Interactive Optimization of Scaffolded Procedural Patterns
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Fig. 1. We interactively edit procedural patterns by optimizing their parameters towards the best match with respect to hand-drawn sketches. We base our
work on the use of scaffolded procedural patterns, that are sets of coarse-to-fine procedural functions, called levels, each of which is parametrized by a superset
of the previous function’s procedural parameters. Scaffolded patterns are edited level-by-level, allowing users to sketch in a coarse-to-fine manner rather than
requiring them to sketch all details simultaneously. Also, since the optimization is split into multiple levels, the overall method is fast and stable, making it

suitable for real-time sketching. Here, we show a pattern drawn in seven steps, using red to highlight user’s strokes.

A procedural program is the representation of a family of assets that share
the same structural or semantic properties, whose final appearance is deter-
mined by different parameter assignments. Identifying the parameter values
that define a desired asset is usually a time-consuming operation, since
it requires manually tuning parameters separately and in a non-intuitive
manner. In the domain of procedural patterns, recent works focused on esti-
mating parameter values to match a target render or sketch, using parameter
optimization or inference via neural networks. However, these approaches
are neither fast enough for interactive design nor precise enough to give
direct control. In this work, we propose an interactive method for procedural
parameter estimation based on the idea of scaffolded procedural patterns.
A scaffolded procedural pattern is a sequence of procedural programs that
model a pattern in a coarse-to-fine manner, in which the desired pattern
appearance is reached step-by-step by inheriting previously optimized pa-
rameters. Through scaffolding, patterns are more straightforward to sketch
for users and easier to optimize for most algorithms. In our implementation,
patterns are represented as procedural signed distance functions whose pa-
rameters are estimated with a gradient-free optimization method that runs
in real-time on the GPU. We show that scaffolded patterns can be created
with a node-based interface familiar to artists. We validate our approach
by creating and interactively editing several scaffolded patterns. We show
the effectiveness of scaffolding through a user study, where scaffolding en-
hances both the output quality and the editing experience with respect to
approaches that optimize the procedural parameters all at once. We also per-
form a comparison with previous strategies and provide several recordings
of real-time editing sessions in the accompanying materials.
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1 INTRODUCTION

Procedural content creation is ubiquitous in computer graphics,
given its ability to produce high-quality assets that can be easily
edited to create countless variations. In procedural modeling work-
flows, users typically generate different assets by either developing
new procedural programs or modifying the parameters of existing
ones. The latter approach is by far the most common, given the
widespread availability of extensive program libraries and the com-
plexity of writing new procedural programs from scratch. However,
as the number of parameters increases, the task of finding target val-
ues to achieve the desired look becomes increasingly cumbersome
and time-consuming.

To mitigate this issue, recent works have focused on inverse pro-
cedural modeling techniques, aiming to automatically identify the
optimal parameter set that matches a procedural model to a target
asset. These methods differ in the type of user interaction they offer.
Example-based techniques [Guo et al. 2020; Hu et al. 2022b; Riso
et al. 2022] determine procedural parameters by optimizing their fit
to a given exemplar, providing users with initial settings for further
refinement. In contrast, direct manipulation methods [Gaillard et al.
2022; Michel and Boubekeur 2021; Pellacini 2010; Riso and Pellacini
2023] allow users to directly interact with the asset while an opti-
mization process identifies the optimal procedural parameters to
match the desired outcome. Additionally, parameter estimation via
neural networks has been investigated [Hu et al. 2019; Trunz et al.
2024], leveraging machine learning algorithms to infer procedural
parameters from input data. To this day, while methods based on
neural networks are general, they are not precise in the parameter
estimates. On the other hand, optimization-based methods are more
specific to each procedural domain. Hence, they represent the state
of the art in terms of parameter estimation accuracy.
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Fig. 2. Scaffolded procedural patterns are sequences of procedural functions, called levels, where the parameters of each function are a superset of the preceding
ones. Left: We sketch scaffolded patterns by optimizing their procedural parameters, level-by-level, to match the user’s sketches. We measure the difference
between patterns and sketches using a loss function defined as a weighted distance between the respective Signed Distance Functions, since SDFs provide
better fits than image-based metrics. At each level, the parameters of the preceding functions are fixed during optimization, making sketching easier and
optimization faster and more robust. Right: We create scaffolded patterns using familiar node-graph interfaces, where, in most cases, existing internal nodes of
a pattern work well as intermediate levels. In the graph, we show the levels’ outputs as blue nodes and the levels’ parameters as green nodes.

