
Tracé de Rayons,Ombres et
Éclairage Global

Séance 4
Images et Sons de Synthèse

Tracé de Rayons

Tracé de Rayons
R

D

t

u

v
w

e
c

s

a

b
x

y• Introduction

• Camera and ray generation

• Ray-plane intersection

• Ray-sphere intersection
RD

Ray Casting
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest

Ray Casting
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest

Shading
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray

Keep if closest

Shade depending on light and normal vector

e.g. diffuse shading:
dot product N.L
a.k.a. Lambertian

L

N

Ray Tracing

• Secondary rays (shadows, reflection,
refraction)

reflection

refraction

Ray representation?

Ray representation
• Two vectors:

– Origin
– Direction (normalized is better)

• Parametric line
– P(t) = origin + t * direction

origindirection

P(t)

Ray Tracing
• Original Ray-traced

image by Whitted
(1981)

• Image computed
using the Dali ray
tracer by Henrik
Wann Jensen

• Environment map
by Paul Debevec

Ray casting
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest

Shade depending on light and normal vector

L
N

Finding the
intersection and
normal is the central
part of ray casting

Overview of today
R

D

t

u

v
w

e
c

s

a

b
x

y• Introduction

• Camera and ray generation

• Ray-plane intersection

• Ray-sphere intersection
RD

Cameras
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the
ray

Keep if closest

Pinhole camera

• Box with a tiny hole
• Inverted image
• Similar triangles

• Perfect image if hole
infinitely small

• Pure geometric optics
• No depth of field

issue

Simplified pinhole camera

• Eye-image pyramid (frustum)
• Note that the distance/size of image are

arbitrary

Camera description

– Eye point e
– Orthobasis u, v, w
– Image distance s
– Image rectangle

(u0, v0, u1, v1)

– Deduce c (lower left)
– Deduce a and b
– Screen coordinates in [0,1]*[0,1]
– A point is then c + x a +y b

u

v
w

e
c

s

a

b
x

y

Ray Casting
R

D

t

u

v
w

e
c

s

a

b
x

y• Introduction

• Camera and ray generation

• Ray-plane intersection

• Ray-sphere intersection
RD

Ray Casting
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest

First we will study ray-plane intersection

Recall: Ray representation

• Two vectors:
– Origin
– Direction (normalized)

• Parametric line
– P(t) = origin + t * direction

origindirection

P(t)

3D plane equation

• Implicit plane equation
H(p) = Ax+By+Cz+D = 0

• Gradient of H?

P
H

3D plane equation

• Implicit plane equation
H(p) = Ax+By+Cz+D = 0

• Gradient of H?
• Plane defined by

– P0(x,y,z,1)
– n(A, B, C, 1)

HP0P

Explicit vs. implicit?

• Plane equation is implicit
– Solution of an equation
– Does not tell us how to generate a point on the plane
– Tells us how to check that a point is on the plane

• Ray equation is explicit
– Parametric
– How to generate points
– Harder to verify that a point is on the ray

Plane-point distance

• Plane Hp=0
• If n is normalized

d=HP
• Signed distance!

P’

P0

P

H

Line-plane intersection

• Insert explicit equation of line into
implicit equation of plane

origindirection

P(t)

Additional house keeping

• Verify that intersection is closer than previous
• Verify that it is in the allowed range

(in particular not behind the camera, t<0)

origindirection

P(t)

Normal

• For shading (recall, diffuse: dot product between
light and normal)

• Simply the normal to the plane

origindirection

P(t)
normal

• Image by Henrik Wann Jensen using Ray Casting

R
D

t

u

v
w

e
c

s

a

b
x

y• Introduction

• Camera and ray generation

• Ray-plane intersection

• Ray-sphere intersection
RD

Sphere equation

• Sphere equation (implicit): ||P||2 = r2

• (assume centered at origin,
easy to translate)

RD

Ray-Sphere Intersection

• Sphere equation (implicit): ||P||2 = r2

• Ray equation (explicit): P(t) = R+tD
with ||D|| = 1

• Intersection means both are satisfied

RD

Ray-Sphere Intersection

RD

Ray-Sphere Intersection

• This is just a quadratic at2 + bt + c = 0,
where
– a = 1
– b = 2D.R
– c = R.R – r2

• With discriminant

• and solutions

Ray-Sphere Intersection

• Discriminant
• Solutions
• Three cases, depending on sign of b2 –4ac
• Which root (t+ or t-) should you choose?

– Closest positive! (usually t-)
RD

Ray-Sphere Intersection

• So easy that all ray-tracing images have
spheres!

RD

Precision

• What happens when
– Origin is on an object?
– Grazing rays?

• Problem with floating-point approximation

The evil ε

• In ray tracing, do NOT report intersection for
rays starting at the surface (no false positive)
– Because secondary rays
– Requires epsilons

reflection

refraction

The evil ε: a hint of nightmare

• Edges in triangle meshes
– Must report intersection (otherwise not watertight)
– No false negative

Ray-polygon intersection
• Ray-plane intersection
• Test if intersection is in the polygon

– Solve in the 2D plane

D

R

Point inside/outside polygon

• Ray intersection definition:
– Cast a ray in any direction

• (axis-aligned is smarter)

– Count intersection
– If odd number, point is inside

• Works for concave and star-shaped

Precision issue

• What if we intersect a vertex?
– We might wrongly count an intersection for each

adjacent edge
• Decide that the vertex is always above the ray

Winding number

• To solve problem with star pentagon
• Oriented edges
• Signed number of intersection
• Outside if 0 intersection

+ -+
-

Alternative definitions

• Sum of the signed angles from point to vertices
– 360 if inside, 0 if outside

• Sum of the signed areas of point-edge triangles
– Area of polygon if inside, 0 if outside

How do we project into 2D?

• Along normal
– Costly

• Along axis
– Smarter (just drop 1 coordinate)
– Beware of parallel plane

D

R

D

R

Ray triangle intersection

• Use ray-polygon
• Or try to be smarter

– Use barycentric coordinates

a b

P
RD

c

Barycentric definition of a plane
[Möbius, 1827]

• P(α, β, γ)=αa+βb+γc
with α + β + γ =1

c

P

a b

Barycentric definition of a
triangle

• P(α, β, γ)=αa+βb+γc
with α + β + γ =1
0< α <1
0< β <1
0< γ <1

c

a b

P

Given P, how can we compute α, β,
γ ?

• Compute the areas of the opposite subtriangle
– Ratio with complete area

α=Aa/A, β=Ab/A γ=Ac/A
Use signed areas for points outside the triangle

c

a b

P Ta
T

Intuition behind area formula
• P is barycenter of a and Q
• A is the interpolation coefficient on aQ
• All points on line parallel to bc have the same α
• All such Ta triangles have same height/area

c

a b

P Q

Simplify

• Since α + β + γ =1
we can write α =1− β − γ

• P(β, γ)=(1−β−γ) a + βb +γc
c

a b

P

Simplify

• P(β, γ)=(1−β−γ) a + βb +γc
• P(β, γ)=a + β(b-a) +γ(c-a)
• Non-orthogonal coordinate system of the plane

c

a b

P

How do we use it for
intersection?

