bit of eye candy for 
motivation

• Glossy material rendering
• Random reflection rays around mirror direction

– 1 sample per pixel



A little bit of eye candy for 
motivation

• Glossy material rendering
• Random reflection rays around mirror direction

– 256 sample per pixel



Monte Carlo Images
• Image from the ARNOLD Renderer by Marcos Fajardo



Expected value

• Expected value is linear 
• E[f1(x) + a f2(x)]   =   E[f1(x)] + a E[f2(x)]



Variance

• Measure of deviation from expected value
• Expected value of square difference 

(MSE)
• Standard deviation σ: 

square root of variance (notion of error, 
RMS)



Variance

• Proof:

• Note that E[x] is a constant. By linearity of E we 
have:



Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



Monte Carlo integration 

• Function f(x) of x 2 [a b] 
• We want to compute

• Consider a random variable x
• If x has uniform distribution,    I=E[f(x)]

– By definition of the expected value



Sum of Random Variables

• Use N independent identically-distributed 
(IID) variables xi
– Share same probability (uniform here)

• Define 

• By linearity of the expectation:
E[FN] = E[f(x)]



Study of variance

• Recall σ2[x+y]  =  σ2[x] + σ2[y] + 2 Cov[x,y]
– We have independent variables: Cov[xi, xj]=0 

if i ≠ j
� σ2[ax]  =  a2 σ2[x]

• i.e. stddev σ (error) decreases by 



Example

• We know it should be 1.0

• In practice
with uniform 
samples:

N

σ2

- σ2

error



Monte Carlo integration with 
probability

• Consider N random samples over domain 
with probability p(x)

• Define estimator < I > as:

• Probability p allows us to sample the 
domain more smartly



Monte-Carlo Recap

• Expected value is the integrand
– Accurate “on average”

• Variance decrease in 1/N
– Error decreases in





Advantages of MC Integration

• Few restrictions on the integrand
– Doesn’t need to be continuous, smooth, ...
– Only need to be able to evaluate at a point

• Extends to high-dimensional problems
– Same convergence 

• Conceptually straightforward
• Efficient for solving at just a few points



Disadvantages of MC

• Noisy
• Slow convergence
• Good implementation is hard

– Debugging code
– Debugging maths
– Choosing appropriate techniques



• Images by Veach and Guibas

Naïve sampling strategy Optimal sampling strategy



Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



What can we integrate?
• Pixel: antialiasing
• Light sources: Soft shadows
• Lens: Depth of field
• Time: Motion blur
• BRDF: glossy reflection
• Hemisphere: indirect lighting



Domains of integration

• Pixel, lens (Euclidean 2D domain)
• Time (1D)
• Hemisphere

– Work needed to ensure uniform probability
• Light source

– Same thing: make sure that the probabilities 
and the measures are right.



Example: Light source

• Integrate over surface or over angle
• Be careful to get probabilities and 

integration measure right!
Sampling the hemisphere uniformly

source
Sampling the source uniformly

hemisphere



• Image by 
Henrik Wann
Jensen



Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



Important issues in MC 
rendering

• Reduce variance!
• Choose a smart probability distribution
• Choose smart sampling patterns

• And of course, cheat to make it faster 
without being noticed



Example: Glossy rendering
• Integrate over hemisphere
• BRDF times cosine times incoming light

)( iωI

Slide courtesy of Jason Lawrence



Sampling a BRDF
5 Samples/Pixel

oω
)(U iω

)(P iω
oω

Slide courtesy of Jason Lawrence



Sampling a BRDF
25 Samples/Pixel

oω
)(U iω

oω
)(P iω

Slide courtesy of Jason Lawrence



Sampling a BRDF
75 Samples/Pixel

oω
)(U iω

oω
)(P iω

Slide courtesy of Jason Lawrence



Importance sampling

• Choose p wisely to reduce variance
– p that resembles f
– Does not change convergence rate (still sqrt)
– But decreases the constant

uniformbad good



Questions?
1200 Samples/Pixel

Traditional importance functionTraditional importance function Better importance by Lawrence et al. Better importance by Lawrence et al. 



Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



Stratified sampling

• With uniform sampling, we can get unlucky
– E.g. all samples in a corner

• To prevent it, subdivide domain Ω
into non-overlapping regions Ωi
– Each region is called a stratum

• Take one random sample per Ωi



Example
• Borrowed from Henrik Wann Jensen

Unstratified Stratified



Stratified sampling - bottomline

• Cheap and effective
• Typical example: jittering for antialiasing

– Signal processing perspective: 
better than uniform because less aliasing 
(spatial patterns)

– Monte-Carlo perspective: better than random 
because lower variance (error for a given 
pixel)



• Image from the ARNOLD Renderer by Marcos Fajardo



Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



Recall The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA
Incoming

light
Geometric

term
visibilityemission BRDF



Ray Casting

• Cast a ray from the eye through each pixel 



Ray Tracing
• Cast a ray from the eye through each pixel 
• Trace secondary rays (light, reflection, refraction)



Monte-Carlo Ray Tracing
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point 

– Accumulate radiance contribution



Monte-Carlo Ray Tracing
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point 
• Recurse



Monte-Carlo
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point 
• Recurse



Monte-Carlo

• Systematically sample primary light



Results



Monte Carlo Path Tracing
• Trace only one secondary ray per recursion
• But send many primary rays per pixel
• (performs antialiasing as well)



Results
• 10 paths/pixel Think about it : we compute an 

infinite-dimensional integral with 10 samples!!!



Results: glossy
• 10 paths/pixel



Results: glossy
• 100 paths/pixel



Importance of sampling the light
Without explicit 

light sampling
With explicit 
light sampling

1 path per pixel

4 path per pixel



Why use random numbers?
• Fixed random sequence
• We see the structure in the error



Convergence speed



• Vintage path tracing by Kajiya (1986, 
introduction of the rendering equation)



Radiosity vs. Monte Carlo
• We have an integral equation on an infinite space
• Finite elements (Radiosity)

– Project onto finite basis 
of functions

– Linear system
– View-independent

(no angular information)
• Monte Carlo

– Probabilistic sampling
– View-dependent

(but angular information)



Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering



Path Tracing is costly

• Needs tons of rays per pixel



Direct illumination



Global Illumination



Indirect illumination: smooth



Irradiance cache

• The indirect illumination is smooth



Irradiance cache

• The indirect illumination is smooth



Irradiance cache
• The indirect illumination is smooth
• Interpolate nearby values



Irradiance cache
• Store the indirect illumination
• Interpolate existing cached values
• But do full calculation for direct lighting



Irradiance caching
• Yellow dots: 

computation of indirect diffuse contribution



Photon mapping
• Preprocess: cast rays from light sources
• Store photons



Photon mapping
• Preprocess: cast rays from light sources
• Store photons (position + light power + incoming direction)



Photon map
• Efficiently store photons for fast access
• Use hierarchical spatial structure (kd-tree)



Photon mapping - rendering
• Cast primary rays
• For secondary rays

– reconstruct irradiance using adjacent stored photon
– Take the k closest photons

• Combine with irradiance caching and a number of other techniques



Photon map results



Photon mapping - caustics
• Special photon map for specular reflection 

and refraction

Glass sphere



• 1000 paths/pixel



• Photon mapping



References

• Eric Veach’s PhD dissertation
http://graphics.stanford.edu/papers/veach_thesis/

• Physically Based Rendering 
by Matt Pharr, Greg Humphreys

http://graphics.stanford.edu/papers/veach_thesis/
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Advanced Topics

• Advanced Radiosity
– Adaptive Subdivision
– Discontinuity Meshing
– Hierarchical Radiosity
– Other Basis Functions



Increasing the Accuracy of the 
Solution

What’s wrong with this picture?

• The quality of the image is a 
function of the size of the patches

• The patches should be adaptively 
subdivided
near shadow boundaries, 
and other areas with a high 
radiosity gradient

• Compute a solution on a uniform 
initial mesh, then refine the mesh 
in areas that exceed some error 
tolerance



Adaptive Subdivision of Patches

Coarse patch solution 
(145 patches)

Improved solution
(1021 subpatches) 

Adaptive subdivision
(1306 subpatches) 



Discontinuity Meshing
source

• Limits of umbra and penumbra
– Captures nice shadow 

boundaries
– Complex geometric 

computation
– The mesh is 

getting complex

umbra

blocker

penumbra



Discontinuity Meshing



Discontinuity Meshing 
Comparison

[Gibson 96]

With visibility
skeleton & 
discontinuity
meshing

10 minutes 23 seconds 1 hour 57 minutes



Hierarchical Approach
• Group elements when the light exchange is 

not important
– Breaks the quadratic complexity
– Control non trivial, memory cost



Other Basis Functions
• Higher order (non constant basis)

– Better representation of smooth variations
– Problem: radiosity is discontinuous (shadow boundary)

• Directional basis
– For non-diffuse finite elements
– E.g. spherical harmonics



Lightscape http://www.lightscape.com



Radiosity today
• Used in architectural simulation (Lightscape

software)
• Used for game lighting preprocessing 

(light maps)