In this work, we focus on real-time parameter optimization for
discrete element patterns, namely collections of shapes arranged in
a desired layout determined by a procedural generator. We base our
method on the idea of scaffolded procedural patterns. In computer
graphics, scaffolding is used to guide the creation of digital assets,
particularly in 2D and 3D sketches [Igarashi et al. 1999; Olsen et al.
2009; Schmidt et al. 2009]. This approach provides users with sets
of guidelines that aid in the accurate drawing, modeling, or manip-
ulation of complex shapes or scenes. Scaffolding techniques often
involve the incorporation of auxiliary elements, such as construction
lines or geometric primitives [Hahnlein et al. 2022; Hennessey et al.
2017; Yu et al. 2021]. They serve as guides for the user during the
design process, offering tangible visual cues and spatial references.

We define a scaffolded pattern as a sequence of procedural func-
tions, that we call levels, where the parameter set of each function
is a superset of that of the previous function. While the idea of
scaffolding is general, in this paper we focus on procedural patterns
defined as Signed Distance Functions. In our optimization method,
users edit the pattern level-by-level by sketching on a canvas. For
each optimization step, a single procedural function is optimized,
thus allowing users to specify coarse structural characteristics be-
fore moving into finer details. Scaffolded patterns can be created
with the same node-based editors artists are familiar with, for exam-
ple, by defining levels as the output of internal nodes, as shown in
Fig. 2. This naturally generates a sequence of procedural programs,
growing in complexity and inheriting parameters fine-tuned from
simpler ones.

We estimate the parameters of the selected procedural program
while the user is sketching the pattern, providing a real-time “auto-
completion” framework that allows users to achieve the desired
look in an interactive manner. The optimization, which is performed

every time the user draws a new stroke, is based on a loss function
that measures the distance between the Signed Distance Functions of
the sketch and the target pattern. To achieve real-time optimization,
we map the computation on the GPU and use a gradient-free method
that converges faster and with lower overhead than gradient-based
formulations for our problem domain.

Although our system delivers responsive interaction and accurate
results across diverse procedural patterns, it also inherits some of the
limitations typical of procedural modeling approaches. In particular,
the expressiveness of the system is bounded by the procedural
program and scaffolding sequence, both of which are fixed during
optimization. As a result, users may sometimes sketch patterns that
fall outside the representational capacity of the underlying program,
leading to suboptimal fits. Additionally, authoring or modifying
scaffolds requires programming, which may limit accessibility for
non-technical users.

We evaluate our system by sketching different patterns, that
are showcased in Figs. 1, 9, 10, and 11, and in the recordings of
interactive sketching sessions provided as supplementary videos. All
these patterns are defined as node graphs, that we include together
with the corresponding generated code as supplemental material.
We compare our optimization strategy to existing techniques that we
found to be too computationally expensive for interactive feedback
and run an ablation study to confirm our algorithm design. Finally,
we discuss a user study where users found our approach to produce
better patterns faster than optimizing the parameters all at once.



2 RELATED WORK
2.1 Inverse Procedural Modeling

With the term “inverse procedural modeling”, we usually refer to
the problem of finding a procedural representation of given target
assets, such as textures, materials, and shapes. Due to the high diver-
sity in assets, the literature in the field is quite copious. Depending
on the application, some inverse procedural modeling approaches
estimate the procedural program from the provided example, while
others find the procedural parameters given known programs. In
terms of program estimation, works have been proposed for in-
verse procedural architecture and urban models [Miiller et al. 2007;
Nishida et al. 2018, 2015, 2016; Stava et al. 2014], trees [Stava et al.
2010, 2014], knitwear [Trunz et al. 2019], motion data [Park et al.
2011] and materials [Guerrero et al. 2022]. In the reminder, we focus
only on the works mostly related to our own, while we refer the
reader to [Aliaga et al. 2016; Gieseke et al. 2021; Smelik et al. 2014]
for comprehensive overviews.