• Insert ray equation into barycentric expression of
triangle

• P(t)= a+β (b-a)+γ (c-a)
• Intersection if β+γ<1; 0<β and 0<γ

a b

P
RD

c

Intersection

• Rx+tDx= ax+β (bx-ax)+γ (cx-ax)
• Ry+tDy= ay+β (by-ay)+γ (cy-ay)
• Rz+tDz= az+β (bz-az)+γ (cz-az)

a b

P
RD

c

Matrix form
• Rx+tDx= ax+β (bx-ax)+γ (cx-ax)
• Ry+tDy= ay+β (by-ay)+γ (cy-ay)
• Rz+tDz= az+β (bz-az)+γ (cz-az)

a b

P
RD

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

zz

yy

xx

zzzzz

yyyyy

xxxxx

Ra
Ra
Ra

tDcaba
Dcaba
Dcaba

γ
β

c

Cramer’s rule

• | | denotes the determinant

• Can be copied mechanically in the code

a b

P
RD

A
DcaRa
DcaRa
DcaRa

zzzzz

yyyyy

xxxxx

−−
−−
−−

=β
A

DRaba
DRaba
DRaba

zzzzz

yyyyy

xxxxx

−−
−−
−−

=γ
A

Racaba
Racaba
Racaba

t zzzzzz

yyyyyy

xxxxxx

−−−
−−−
−−−

=

c

Advantage
• Efficient
• Store no plane equation
• Get the barycentric coordinates for free

– Useful for interpolation, texture mapping

a b

P
RD

c

More Effects

Extra rays needed for these
effects:

• Distribution Ray Tracing
– Soft shadows
– Anti-aliasing (getting rid of jaggies)
– Glossy reflection
– Motion blur
– Depth of field (focus)

Shadows

• one shadow ray per
intersection per point
light source

no shadow rays

one shadow ray

Soft Shadows

• multiple shadow rays
to sample area light
source

one shadow ray

lots of shadow rays

Antialiasing – Supersampling
jaggies w/ antialiasing

• multiple
rays per
pixel

point light

area light

Reflection

• one reflection ray per intersection

perfect
mirror

θθ

Glossy Reflection

• multiple reflection
rays

polished
surface

θθ

Justin Legakis

Motion Blur

• Sample objects
temporally

Rob Cook

Depth of Field
• multiple rays per pixel

focal lengthfilm
Justin Legakis

Algorithm Analysis
cost ≤ height * width *

num primitives *
intersection cost *
num shadow rays *
supersampling *
num glossy rays *
num temporal samples *
max recursion depth *
. . .

• Ray casting
• Lots of primitives
• Recursive
• Distributed Ray

Tracing Effects
– Soft shadows
– Anti-aliasing
– Glossy reflection
– Motion blur
– Depth of field

can we reduce this?

Accelerating RT

• Reduce the number of pixels traced
– Render cache

• Reduce the number of intersections
– Spatial subdivision data structures

Reduce the number of pixels traced

• Render Cache
– EG Workshop on Rendering 99 (Walter et al.)
– Only trace a small number of rays
– Separate display loop and render loop
– Interpolate a cache of reprojected points

• More details at publication page
• demo

http://www-sop.inria.fr/reves/publications/data/1999/WDP99

Reduce the number of intersections

• Bounding Boxes
– of each primitive
– of groups
– of transformed primitives

• Spatial Acceleration Data Structures
• Flattening the transformation hierarchy

Acceleration of Ray Casting

• Goal: Reduce the
number of
ray/primitive
intersections

Conservative Bounding Region

• First check for an
intersection with a
conservative
bounding region

• Early reject

Conservative Bounding Regions

axis-aligned
bounding
box

non-aligned
bounding box

bounding
sphere

arbitrary convex region
(bounding half-spaces)

• tight → avoid
false positives

• fast to intersect

Intersection with Axis-Aligned
Box

• For all 3 axes,
calculate the intersection
distances t1 and t2

• tnear = max (t1x, t1y, t1z)
tfar = min (t2x, t2y, t2z)

• If tnear> tfar,
box is missed

• If tfar< tmin,
box is behind

• If box survived tests,
report intersection at tnear

y=Y2

y=Y1

x=X1 x=X2

tnear

tfar

t1x

t1y

t2x

t2y

Bounding Box of a Triangle
(xmax, ymax, zmax)

(xmin, ymin, zmin)

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

= (max(x0,x1,x2),
max(y0,y1,y2),
max(z0,z1,z2))

= (min(x0,x1,x2),
min(y0,y1,y2),
min(z0,z1,z2))

Bounding Box of a Sphere

(xmax, ymax, zmax)

r

(x, y, z)

= (x+r, y+r, z+r)

(xmin, ymin, zmin)
= (x-r, y-r, z-r)

Bounding Box of a Plane
(xmax, ymax, zmax)
= (+∞, +∞, +∞)*

n = (a, b, c)

ax + by + cz = d

(xmin, ymin, zmin)
= (-∞, -∞, -∞)*

* unless n is exactly perpendicular to an axis

Bounding Box of a Group
(xmax, ymax, zmax)

(xmin_b, ymin_b, zmin_b)

(xmin_a, ymin_a, zmin_a)

(xmax_b, ymax_b, zmax_b)
(xmax_a, ymax_a, zmax_a) = (max(xmax_a,xmax_b),

max(ymax_a,ymax_b),
max(zmax_a,zmax_b))

(xmin, ymin, zmin) = (min(xmin_a,xmin_b),
min(ymin_a,ymin_b),
min(zmin_a,zmin_b))

Bounding Box of a Transform
(x'max, y'max, z'max)

(x'min, y'min, z'min)
= (min(x0,x1,x2,x3,x4,x5,x6,x7),

min(y0,y1,y2,y3,y4,x5,x6,x7),
min(z0,z1,z2,z3,z4,x5,x6,x7))

M

(xmin, ymin, zmin)
(x0,y0,z0) =
M (xmin,ymin,zmin)

= (max(x0,x1,x2,x3,x4,x5,x6,x7),
max(y0,y1,y2,y3,y4,x5,x6,x7),
max(z0,z1,z2,z3,z4,x5,x6,x7))

(x1,y1,z1) =
M (xmax,ymin,zmin)

(x2,y2,z2) =
M (xmin,ymax,zmin)

(x3,y3,z3) =
M (xmax,ymax,zmin)

(xmax, ymax, zmax)

Reduce the number of intersections

• Bounding Boxes
• Spatial Acceleration Data Structures

– Regular Grid
– Adaptive Grids
– Hierarchical Bounding Volumes

• Flattening the transformation hierarchy

Regular Grid

Create grid

• Find
bounding
box of
scene

• Choose
grid
spacing

• gridx need
not = gridy

Cell (i, j)

gridy

gridx

Insert primitives into grid
• Primitives

that overlap
multiple
cells?