• Not as hot a research topic
– Monte-Carlo Ray-tracing is hotter (more general)
– But “pre-computed radiance transfer” is very close:

idea of projecting onto simpler basis functions 
(used e.g. in Max Payne 2)



Practical problems with radiosity

• Meshing (memory, robustness)
• Form factors (computation)
• Diffuse limitation (extension to specular

takes too much memory)

• Fast extensions (hierarchical) can be hard 
to control



Fin



Durer’s Ray casting machine

• Albrecht Durer, 16th century



Oldest illustration 

• From. R. Gemma Frisius, 1545



Camera Obscura



Orthographic camera

• Parallel projection
• No foreshortening
• No vanishing point

perspective orthographic



Orthographic camera 
description



Orthographic camera 
description

• Direction
• Image center

• Image size
• Up vector

size

size

up
center



Orthographic ray generation

• Direction is constant
• Origin = center + (x-0.5)*size*up + (y-

0.5)*size*horizontal

up

direction

horizontal

size

size
(0,0)

(1,1)
center



Other weird cameras

• E.g. fish eye, omnimax, panorama



Geometric ray-sphere 
intersection

• Try to shortcut (easy reject)
• e.g.: if the ray is facing away from the sphere
• Geometric considerations can help

• In general, early reject is important

R

r

O

D



Geometric ray-sphere 
intersection

• What geometric information is important?
– Inside/outside
– Closest point
– Direction

R
r

O

D



Geometric ray-sphere 
intersection

• Find if the ray’s origin is outside the 
sphere
– R2>r2

– If inside, it intersects 
– If on the sphere, it does not intersect (avoid 

degeneracy)

R
r

O

D



Geometric ray-sphere 
intersection

• Find if the ray’s origin is outside the 
sphere

• Find the closest point to the sphere center
– tP=RO.D
– If tP<0, no hit

R
r

O

DtPP



Geometric ray-sphere 
intersection

• Find if the ray’s origin is outside the sphere
• Find the closest point to the sphere center

– If tP<0, no hit

• Else find squared distance d2

– Pythagoras: d2=R2-tP2

– …

R
r

O

D
P tP

d

if d2> r2 no hit



Geometric ray-sphere 
intersection

• Find if the ray’s origin is outside the 
sphere

• Find the closest point to the sphere 
center

– If tP<0, no hit
• Else find squared distance d2

– if d2 > r2 no hit

• If outside t = tP-t’
– t’2+d2=r2

• If inside t = tP+t’

R

r
O

D
P tP

d t

t’



Geometric vs. algebraic

• Algebraic was more simple 
(and more generic)

• Geometric is more efficient
– Timely tests
– In particular for outside and pointing away



Normal

• Simply Q/||Q||

R

r
O

D

t

Q
normal



Special Case: Transformed 
TriangleCan we do better?

M



Special Case: Transformed 
Triangle

(xmax, ymax, zmax)
= (max(x'0,x'1,x'2),

max(y'0,y'1,y'2),
max(z'0,z'1,z'2))

M

(xmin, ymin, zmin)
= (min(x'0,x'1,x'2), 

min(y'0,y'1,y'2),
min(z'0,z'1,z'2))

(x'0,y'0,z'0) = 
M (x0,y0,z0)

(x'1,y'1,z'1) = 
M (x1,y1,z1) (x'2,y'2,z'2) = 

M (x2,y2,z2)

(x2, y2, z2)

(x1, y1, z1)

(x0, y0, z0)



Non-linearity of variance

• Variance is not linear !!!!
� σ2[ax]=

a2 σ2[x]



Non-linearity of variance

• Consider two random variable x1 and x2

• We define the covariance
Cov[x1,x2]  =  E[x1x2] - E[x1] E[x2]

� σ2[x1+x2]  =  σ2[x1] + σ2[x2] + 2 Cov[x1,x2]



Non-linearity of variance, 
covariance

• Consider two random variable x1 and x2

• We define the covariance
Cov[x1,x2]  =  E[x1x2] - E[x1] E[x2]
– Tells how much they are big at the same time
– Null if variables are independent

� σ2[x1+x2]  =  σ2[x1] + σ2[x2] + 2 Cov[x1,x2]



Recap

• Expected value is linear
– E[ax1+bx2]=aE[x1]+bE[x2]

• Variance is not
• For two independent variables

– σ2[x1+x2]=σ2[x1]+σ2[x2]
– If not independent, needs covariance

• σ2[ax]=a2σ2[x]
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