In our work, we focus on determining the procedural parame-
ters given known procedural programs via optimization. Parameter
optimization can be performed either by direct manipulation or by
example-based matching. In the former, transformations are directly
performed on procedural assets with click-and-drag interactions,
with the optimizer recomputing the parameter values that best fit
the constraint expressed by the user. [Pellacini et al. 2007, 2002] are
examples of the two methods applied to points lights, while [Loi
et al. 2017], [Hempel et al. 2019] and [Riso and Pellacini 2023] fo-
cus on 2D vector graphics, offering script-directed, output-directed
and click-and-drag manipulation tools, respectively. For 3D mod-
els, direct control of procedural meshes and SDFs can be obtained
by adding differentiability to the procedural graphs [Michel and
Boubekeur 2021; Riso et al. 2024], by transferring updates from a
proxy shape [Gaillard et al. 2022] or enabling bi-directional editing
[Cascaval et al. 2021].

An alternative to direct manipulation is example-based methods,
where a user-provided target, usually in the form of an image, is
used to compute the procedural parameters that best match the
given image. Although the same problem has also been studied for
other assets like procedural 3D shapes [Huang et al. 2017; Manfredi
et al. 2023], we will focus on procedural materials, as they are closer
to our domain. [Guo et al. 2020] estimate parameters with Markov
Chain Monte Carlo, [Shi et al. 2020] provide building blocks to gen-
erate differentiable node graphs to optimize from photos, [Hu et al.
2019] estimate parameters with CNNs, [Hu et al. 2022b] procedu-
ralize SVBRDFs via differentiable rendering, [Hu et al. 2022a] use
differentiable proxies for node graphs, and [Trunz et al. 2024] uses
an ensemble of feature-focused NN for procedural yarn. The closest
work to our own is [Riso et al. 2022], which proposes a differentiable
signed distance definition for vector patterns, enabling parameter
optimization by minimizing an SDF-based distance loss. Compared
to these works, we focus on real-time parameter estimation so that
procedural patterns can be sketched interactively.

2.2 Scaffolding

The term “sketch-based modeling” refers to methods that exploit
freehand 2D curves to model 3D assets [Igarashi et al. 1999; Olsen
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et al. 2009]. Sketches enable rough visualization of a 3D shape, for
which variations can be generated by interpolating 2D drawings
[Arora et al. 2017] or hands-on drawing tutorials can be extracted
to help users in perspective drawing [Hennessey et al. 2017]. A key
concept in this field is scaffolding, which employs visual hints to
guide the creation of complex shapes, thus enforcing alignments and
proportions [Schmidt et al. 2007], detail refinements [De Paoli and
Singh 2015], or inferring them from strokes [Schmidt et al. 2009].

Due to their geometric features, scaffolds provide hints to turn 2D
sketches into coherent 3D models. While single-view reconstruction
systems [Xu et al. 2014] rely on the most descriptive viewport only,
multiview systems combine 2D drawings and 3D navigation tools to
visualize and define curves while sketching [Bae et al. 2008; Nealen
et al. 2007]. In recent VR drawing applications, scaffold lines define
key points for shapes [Yu et al. 2021], which can be turned into
unstructured 3D sketches by fitting piecewise smooth surfaces [Yu
et al. 2022]. Recently, [Gryaditskaya et al. 2020] focused on lifting
freehand drawings to 3D models, while [Li et al. 2022] reconstructed
the CAD sequence that produces a shape from its sketch using
a transformer-based stroke grouping network. Opposite to that,
[Hahnlein et al. 2022] synthesize intermediate construct lines from
3D CAD sequences, exploiting geometrical properties to distinguish
scaffold lines from clutter.

We take inspiration from these works and port the idea of scaffold-
ing to the domain of parameter optimization for sketched procedural
patterns. In our method, procedural patterns are optimized from
coarse to fine, and visible scaffolds are sometimes used for both
sketch guidance and layering of details, enabling better control of
the overall pattern structure as well as finer pattern details.