• Insert into
multiple cells
(use
pointers)

For each cell along a ray
• Does the cell

contain an
intersection?

• Yes: return
closest
intersection

• No: continue

Preventing repeated
computation

• Perform the
computation once,
"mark"
the object

• Don't
re-intersect
marked
objects

Don't return distant intersections
• If intersection t

is not within the
cell range,
continue (there
may be
something
closer)

Where do we start?
• Intersect ray

with scene
bounding box

• Ray origin
may be inside
the scene
bounding box

tmin

tnext_v

tnext_h

tmin

tnext_vtnext_h

Cell (i, j)

Is there a pattern to cell
crossings?

• Yes, the
horizontal
and vertical
crossings
have regular
spacing

dtv = gridy / diry

dth = gridx / dirx
gridy

gridx

(dirx, diry)

What's the next cell?
Cell (i+1, j)

if tnext_v < tnext_h

i += signx

tmin = tnext_v

tnext_v += dtv

else
j += signy

tmin = tnext_h

tnext_h += dth

Cell (i, j)

dtv
dth

tmin

tnext_v

tnext_h

(dirx, diry)

if (dirx > 0) signx = 1 else signx = -1

if (diry > 0) signy = 1 else signy = -1

What's the next cell?

• 3DDDA – Three
Dimensional
Digital
Difference
Analyzer

Pseudo-code
create grid
insert primitives into grid
for each ray r

find initial cell c(i,j), tmin, tnext_v & tnext_h
compute dtv, dth, signx and signy
while c != NULL

for each primitive p in c
intersect r with p
if intersection in range found

return
c = find next cell

Regular Grid Discussion

• Advantages?
– easy to construct
– easy to traverse

• Disadvantages?
– may be only sparsely filled
– geometry may still be clumped

Reduce the number of intersections

• Bounding Boxes
• Spatial Acceleration Data Structures

– Regular Grid
– Adaptive Grids
– Hierarchical Bounding Volumes

• Flattening the transformation hierarchy

Adaptive Grids

Nested Grids Octree/(Quadtree)

• Subdivide until each cell contains no more than
n elements, or maximum depth d is reached

Primitives in an Adaptive Grid
• Can live at intermediate levels, or

be pushed to lowest level of grid

Octree/(Quadtree)

Adaptive Grid Discussion

• Advantages?
– grid complexity matches geometric density

• Disadvantages?
– more expensive to traverse (especially octree)

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Where to split objects?
• At midpoint OR
• Sort, and put half of the objects on each side OR
• Use modeling hierarchy

Intersection with BVH

• Check subvolume with closer intersection first

Intersection with BVH

• Don't return intersection immediately if the
other subvolume may have a closer intersection

Bounding Volume Hierarchy
Discussion

• Advantages
– easy to construct
– easy to traverse
– binary

• Disadvantages
– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning

Ombres

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes

Why are Shadows Important?

• Depth cue
• Scene

Lighting
• Realism
• Contact

points

Shadows as a Depth Cue

For Intuition about Scene
Lighting

• Position of the light (e.g. sundial)
• Hard shadows vs. soft shadows
• Colored lights
• Directional light vs. point light

Shadows as the Origin of
Painting

Shadows and Art
• Only in Western pictures (here Caravaggio)

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes

Shadows

• One shadow ray per
intersection per point
light source

no shadow rays

one shadow ray

Soft Shadows
• Caused by

extended light
sources

• Umbra
– source

completely
occluded

• Penumbra
– Source partially

occluded

• Fully lit

Soft Shadows

• Multiple shadow rays
to sample area light
source

one shadow ray

lots of shadow rays

Shadows in Ray Tracing

• Shoot ray from visible point to light source
• If blocked, discard light contribution
• Optimization?

– Stop after first
intersection (don’t
worry about tmin)

– Coherence: remember
the previous occluder,
and test that object first

Traditional Ray Tracing

Ray Tracing + Soft Shadows

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes

Cast Shadows on Planar
Surfaces

• Draw the object primitives a second time,
projected to the ground plane

Limitations of Planar Shadows

• Does not produce self-shadows, shadows
cast on other objects, shadows on curved
surfaces, etc.

Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps

– Texture Mapping
– Shadow View Duality

• Shadow Volumes

Texture Mapping

• Don't have to represent everything with
geometry

Shadow/View Duality

• A point is lit if it
is visible from
the light source

• Shadow
computation
similar to view
computation

Fake Shadows using Projective
Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver

Image from light source BW image of obstacle Final image
Figure from Moller & Haines “Real Time Rendering”

Shadow maps

• In Renderman
– (High-end production software)

Shadow Mapping

• Texture mapping with depth information
• ≥ 2 passes through the pipeline

– Compute shadow
map (depth from
light source)

– Render final image
(check shadow map
to see if points are
in shadow)

Figure from Foley et al. “Computer Graphics Principles and Practice”

Shadow Map Look Up
• We have a 3D point (x,y,z)WS

• How do we look up
the depth from the
shadow map?

• Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?

Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x',y',z')LS

Shadow Maps

• Can be done in hardware
• Using hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix
– Modern hardware permits tests on texture values

Limitations of Shadow Maps

1. Field of View

2. Bias (Epsilon)

3. Aliasing

1. Field of View Problem

• What if point to
shadow is outside
field of view of
shadow map?
– Use cubical

shadow map
– Use only

spot lights!

2. The Bias (Epsilon) Nightmare

• For a point visible
from the light source
ShadowMap(x’,y’) ≈ z’

• How can we
avoid erroneous
self-shadowing?
– Add bias (epsilon)

2. Bias (Epsilon) for Shadow
Maps

ShadowMap(x’,y’) + bias < z’
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias

3. Shadow Map Aliasing

• Under-sampling of the shadow map
• Reprojection aliasing – especially bad when the

camera & light are pointing towards each other

Shadow Map Filtering

• Should we filter the depth?
(weighted average of neighboring depth
values)

• No... filtering depth is not meaningful

Percentage Closer Filtering

• Instead filter the result of the test
(weighted average of comparison results)

• But makes the bias issue more tricky

Percentage Closer Filtering

• 5x5 samples
• Nice antialiased

shadow
• Using a bigger

filter produces
fake soft
shadows

• Setting bias
is tricky

Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

Shadow Map Demo

• Demo1 hardware shadow map
• Demo2 hardware shadow map

Perspective Shadow Maps

• Change the projection for the light source
– Adapt the resolution of the shadow map

according to the view
– SIGGRAPH 2002 (Stamminger & Drettakis)
– More details at the publication page

http://www-sop.inria.fr/reves/publications/data/2002/SD02

shadow map aliasing

• perspective aliasing
parallel light

okay aliasedaliased okay

shadow map aliasing

• perspective aliasing
– smooth transition

al
ia

se
d

ov
er

sa
m

pl
ed

shadow map aliasing

• projection aliasing

parallel light

shadow map aliasing

• projection aliasing
– very local

al
ia

se
d

ov
er

sa
m

pl
ed

perspective transformation
po

st
-p

er
sp

ec
tiv

e
w

or
ld

sp
ac

e

perspective shadow map

• standard shadow map • perspective shadow
map

shadow map

im
ag

e

perspective shadow map

• standard shadow map • perspective shadow
map

al
ia

se
d

ov
er

sa
m

pl
ed

perspective shadow map

• shadow map in post-perspective space
• just another shadow map projection
• reduces perspective aliasing
• regeneration per frame necessary

light source transformation

• parallel
light
becomes
point
light

Results

Perspective Shadow Map Demo

• Demo

Shadows in Production

• Often use
shadow maps

• Ray casting as
fallback in case
of robustness
issues

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Shadow Maps
• Shadow Volumes

– The Stencil Buffer

Shadow Volumes

• Explicitly represent the volume
of space in shadow

• For each polygon
– Pyramid with point

light as apex
– Include polygon to cap

• Shadow test similar
to clipping

Shadow Volumes
• If a point is inside a shadow

volume cast by a particular light,
the point does not receive any
illumination from that light

• Naive implementation:
#polygons * #lights

Shadow Volumes
• Shoot a ray from the eye to

the visible point
• Increment/decrement a

counter each time we
intersect a shadow
volume polygon
(check z buffer)

• If the counter ≠ 0,
the point is
in shadow

+1-1

+1

Stencil Buffer

• Tag pixels in one rendering pass to control their
update in subsequent rendering passes

• "For all pixels in the frame buffer" →
"For all tagged pixels in the frame buffer"

• Used for real-time mirrors
(& other reflective surfaces),
shadows & more!

from NVIDIA's stencil buffer tutorial
(http://developer.nvidia.com)

Stencil Buffer

• Can specify different rendering operations
for each of the following stencil tests:
– stencil test fails
– stencil test passes &

depth test fails
– stencil test passes &

depth test passes

image from NVIDIA's stencil buffer
tutorial (http://developer.nvidia.com)

Shadow Volumes w/ the Stencil
Buffer

Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons

If z-pass → increment counter
Draw back-facing shadow polygons

If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and

redraw pixels with
counter = 0

0
+2

+1

If the Eye is in Shadow...
• ... then a counter of 0 does

not necessarily mean lit
• 3 Possible Solutions:

1. Explicitly test eye
point with respect
to all shadow volumes

2. Clip the shadow
volumes to the
view frustum

3. "Z-Fail" shadow
volumes

-1
0

-1

1. Test Eye with Respect to
Volumes

• Adjust initial
counter value

Expensive

0
+1

0

+1

2. Clip the Shadow Volumes
• Clip the shadow volumes to the view frustum

and include these new polygons
• Messy CSG

3. "Z-Fail" Shadow Volumes
Start at infinity

...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

...
0

+1

0

3. "Z-Fail" Shadow Volumes

0
+1

0

• Introduces problems
with far clipping plane

• Solved by clamping the
depth during clipping

Optimizing Shadow Volumes

• Use silhouette edges only (edge where
a back-facing & front-facing polygon meet)

L

A

Limitations of Shadow Volumes

• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Limited precision of stencil buffer (counters)

– for a really complex scene/object,
the counter can overflow

• Objects must be watertight to use silhouette trick
• Rasterization of polygons sharing an edge

must not overlap & must not have gap

Shadow Volume Demo

• Stencil buffer shadow volume demo

Global Illumination:
Radiosity and

Monte Carlo Methods

Today
• Radiosity methods

– Why Radiosity
– Global Illumination: The Rendering Equation
– Radiosity Equation/Matrix
– Calculating the Form Factors
– Progressive Radiosity

• Monte Carlo methods
– Expected value and variance
– Analysis of Monte-Carlo integration
– Monte-Carlo in graphics
– Importance sampling
– Stratified sampling
– Global illumination
– Advanced Monte-Carlo rendering

Radiosity

• Why Radiosity
– The Cornell Box
– Radiosity vs. Ray Tracing

• Global Illumination: The Rendering
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity

Rendering Recap

• Ray-tracing
– For each pixel, for each object

• Graphics pipeline, scan conversion
– For each object, for each pixel

• Local lighting models
– Diffuse, Phong

• Shadows
– Ray casting, shadow maps, shadow volumes

• Reflection, refraction

Why global illumination?

• Simulate all light inter-reflections
(indirect lighting)
– e.g. in a room, a lot of the light is indirect: it is

reflected by walls.

• How have we dealt with this so far?
– Ambient term to fake some uniform indirect

light

Direct illumination

Global Illumination

Why Radiosity?

eye

• Sculpture by John Ferren
• Diffuse panels

diagram
from above:

photograph:

Radiosity vs. Ray Tracing

Ray traced image. A standard
ray tracer cannot simulate the
interreflection of light between
diffuse surfaces.

Image rendered with radiosity.
note color bleeding effects.

Original sculpture by
John Ferren lit by
daylight from behind.

Two approaches for global
illumination

• Radiosity
– View-independent
– Diffuse only

• Monte-Carlo Ray-tracing
– Send tons of indirect rays

Radiosity vs. Ray Tracing

• Ray tracing is an image-space
algorithm
– If the camera is moved, we have to start over

• Radiosity is computed in object-space
– View-independent

(just don't move
the light)

– Can pre-compute
complex lighting to
allow interactive
walkthroughs

Radiosity

Lightscape http://www.lightscape.com

Today

• Why Radiosity
– The Cornell Box
– Radiosity vs. Ray Tracing

• Global Illumination: The Rendering
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity
• Advanced Radiosity

The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

L (x',ω') is the radiance from a point
on a surface in a given direction ω'

The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

E(x',ω') is the emitted radiance
from a point: E is non-zero only
if x' is emissive (a light source)

The Rendering Equation

x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

Sum the contribution from all of
the other surfaces in the scene

The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

For each x, compute L(x, ω), the radiance
at point x in the direction ω (from x to x')

The Rendering Equation

scale the contribution by
ρx'(ω,ω'), the reflectivity

(BRDF) of the surface at x'

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

The Rendering Equation

For each x, compute V(x,x'),
the visibility between x and x':

1 when the surfaces are unobstructed
along the direction ω, 0 otherwise

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

For each x, compute G(x, x'), which
describes the on the geometric relationship

between the two surfaces at x and x’

Intuition about G(x,x')?
• Which arrangement of two surfaces will yield the

greatest transfer of light energy? Why?

Older Radiosity Images (1989)

Museum simulation. Program of Computer Graphics, Cornell University.
50,000 patches. Note indirect lighting from ceiling.