3 METHOD
3.1 Sketching Procedural Patterns

The goal of our work is to determine the parameters of a procedural
pattern as the user sketches the pattern interactively. This task can
be formulated as an optimization problem with a loss function that
measures the difference between the user-sketched pattern and the
pattern produced by the procedural program whose parameters are
being optimized. We focus on patterns composed of a collection of
shapes in arbitrary arrangements. These patterns can be represented
as Signed Distance Functions (SDFs) of the shapes’ arrangements, a
representation that was shown to be easier to optimize for, in the
non-interactive setting, than using vector shapes directly [Riso et al.
2022].

More formally, we can say that a procedural pattern is a function
fo : R?2 — R that maps a point p € I in the image I ¢ R? to its
signed distance to the pattern boundaries. Different patterns are
obtained by changing the set of n procedural parameters «, that
we normalize for simplicity in the unit domain, i.e. @ € [0,1]".
The parameters a affect various shapes properties, such as their
size and orientation, and their arrangement in the pattern, such as
the spacing between rows and columns. They can be obtained by
minimizing a loss function £ that measures the difference between
the pattern SDF f; and the SDF s computed from the user’s sketch.
[Riso et al. 2022] suggest that the Ly distance between SDFs works
well in this problem domain as a loss function. The strokes’ SDF is
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Fig. 3. Since patterns are sketched interactively, users’ strokes rarely cover the whole canvas. Left: Optimizing strokes’ SDFs directly often leads to failure since
the non-drawn areas dominate the optimization. In our method, we weight the loss function near drawn strokes to focus on the relevant part of the canvas.
Right: Besides strokes that sketch the pattern, shown in red, users can mark areas of the canvas to indicate empty spaces with “void” strokes, shown in blue.

computed as the Euclidean Distance Transform of the strokes and
their inverse to obtain positive and negative distances. In short, we
can write the optimization as

a = argmin L(fy,s), with L(fy,s) = Z |fa(p) — s(p)|2 (1)
@ pel

Formalized this way, the optimization has two practical draw-
backs. First, it requires users to sketch all pattern details at once
since the loss is defined on the final pattern shapes. Second, since the
optimization is non-linear, the possibly-high number of procedural
parameters makes the optimization non-interactive and prone to
get stuck on local minima. We address both issues by introducing
the idea of scaffolding in procedural patterns.

3.2 Scaffolded Procedural Patterns

In free-hand drawing, scaffolds are a set of auxiliary lines, drawn in
advance, that help the user maintain consistency in the pattern’s
structure. The main idea of our work is to introduce a similar mech-
anism when sketching discrete element patterns. We propose a new
interface where users sketch a procedural pattern in a coarse-to-
fine way by optimizing a sequence of procedural functions, that we
call levels, of increasing details. The shapes’ sketches at each level
may or may not be visible in the final pattern, just like scaffolds in
free-hand drawing.

More formally, we define a scaffolded procedural pattern as a
predetermined sequence of K procedural functions folfk that are
optimized sequentially, where the final level corresponds to the
original function, i.e. f;; = fu. For scaffolding to become effective
in procedural modeling, the parameters of a function in the sequence
need to be a superset of the parameters of the function that precedes
it, i.e. @ D a*~1.In this manner, previously determined parameters
can be used in subsequent optimizations. In terms of drawn shapes,
subsequent levels may include or omit shapes from previous levels,
similarly to scaffolds in free-hand drawing.

The process of sketching a scaffolded pattern is illustrated in
Fig. 2. Scaffolded patterns are sketched and optimized level-by-level.
At each level, a more detailed pattern is optimized, but only the
parameters not present in the previous level need to be determined.

In short, we can write the optimization of each level as

a* = argmin L(f5.,s5), with & = o \ "7 ()
ak

In our prototype user interface, the optimization of each level hap-

pens interactively after each stroke. The pattern corresponding to

the current level is shown in the canvas below the sketch to help the

user visualize the optimized parameter and possibly show additional

scaffolds.