Radiosity

• Why Radiosity
– The Cornell Box
– Radiosity vs. Ray Tracing

• Global Illumination: The Rendering
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity

Radiosity Overview
• Surfaces are assumed to be

perfectly Lambertian (diffuse)
– reflect incident light in all directions with equal

intensity

• The scene is divided into a set
of small areas, or patches.

• The radiosity, Bi, of patch i is the
total rate of energy leaving a
surface. The radiosity over a
patch is constant.

• Units for radiosity:
Watts / steradian * meter2

x'

ω'

Radiosity Equation
L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA

Bx' = Ex' + ρx' ∫ Bx G(x,x')V(x,x')

Radiosity assumption:
perfectly diffuse surfaces (not directional)

Continuous Radiosity Equation
reflectivity

x

x’

form factor

Bx' = Ex' + ρx' ∫ G(x,x') V(x,x') Bx

G: geometry term
V: visibility term

No analytical solution,
even for simple configurations

Discrete Radiosity Equation
Discretize the scene into n patches, over which the radiosity is constant

reflectivity

A

iA

j ∑
j=1

iρ
n

= +iB iE ijF jB

form factor

• discrete representation
• iterative solution
• costly geometric/visibility
calculations

The Radiosity Matrix
∑+=
j=1

jijiii BFEB ρ
n

n simultaneous equations with n unknown Bi values can be written
in matrix form:

1

2

n

B
B

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

1

2

n

E
E

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
=

1 11 1 12 1 1

2 21 2 22

1

1
1

1

n

n n n nn

F F F
F F

F F

ρ ρ ρ
ρ ρ

ρ ρ

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

L

M O

L L

A solution yields a single radiosity value Bi for each patch in the
environment, a view-independent solution.

Solving the Radiosity Matrix
The radiosity of a single patch i is updated for each iteration by
gathering radiosities from all other patches:

1

2

1

2

1

1 1

2

i i ii i i i i in

nn n

B
B

B E BF

B E
B

F F

B

E

B E

ρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

MM

M M M

M

L

This method is fundamentally a Gauss-Seidel relaxation

Computing Vertex Radiosities
• Bi radiosity values are

constant over the extent of
a patch.

• How are they mapped
to the vertex radiosities
(intensities) needed by the
renderer?
– Average the radiosities

of patches that
contribute to the vertex

– Vertices on the edge of
a surface are assigned
values extrapolation

Radiosity 1988

Factory simulation. Program of Computer Graphics, Cornell University.
30,000 patches.

Today

• Why Radiosity
– The Cornell Box
– Radiosity vs. Ray Tracing

• Global Illumination: The Rendering
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity

Radiosity Patches are Finite
Elements

• We are trying to solve an the rendering equation over the
infinite-dimensional space of radiosity functions over the
scene.

• We project the problem onto a finite basis of functions:
piecewise constant over patches

Ai

Aj

Area-to-area
form factor

Ai

Aj

Point-to-area
form factor

Calculating the Form Factor Fij

• Fij = fraction of light energy leaving patch j
that arrives at patch i

• Takes account of both:
– geometry (size, orientation & position)
– visibility (are there any occluders?)

patch i patch i patch i

patch jpatch j

patch j

Remember Diffuse Lighting?

Surface

θi

dB

dA

n

idBdA θcos=

2)(
r
LkL i

do ln ⋅=
l

Calculating the Form Factor Fij
• Fij = fraction of light energy leaving patch j that arrives at

patch I

patch i

patch j

θi

θj

r

Fij = ∫ ∫ Vij dAj dAi
cos θi cos θj

π r2
1
Ai Ai Aj

Form Factor Determination

Aj

Aj

r = 1 FdAi,Aj

dAi

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the
the unit circle that is formed by taking the projection of the patch onto the
hemisphere surface and projecting it down onto the circle.

Hemicube Algorithm
• A hemicube is constructed around the center of each patch
• Faces of the hemicube are divided into "pixels"
• Each patch is projected (rasterized) onto the faces

of the hemicube
• Each pixel stores its pre-computed form factor

The form factor for a particular
patch is just the sum of
the pixels it overlaps

• Patch occlusions are
handled similar to
z-buffer rasterization

Form Factor from Ray Casting

• Cast n rays between the two patches
– n is typically between 4 and 32
– Compute visibility
– Integrate the point-to-point form factor

• Permits the computation
of the patch-to-patch
form factor, as opposed
to point-to-patch Ai

Aj

Lightscape http://www.lightscape.com

Radiosity

• Why Radiosity
– The Cornell Box
– Radiosity vs. Ray Tracing

• Global Illumination: The Rendering
Equation

• Radiosity Equation/Matrix
• Calculating the Form Factors
• Progressive Radiosity

Stages in a Radiosity Solution
Form Factor
Calculation

Solve the
Radiosity Matrix

Input
Geometry

Visualization
(Rendering)

Radiosity Solution

Radiosity Image

Reflectance
Properties

~ 0%

< 10%

> 90%
Calculation &

storage of
n2 form factors

Why so costly?

Camera
Position &
Orientation

Progressive Refinement
• Goal: Provide frequent and

timely updates to the user
during computation

• Key Idea: Update the entire
image at every iteration, rather
than a single patch

• How? Instead of summing the
light received by one patch,
distribute the radiance of the
patch with the most undistributed
radiance.

Reordering the Solution for PR
Shooting: the radiosity of all patches is updated for each iteration:

1 1 1 1

2 2 2 2

i

i

i

n n n ni

B B F
B B F

B

B B F

ρ
ρ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M

L L

L

M

M

M

L L

M

M

This method is fundamentally a Southwell relaxation

Progressive Refinement w/out Ambient Term

Progressive Refinement with Ambient Term

Lightscape http://www.lightscape.com

Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

A little bit of eye candy for
motivation

• Glossy material rendering
• Random reflection rays around mirror direction

– 1 sample per pixel

A little bit of eye candy for
motivation

• Glossy material rendering
• Random reflection rays around mirror direction

– 256 sample per pixel

Monte Carlo Images
• Image from the ARNOLD Renderer by Marcos Fajardo

Expected value

• Expected value is linear
• E[f1(x) + a f2(x)] = E[f1(x)] + a E[f2(x)]

Variance

• Measure of deviation from expected value
• Expected value of square difference

(MSE)
• Standard deviation σ:

square root of variance (notion of error,
RMS)

Variance

• Proof:

• Note that E[x] is a constant. By linearity of E we
have:

Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

Monte Carlo integration

• Function f(x) of x 2 [a b]
• We want to compute

• Consider a random variable x
• If x has uniform distribution, I=E[f(x)]

– By definition of the expected value

Sum of Random Variables

• Use N independent identically-distributed
(IID) variables xi
– Share same probability (uniform here)

• Define

• By linearity of the expectation:
E[FN] = E[f(x)]

Study of variance

• Recall σ2[x+y] = σ2[x] + σ2[y] + 2 Cov[x,y]
– We have independent variables: Cov[xi, xj]=0

if i ≠ j
� σ2[ax] = a2 σ2[x]

• i.e. stddev σ (error) decreases by

Example

• We know it should be 1.0

• In practice
with uniform
samples:

N

σ2

- σ2

error

Monte Carlo integration with
probability

• Consider N random samples over domain
with probability p(x)

• Define estimator < I > as:

• Probability p allows us to sample the
domain more smartly

Monte-Carlo Recap

• Expected value is the integrand
– Accurate “on average”

• Variance decrease in 1/N
– Error decreases in

Advantages of MC Integration

• Few restrictions on the integrand
– Doesn’t need to be continuous, smooth, ...
– Only need to be able to evaluate at a point

• Extends to high-dimensional problems
– Same convergence

• Conceptually straightforward
• Efficient for solving at just a few points

Disadvantages of MC

• Noisy
• Slow convergence
• Good implementation is hard

– Debugging code
– Debugging maths
– Choosing appropriate techniques

• Images by Veach and Guibas

Naïve sampling strategy Optimal sampling strategy

Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

What can we integrate?
• Pixel: antialiasing
• Light sources: Soft shadows
• Lens: Depth of field
• Time: Motion blur
• BRDF: glossy reflection
• Hemisphere: indirect lighting

Domains of integration

• Pixel, lens (Euclidean 2D domain)
• Time (1D)
• Hemisphere

– Work needed to ensure uniform probability
• Light source

– Same thing: make sure that the probabilities
and the measures are right.

Example: Light source

• Integrate over surface or over angle
• Be careful to get probabilities and

integration measure right!
Sampling the hemisphere uniformly

source
Sampling the source uniformly

hemisphere

• Image by
Henrik Wann
Jensen

Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

Important issues in MC
rendering

• Reduce variance!
• Choose a smart probability distribution
• Choose smart sampling patterns

• And of course, cheat to make it faster
without being noticed

Example: Glossy rendering
• Integrate over hemisphere
• BRDF times cosine times incoming light

)(iωI

Slide courtesy of Jason Lawrence

Sampling a BRDF
5 Samples/Pixel

oω
)(U iω

)(P iω
oω

Slide courtesy of Jason Lawrence

Sampling a BRDF
25 Samples/Pixel

oω
)(U iω

oω
)(P iω

Slide courtesy of Jason Lawrence

Sampling a BRDF
75 Samples/Pixel

oω
)(U iω

oω
)(P iω

Slide courtesy of Jason Lawrence

Importance sampling

• Choose p wisely to reduce variance
– p that resembles f
– Does not change convergence rate (still sqrt)
– But decreases the constant

uniformbad good

Questions?
1200 Samples/Pixel

Traditional importance functionTraditional importance function Better importance by Lawrence et al. Better importance by Lawrence et al.

Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

Stratified sampling

• With uniform sampling, we can get unlucky
– E.g. all samples in a corner

• To prevent it, subdivide domain Ω
into non-overlapping regions Ωi
– Each region is called a stratum

• Take one random sample per Ωi

Example
• Borrowed from Henrik Wann Jensen

Unstratified Stratified

Stratified sampling - bottomline

• Cheap and effective
• Typical example: jittering for antialiasing

– Signal processing perspective:
better than uniform because less aliasing
(spatial patterns)

– Monte-Carlo perspective: better than random
because lower variance (error for a given
pixel)

• Image from the ARNOLD Renderer by Marcos Fajardo

Monte Carlo Methods

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

Recall The Rendering Equation

x'

ω'
ω

x

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA
Incoming

light
Geometric

term
visibilityemission BRDF

Ray Casting

• Cast a ray from the eye through each pixel

Ray Tracing
• Cast a ray from the eye through each pixel
• Trace secondary rays (light, reflection, refraction)

Monte-Carlo Ray Tracing
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point

– Accumulate radiance contribution

Monte-Carlo Ray Tracing
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point
• Recurse

Monte-Carlo
• Cast a ray from the eye through each pixel
• Cast random rays from the visible point
• Recurse

Monte-Carlo

• Systematically sample primary light

Results

Monte Carlo Path Tracing
• Trace only one secondary ray per recursion
• But send many primary rays per pixel
• (performs antialiasing as well)

Results
• 10 paths/pixel Think about it : we compute an

infinite-dimensional integral with 10 samples!!!

Results: glossy
• 10 paths/pixel

Results: glossy
• 100 paths/pixel

Importance of sampling the light
Without explicit

light sampling
With explicit
light sampling

1 path per pixel

4 path per pixel

Why use random numbers?
• Fixed random sequence
• We see the structure in the error

Convergence speed

• Vintage path tracing by Kajiya (1986,
introduction of the rendering equation)

Radiosity vs. Monte Carlo
• We have an integral equation on an infinite space
• Finite elements (Radiosity)

– Project onto finite basis
of functions

– Linear system
– View-independent

(no angular information)
• Monte Carlo

– Probabilistic sampling
– View-dependent

(but angular information)

Today’s lecture

• Expected value and variance
• Analysis of Monte-Carlo integration
• Monte-Carlo in graphics
• Importance sampling
• Stratified sampling
• Global illumination
• Advanced Monte-Carlo rendering

Path Tracing is costly

• Needs tons of rays per pixel

Direct illumination

Global Illumination

Indirect illumination: smooth

Irradiance cache

• The indirect illumination is smooth

Irradiance cache

• The indirect illumination is smooth

Irradiance cache
• The indirect illumination is smooth
• Interpolate nearby values

Irradiance cache
• Store the indirect illumination
• Interpolate existing cached values
• But do full calculation for direct lighting

Irradiance caching
• Yellow dots:

computation of indirect diffuse contribution

Photon mapping
• Preprocess: cast rays from light sources
• Store photons

Photon mapping
• Preprocess: cast rays from light sources
• Store photons (position + light power + incoming direction)

Photon map
• Efficiently store photons for fast access
• Use hierarchical spatial structure (kd-tree)

Photon mapping - rendering
• Cast primary rays
• For secondary rays

– reconstruct irradiance using adjacent stored photon
– Take the k closest photons

• Combine with irradiance caching and a number of other techniques

Photon map results

Photon mapping - caustics
• Special photon map for specular reflection

and refraction

Glass sphere

• 1000 paths/pixel

• Photon mapping

References

• Eric Veach’s PhD dissertation
http://graphics.stanford.edu/papers/veach_thesis/

• Physically Based Rendering
by Matt Pharr, Greg Humphreys

http://graphics.stanford.edu/papers/veach_thesis/

References

Advanced Topics

• Advanced Radiosity
– Adaptive Subdivision
– Discontinuity Meshing
– Hierarchical Radiosity
– Other Basis Functions

Increasing the Accuracy of the
Solution

What’s wrong with this picture?