During parameter optimization, the levels of a scaffolded pattern
are fixed, just like procedural programs are fixed when manipulat-
ing their parameters. In our prototype, procedural programs are
created and edited as node graphs. Scaffolding is added to a graph
by defining additional outputs, one for each level, as shown in Fig. 2.
This makes scaffolding controllable for program authors, while still
using a familiar user interface. We found that adding scaffolds to
a well-parametrized graph is trivial, since procedural patterns are
typically built in a coarse-to-fine fashion for development and sub-
sequent use. From the annotated node graphs, we then generate
code that computes all levels. In our prototype, this is done by gen-
erating a single function that computes all outputs, while relying
on compiler optimizations for specialized programs. All graphs and
the generated code are available as supplemental material.

In a departure from prior work, we want to support partially
drawn canvases to make sketching faster and give user feedback
while sketching. To do so, we weight the per-pixel SDF difference to
only the sketched regions and their surrounding and include “void”
strokes to mark regions that have no sketches but should remain
empty, thus letting users remove unwanted shapes from the final
pattern. The effect of weighting is illustrated in Fig. 3. If we indicate
with wk the weights for the k-th level, the weighted loss can be
written as

L5 = ) wh@)IfE () - s* (p)I?

pel

®)

The weight wk localizes the difference to only the sketched pixels,
including with “void” strokes, and their surrounding. Since we al-
ready have the strokes SDFs, we can use those to define the weights.
In particular, for each level k, we consider the SDF sk = sk U sk of
all strokes, computed as the union between the pattern strokes SDF
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Table 1. Comparison of optimization methods. For each pattern, we report the number of parameters, the number of algorithm iterations, the number of loss
function calls, the error upon convergence, the time to converge, and the total time across all different initializations. Input sketches and fitted patterns in

Fig. 4. Times in milliseconds.

Pattern Gradient Descent (CPU) Nelder-Mead (CPU) Nelder-Mead (GPU)
Fig. Params. | Iterations Func. Final Time Total Iterations Func. Final Time Total Time Total
Calls Loss Time Calls Loss Time Time
4(a) 4 80 113 25.561 345 177963 67 96 25.563 60 14974 7 1968
4(b) 7 359 567 17.188 1998 549507 378 738 17.062 503 80468 36 6668
4(c) 8 283 504 23.835 2141 390692 286 204 23.716 558 93870 62 11537
4(d) 8 150 576 15.179 707 389294 202 314 15.179 191 54139 40 5470
sk and the “void” strokes SDF sX. The final weights are computed (@) (b) - (c) (d)
by modulating the SDF sX with a clamped polynomial as 7 .. / o000
ok 5 » o ® o060 0
G v oa(®) =0 3 0000
wE(p) = (1-sk@)/wa)  HO<sE®) <wa @) '/ Lec e e
0 otherwise fa o ' eoeo o
where wg is the weight given to the drawn areas, wy is the distance ',,3 7 , ° Jf. s
from the stroke edges at which we ignore the SDFs values, and w, g o o
is the polynomial exponent. We found empirically that the values § / ’_["- ®o oo
ws =4, wg = 0.5, and w, = 4 work well for our application, where / y o 000

the higher weight for negative distances focuses the optimization
on the drawn areas.

Our scaffolding formalization addresses both the aforementioned
concerns in sketching procedurals. First, users can sketch a lot
quicker. Patterns are sketched in a coarse-to-fine manner, thus not
requiring drawing all shapes at once, since sketches may cover the
canvas only partially. Second, the optimization is faster and more
robust, since only a subset of parameters are optimized for each
level and the user can guide the optimization of a complex pattern
one level at a time. Both of these benefits are noticeable in the
supplementary videos.

3.3 Gradient-Free Optimization

To make scaffolding useful in practice and to give users immediate
feedback, we need to optimize the pattern parameters interactively.
Previous literature relied on gradient-based algorithms for optimiz-
ing procedural pattern parameters [Gaillard et al. 2022; Michel and
Boubekeur 2021; Riso et al. 2024; Riso and Pellacini 2023; Riso et al.
2022]. However, those methods are slow when applied to optimiza-
tion formulations similar to ours. To meet our real-time require-
ment, we evaluated the convergence and execution of a gradient-
descent optimizer and the Nelder-Mead’s simplex algorithm [Nelder
and Mead 1965], which operates without the need for derivatives.
Gradient-free optimization methods can sometimes offer a viable
alternative to gradient-based methods, especially in scenarios where
the objective function lacks smoothness and has many local minima.
Moreover, gradient-free methods can optimize discrete parameters,
which is not possible with gradient-based methods.