• The quality of the image is a
function of the size of the patches

• The patches should be adaptively
subdivided
near shadow boundaries,
and other areas with a high
radiosity gradient

• Compute a solution on a uniform
initial mesh, then refine the mesh
in areas that exceed some error
tolerance

Adaptive Subdivision of Patches

Coarse patch solution
(145 patches)

Improved solution
(1021 subpatches)

Adaptive subdivision
(1306 subpatches)

Discontinuity Meshing
source

• Limits of umbra and penumbra
– Captures nice shadow

boundaries
– Complex geometric

computation
– The mesh is

getting complex

umbra

blocker

penumbra

Discontinuity Meshing

Discontinuity Meshing
Comparison

[Gibson 96]

With visibility
skeleton &
discontinuity
meshing

10 minutes 23 seconds 1 hour 57 minutes

Hierarchical Approach
• Group elements when the light exchange is

not important
– Breaks the quadratic complexity
– Control non trivial, memory cost

Other Basis Functions
• Higher order (non constant basis)

– Better representation of smooth variations
– Problem: radiosity is discontinuous (shadow boundary)

• Directional basis
– For non-diffuse finite elements
– E.g. spherical harmonics

Lightscape http://www.lightscape.com

Radiosity today
• Used in architectural simulation (Lightscape

software)
• Used for game lighting preprocessing

(light maps)

• Not as hot a research topic
– Monte-Carlo Ray-tracing is hotter (more general)
– But “pre-computed radiance transfer” is very close:

idea of projecting onto simpler basis functions
(used e.g. in Max Payne 2)

Practical problems with radiosity

• Meshing (memory, robustness)
• Form factors (computation)
• Diffuse limitation (extension to specular

takes too much memory)

• Fast extensions (hierarchical) can be hard
to control

Fin

Durer’s Ray casting machine

• Albrecht Durer, 16th century

Oldest illustration

• From. R. Gemma Frisius, 1545

Camera Obscura

Orthographic camera

• Parallel projection
• No foreshortening
• No vanishing point

perspective orthographic

Orthographic camera
description

Orthographic camera
description

• Direction
• Image center

• Image size
• Up vector

size

size

up
center

Orthographic ray generation

• Direction is constant
• Origin = center + (x-0.5)*size*up + (y-

0.5)*size*horizontal

up

direction

horizontal

size

size
(0,0)

(1,1)
center

Other weird cameras

• E.g. fish eye, omnimax, panorama

Geometric ray-sphere
intersection

• Try to shortcut (easy reject)
• e.g.: if the ray is facing away from the sphere
• Geometric considerations can help

• In general, early reject is important

R

r

O

D

Geometric ray-sphere
intersection

• What geometric information is important?
– Inside/outside
– Closest point
– Direction

R
r

O

D

Geometric ray-sphere
intersection

• Find if the ray’s origin is outside the
sphere
– R2>r2

– If inside, it intersects
– If on the sphere, it does not intersect (avoid

degeneracy)

R
r

O

D

Geometric ray-sphere
intersection

• Find if the ray’s origin is outside the
sphere

• Find the closest point to the sphere center
– tP=RO.D
– If tP<0, no hit

R
r

O

DtPP

Geometric ray-sphere
intersection

• Find if the ray’s origin is outside the sphere
• Find the closest point to the sphere center

– If tP<0, no hit

• Else find squared distance d2

– Pythagoras: d2=R2-tP2

– …

R
r

O

D
P tP

d

if d2> r2 no hit

Geometric ray-sphere
intersection

• Find if the ray’s origin is outside the
sphere

• Find the closest point to the sphere
center

– If tP<0, no hit
• Else find squared distance d2

– if d2 > r2 no hit

• If outside t = tP-t’
– t’2+d2=r2

• If inside t = tP+t’

R

r
O

D
P tP

d t

t’

Geometric vs. algebraic

• Algebraic was more simple
(and more generic)

• Geometric is more efficient
– Timely tests
– In particular for outside and pointing away

Normal

• Simply Q/||Q||

R

r
O

D

t

Q
normal

Special Case: Transformed
TriangleCan we do better?

M

Special Case: Transformed
Triangle

(xmax, ymax, zmax)
= (max(x'0,x'1,x'2),

max(y'0,y'1,y'2),
max(z'0,z'1,z'2))

M

(xmin, ymin, zmin)
= (min(x'0,x'1,x'2),

min(y'0,y'1,y'2),
min(z'0,z'1,z'2))

(x'0,y'0,z'0) =
M (x0,y0,z0)

(x'1,y'1,z'1) =
M (x1,y1,z1) (x'2,y'2,z'2) =

M (x2,y2,z2)

(x2, y2, z2)

(x1, y1, z1)

(x0, y0, z0)

Non-linearity of variance

• Variance is not linear !!!!
� σ2[ax]=

a2 σ2[x]

Non-linearity of variance

• Consider two random variable x1 and x2

• We define the covariance
Cov[x1,x2] = E[x1x2] - E[x1] E[x2]

� σ2[x1+x2] = σ2[x1] + σ2[x2] + 2 Cov[x1,x2]

Non-linearity of variance,
covariance

• Consider two random variable x1 and x2

• We define the covariance
Cov[x1,x2] = E[x1x2] - E[x1] E[x2]
– Tells how much they are big at the same time
– Null if variables are independent

� σ2[x1+x2] = σ2[x1] + σ2[x2] + 2 Cov[x1,x2]

Recap

• Expected value is linear
– E[ax1+bx2]=aE[x1]+bE[x2]

• Variance is not
• For two independent variables

– σ2[x1+x2]=σ2[x1]+σ2[x2]
– If not independent, needs covariance

• σ2[ax]=a2σ2[x]

	Tracé de Rayons,Ombres et Éclairage Global
	Tracé de Rayons
	Tracé de Rayons
	Ray Casting
	Ray Casting
	Shading
	Ray Tracing
	Ray representation?
	Ray representation
	Ray Tracing
	Ray casting
	Overview of today
	Cameras
	Pinhole camera
	Simplified pinhole camera
	Camera description
	Ray Casting
	Ray Casting
	Recall: Ray representation
	3D plane equation
	3D plane equation
	Explicit vs. implicit?
	Plane-point distance
	Line-plane intersection
	Additional house keeping
	Normal
	
	
	Sphere equation
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Precision
	The evil e
	The evil e: a hint of nightmare
	Ray-polygon intersection
	Point inside/outside polygon
	Precision issue
	Winding number
	Alternative definitions
	How do we project into 2D?
	Ray triangle intersection
	Barycentric definition of a plane
	Barycentric definition of a triangle
	Given P, how can we compute a, b, g ?
	Intuition behind area formula
	Simplify
	Simplify
	How do we use it for intersection?
	Intersection
	Matrix form
	Cramer’s rule
	Advantage
	More Effects
	Extra rays needed for these effects:
	Shadows
	Soft Shadows
	Antialiasing – Supersampling
	Reflection
	Glossy Reflection
	Motion Blur
	Depth of Field
	Algorithm Analysis
	Accelerating RT
	Reduce the number of pixels traced
	Reduce the number of intersections
	Acceleration of Ray Casting
	Conservative Bounding Region
	Conservative Bounding Regions
	Intersection with Axis-Aligned Box
	Bounding Box of a Triangle
	Bounding Box of a Sphere
	Bounding Box of a Plane
	Bounding Box of a Group
	Bounding Box of a Transform
	Reduce the number of intersections
	Regular Grid
	Create grid
	Insert primitives into grid
	For each cell along a ray
	Preventing repeated computation
	Don't return distant intersections
	Where do we start?
	Is there a pattern to cell crossings?
	What's the next cell?
	What's the next cell?
	Pseudo-code
	Regular Grid Discussion
	Reduce the number of intersections
	Adaptive Grids
	Primitives in an Adaptive Grid
	Adaptive Grid Discussion
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Bounding Volume Hierarchy
	Where to split objects?
	Intersection with BVH
	Intersection with BVH
	Bounding Volume Hierarchy Discussion
	Ombres
	
	Why are Shadows Important?
	Shadows as a Depth Cue
	For Intuition about Scene Lighting
	Shadows as the Origin of Painting
	Shadows and Art
	
	Shadows
	Soft Shadows
	Soft Shadows
	Shadows in Ray Tracing
	Traditional Ray Tracing
	Ray Tracing + Soft Shadows
	
	Cast Shadows on Planar Surfaces
	Limitations of Planar Shadows
	Today
	Texture Mapping
	Shadow/View Duality
	Fake Shadows using Projective Textures
	Shadow maps
	Shadow Mapping
	Shadow Map Look Up
	Shadow Maps
	Limitations of Shadow Maps
	1. Field of View Problem
	2. The Bias (Epsilon) Nightmare
	2. Bias (Epsilon) for Shadow Maps
	3. Shadow Map Aliasing
	Shadow Map Filtering
	Percentage Closer Filtering
	Percentage Closer Filtering
	Projective Texturing + Shadow Map
	Shadow Map Demo
	Perspective Shadow Maps
	shadow map aliasing
	shadow map aliasing
	shadow map aliasing
	shadow map aliasing
	perspective transformation
	perspective shadow map
	perspective shadow map
	perspective shadow map
	light source transformation
	Results
	Perspective Shadow Map Demo
	Shadows in Production
	
	Shadow Volumes
	Shadow Volumes
	Shadow Volumes
	Stencil Buffer
	Stencil Buffer
	Shadow Volumes w/ the Stencil Buffer
	If the Eye is in Shadow...
	1. Test Eye with Respect to Volumes
	2. Clip the Shadow Volumes
	3. "Z-Fail" Shadow Volumes
	3. "Z-Fail" Shadow Volumes
	Optimizing Shadow Volumes
	Limitations of Shadow Volumes
	Shadow Volume Demo
	Global Illumination:Radiosity and Monte Carlo Methods
	Today
	Radiosity
	Rendering Recap
	Why global illumination?
	Direct illumination
	Global Illumination
	Why Radiosity?
	Radiosity vs. Ray Tracing
	Two approaches for global illumination
	Radiosity vs. Ray Tracing
	Radiosity
	Today
	The Rendering Equation
	The Rendering Equation
	The Rendering Equation
	The Rendering Equation
	The Rendering Equation
	The Rendering Equation
	The Rendering Equation
	Intuition about G(x,x')?
	Older Radiosity Images (1989)
	Radiosity
	Radiosity Overview
	Radiosity Equation
	Continuous Radiosity Equation
	Discrete Radiosity Equation
	The Radiosity Matrix
	Solving the Radiosity Matrix
	Computing Vertex Radiosities
	Radiosity 1988
	Today
	Radiosity Patches are Finite Elements
	Calculating the Form Factor Fij
	Remember Diffuse Lighting?
	Calculating the Form Factor Fij
	Form Factor Determination
	Hemicube Algorithm
	Form Factor from Ray Casting
	
	Radiosity
	Stages in a Radiosity Solution
	Progressive Refinement
	Reordering the Solution for PR
	Progressive Refinement w/out Ambient Term
	Progressive Refinement with Ambient Term
	
	Monte Carlo Methods
	A little bit of eye candy for motivation
	A little bit of eye candy for motivation
	Monte Carlo Images
	Expected value
	Variance
	Variance
	Monte Carlo Methods
	Monte Carlo integration
	Sum of Random Variables
	Study of variance
	Example
	Monte Carlo integration with probability
	Monte-Carlo Recap
	
	Advantages of MC Integration
	Disadvantages of MC
	
	Today’s lecture
	What can we integrate?
	Domains of integration
	Example: Light source
	
	Today’s lecture
	Important issues in MC rendering
	Example: Glossy rendering
	Sampling a BRDF
	Sampling a BRDF
	Sampling a BRDF
	Importance sampling
	Questions?
	Today’s lecture
	Stratified sampling
	Example
	Stratified sampling - bottomline
	
	Monte Carlo Methods
	Recall The Rendering Equation
	Ray Casting
	Ray Tracing
	Monte-Carlo Ray Tracing
	Monte-Carlo Ray Tracing
	Monte-Carlo
	Monte-Carlo
	Results
	Monte Carlo Path Tracing
	Results
	Results: glossy
	Results: glossy
	Importance of sampling the light
	Why use random numbers?
	Convergence speed
	
	Radiosity vs. Monte Carlo
	Today’s lecture
	Path Tracing is costly
	Direct illumination
	Global Illumination
	Indirect illumination: smooth
	Irradiance cache
	Irradiance cache
	Irradiance cache
	Irradiance cache
	Irradiance caching
	Photon mapping
	Photon mapping
	Photon map
	Photon mapping - rendering
	Photon map results
	Photon mapping - caustics
	
	
	References
	References
	Advanced Topics
	Increasing the Accuracy of the Solution
	Adaptive Subdivision of Patches
	Discontinuity Meshing
	Discontinuity Meshing
	Discontinuity Meshing Comparison
	Hierarchical Approach
	Other Basis Functions
	
	Radiosity today
	Practical problems with radiosity
	Fin
	Durer’s Ray casting machine
	Oldest illustration
	Camera Obscura
	Orthographic camera
	Orthographic camera description
	Orthographic camera description
	Orthographic ray generation
	Other weird cameras
	Geometric ray-sphere intersection
	Geometric ray-sphere intersection
	Geometric ray-sphere intersection
	Geometric ray-sphere intersection
	Geometric ray-sphere intersection
	Geometric ray-sphere intersection
	Geometric vs. algebraic
	Normal
	Special Case: Transformed Triangle
	Special Case: Transformed Triangle
	Non-linearity of variance
	Non-linearity of variance
	Non-linearity of variance, covariance
	Recap