To compare the two algorithms, we relied on their implementa-
tions available in the GSL library [Gough 2009]. In the gradient-
based scenario, we computed derivatives with forward-mode auto-
matic differentiation using TinyAD [Schmidt et al. 2022], a template-
based library in which all gradient computations are inlined and

Fig. 4. We compare gradient-free and forward-mode gradient-based opti-
mization by optimizing the parameters of four basic patterns that are often
found in scaffolds. Both optimization methods converge well and are capa-
ble of replicating the sketched pattern, albeit gradient-free optimization is
notably faster since it avoids the overhead of gradient computation.

optimized at compile time, thus avoiding large temporaries. For
both methods, we parallelize computation on image rows on the
CPU. We tested the two algorithms on a set of four different patterns,
depicted in Fig. 4, simple enough not to require scaffolding. Each pat-
tern underwent optimization from 250 distinct random parameter
initializations, with a maximum of 250 iterations per optimization.
Tests were carried out on a system equipped with a 32-cores AMD
5975WX CPU and 128GB of RAM. Table 1 summarizes the results of
the experiment. Both algorithms effectively replicated the appear-
ance of the patterns being optimized, but Nelder-Mead’s simplex
algorithm demonstrates notably faster execution speed, albeit with
a higher iteration count. This efficiency of the simplex method can
be attributed to its lack of overhead associated with gradient com-
putation, thus making it a more suitable choice for our real-time
scenario.

The evaluation of the pattern SDF and the final loss calculation
are the most computationally intensive terms of the optimization
process. These terms are executed multiple times during each Nelder-
Mead’s algorithm iteration. To achieve interactivity, we map these
computations on the GPU. We use the CUDA programming model
[NVIDIA et al. 2024] and exploit several concurrency levels that it
makes available. We generate the CUDA programs for SDF evalua-
tion automatically by compiling the node graphs to CUDA kernels.
We evaluate the pattern SDF in parallel over image pixels, use opti-
mized libraries to evaluate the loss [NVIDIA et al. 1999] and optimize
the memory copies between CPU and GPU, since the memory traffic
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Table 2. Number of parameters, number of scaffolding levels, error upon
convergence, and average optimization time per user stroke for each pattern
variant showcased in Figs. 1,9, 10, 11 and 12. Times in milliseconds.

Pattern Variant 1 Variant 2

. Final Avg. | Final Avg.
Fig.  Levels  Params. Loss Time | Loss Time
1 7 24 | 2.993 749
9(a) 2 71 7775 139
9(b) 2 8| 27.909 195
10(a) 3 10 5.667 164 2.369 164
10(b) 3 10 2.798 212 6.252 194
10(c) 3 13 6.639 213 3.723 195
10(d) 3 11 4.486 474 5.076 511
10(e) 3 10 8.503 209 | 29.916 204
10(f) 3 10 5.331 267 5.720 244
11(a) 4 15 | 4.519 302 5.604 328
11(b) 5 13 4.925 200 | 24.595 207
11(c) 5 13 8.656 259 4.525 269
12(a) 3 10 9.498 226
12(b) 3 11 | 11.482 507
12(c) 5 13 | 14.675 202

between the processors only requires the exchange of procedural
parameters and loss value at each iterations. In the end, combining
the aforementioned practices, we achieve a speed-up of up to 12
times on an Nvidia 3090 Ti GPU with 24 GB of RAM, compared to
the CPU implementation. Convergence times for patterns in Fig. 4
are reported in Tab. 1.

3.4 Limitations

Overall, we found our approach to perform well across a variety of
patterns and to significantly improve upon the state of the art, as
shown in the next section. However, a first limitation arises from
the fact that users may sketch patterns that are not representable by
the procedural program, which remains fixed during optimization.
In such cases, the system can only approximate the intended design,
often producing configurations that deviate from the user’s input.
This mismatch can be confusing for novice users. While this limi-
tation is common to all approaches based on optimization over a
fixed procedural space, it raises a usability concern: users may lack a
clear understanding of what types of patterns are achievable with a
given scaffold or how the scaffold constrains the design space. This
complexity may lead to trial and error, particularly for novice users.
A promising direction for future work would be to provide real-time
guidance during sketching, such as visual cues based on the loss or
predictive overlays, to help users stay within the expressive range
of the current scaffold and better align input with output.

A second limitation concerns the scaffolding sequence itself,
which, like the procedural program, is fixed and cannot be mod-
ified during interaction. While scaffolds play an essential role in
structuring user input and guiding optimization, a poorly designed
sequence can hinder the editing experience. For instance, if the
sequence of editable elements does not align with the user’s mental
model of how the pattern should evolve, the interaction may feel
awkward or confusing. This issue is intrinsic to procedural modeling,

Sketch Sketch SDF Image Loss SDF Loss
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Fig. 5. Because SDFs are continuously defined on the whole canvas, a
loss function based on SDFs is a more robust metric than an image-based

distance when optimizing geometric patterns made of solid colors.

where editability depends heavily on how the procedural program
is authored and parameterized. Modifying or extending scaffolds
typically requires manual intervention by users with programming
expertise, often involving direct manipulation of the procedural
code. This creates a barrier to adoption, especially for users with-
out a technical background, and limits the flexibility of the system.
To address this issue, we plan to investigate data-driven alterna-
tives, such as automatically extracting scaffolds from existing node
graphs or annotated examples. These often include well-structured
elements, like repeating motifs or explicit grids, that could serve as
intuitive, user-friendly scaffolds without requiring manual coding.

4 RESULTS
4.1 Interactive Sketching

To validate our approach, we sketched several patterns in real-time
editing sessions, shown in Figs. 9, 10, 11, and 12, and in the sup-
plementary videos. All node graphs, and corresponding generated
programs, are available as supplemental material. We chose proce-
dural programs that encompass a variety of arrangements, such as
square, radial, and hexagonal layouts, as well as different elements,
such as circles, squares, and lines. Figure 9 illustrates how users can
control the pattern by interactively sketching subsequent strokes
at the same scaffold level. Figures 10 and 11 showcase two patterns
generated from the same procedural program to demonstrate the
flexibility of the programs used. Finally, Fig. 12 illustrates the use of
“void” brush strokes to further enhance control. Due to the use of
gradient-free optimization, our method scales well to detailed pat-
terns, formed by many shapes, and supports programs with discrete
parameters, such as the number of elements in the shown radial
arrangements or the orientation of the tiles in Fig. 9(a).

Table 2 shows summary statistics of the real-time editing sessions.
We optimized patterns with 7 to 24 optimizable parameters, arranged
in 2 to 7 levels, depending on the complexity of the procedural
program. During optimization, we run 15 optimization instances
from different starting conditions to avoid local minima, letting the
optimizer converge till a simplex’s dimension threshold is reached or
stops at at most 75 iterations. The optimization, which occurs every
time the mouse is released, takes less than 800 milliseconds for all
the procedural programs we tested, even for the most complex ones,
ensuring the system remains interactive. This, in association with
progressive refinement through successive scaffolds, consistently
enabled us to achieve the desired look across all patterns we tested
in just a few seconds. Without scaffolding, the patterns with high
parameter counts would be too challenging if optimized as wholes,
as demonstrated in the next sections.
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Fig. 6. Non-scaffolded patterns are challenging to optimize interactively since they require users to draw a more complete sketch to optimize all parameters at
once. Scaffolded patterns help users sketch fewer elements and favor the optimization that deals with fewer parameters. Left: Example of non-scaffolded
pattern that does not converge since many possible solutions would resemble the drawn sketch. Right: Example of non-scaffolded pattern that eventually

converges to the right configuration, but produces unhelpful partial fits that do not match user intent.

4.2 Ablation Study

To understand the impact of different components of our frame-
work, we performed an ablation study. Specifically, we examined
the influence of using SDFs in the loss calculation and the effect of
using the scaffolding mechanism, which are the key ingredients of
our approach. Figure 5 illustrates the difference between defining
the loss on the rendered pattern or on its SDF. The use of SDFs is
more effective at comparing the target sketch and the generated
patterns, since SDFs are defined over the entire image, not just the
regions where elements are present. This is particularly useful for
sparse patterns, where SDF differences capture the overall structure
of the pattern, while image differences would not provide enough
information to guide the optimization.

The impact of scaffolding is demonstrated in Fig. 6, where we
compare the optimization done for all parameters at once to the
one done in multiple steps using scaffolds. From a user perspective,
optimizing the full set of parameters at once is more challenging
since a sketch of the entire pattern is possibly required, while using
scaffolding ensure that patterns can be sketched step-by-step by
providing only the details added at each level. From a computa-
tional perspective, optimizing all parameters at once is hard since
non-linear optimizers get stuck easily in local minima. Scaffolding
improves significantly on this by reducing the number of parame-
ters optimized at each level, as the previous level’s ones are kept
constant, letting users guide the optimization level-by-level to the
desired outcome.

4.3 Comparison with Existing Techniques

The work most relevant to ours is [Riso et al. 2022], in which
gradient-based optimization and backward-mode automatic differ-
entiation are used to optimize procedural patterns. To compare the
two optimization methods, we reproduced their honeycomb pattern,
which takes 566 seconds to converge with their method and only
13.231 milliseconds with ours. We chose this pattern since it is sim-
ple enough to work without scaffolding, showing that our optimizer
can achieve a speedup of more than forty thousand times in this
case. The computational cost of their approach makes it unsuitable

for interactive applications, as the user would have to wait minutes
after each mouse stroke.

Furthermore, we replicated the pattern highlighted by [Riso et al.
2022] as a limitation of their method, where their algorithm failed to
converge due to the high number of parameters involved. By using
scaffolds, we successfully reproduced the pattern, as shown in Fig. 7.
The use of scaffold lines let us guide the optimizer to the desired
pattern, while the reduction of the number of parameters at each
level makes the optimization more robust.

4.4 User Study

We performed a user study to assess the user-facing improvements
in sketching procedural patterns with scaffolding. During the ex-
periment, users sketched six procedural patterns, with and without
scaffolding, to replicate a given target image. For the scaffolded
version, we also provided an image of each level, which serves as
documentation of the pattern structure. Before the experiment, we
asked users to sketch six additional patterns, again with and without
scaffolding, obtained from the same programs but with significantly
different parameter configurations, to familiarize themselves with
the task. We collected users’ feedback in a questionnaire. After each
editing task, we asked users to rate, on a scale from 1 (very poor) to
5 (very good), the final patterns quality and editing experience made
with and without the use of scaffolds. Once completed all tasks, we
asked users to choose between the scaffolded and non-scaffolded
approaches, and provide some written feedback.

We recruited 20 subjects among PhD students in computer science
and performed the experiment on a system equipped with a graphics
tablet. We collect target images, initial configurations, and ratings
for each pattern in the supplemental material. Figure 8 shows users’
ratings for scaffolded and non-scaffolded approaches for both output
pattern quality and editing experience. The scaffolded approach
significantly outperforms the non-scaffolded one in both aspects. In
fact, all users preferred the scaffolded approach while being asked
for a direct preference at the end of the study. Users’ comments
confirm that they found scaffolded patterns easier to sketch, saying
that the scaffolded approach is “easy to use” and that “the application
tends to help me when providing my input”. Conversely, some of
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Fig. 8. Number of votes in terms of ratings for final pattern quality and
editing experience, averaged over all patterns on a scale from 1 (very poor)
to 5 (very good). In both cases, the scaffolded approach ratings, in red, are
shifted towards higher values than the non-scaffolded approach ones, in
blue.

them reported that “the other algorithm causes anxiety problem
to the user”, since it “is often frustrating as the feeling is that it
is almost impossible to ‘correct’ or steer the output in the right
direction”.

5 CONCLUSIONS AND FUTURE WORK

In conclusion, we propose a scaffolded approach for real-time pro-
cedural pattern optimization. In our method, the parameters of pro-
cedural patterns are optimized level-by-level using an SDF-based
loss and gradient-free optimization that runs interactively on the
GPU, allowing users to interactively sketch patterns. We demon-
strate that the use of scaffolding outperforms existing approaches in
both ablation and user studies. In the future, we plan to investigate
the possibility of automatically extracting scaffolds from existing
procedural programs expressed as node graphs.
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