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Abstract

Data collection and visualization have traditionally been seen as activities reserved for experts. However, by drawing

simple geometric figures — known as glyphs — anyone can visually record their own data. Still, the resulting

hand-drawn infographics do not provide direct access to the underlying data, hindering digital editing of both the

glyphs and their values. We introduce a method to recover data values from glyph-based hand-drawn infographics.

Given a visualization in a bitmap format and a user-defined parametric template of its glyphs, we leverage deep

neural networks to detect and localize the visualization glyphs, and estimate the data values they represent. We

also provide a user interface to review and correct these estimates, informed by a measure of uncertainty of the

neural network predictions. Our reverse-engineering procedure effectively disentangles the depicted data from its

visual representation, enabling various visualization authoring applications, such as visualizing new data values or

experimenting with alternative visualizations of the same data.
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1. Introduction

In computer graphics, data visualization is one of the

principal ways to engage with data, communicate it, and

understand it. A common belief is that visual depictions

of data should be created by graphic designers or visu-

alization experts. However, many people may wish to

create, observe, and analyze data visually — for exam-

ple, to track trends and traits in their daily lives [1, 2] or

better understand scientific phenomena [3].

Unfortunately, tools for collecting and visualiz-

ing data can be complex and cumbersome for non-

professionals. In contrast, drawing is a simple, acces-

sible way for anyone to record data and immediately

see emerging patterns. This approach was popularized

by designers such as Lupi and Posavec [2], who advo-

cate for hand-drawn visuals as a means of collecting,

observing, and engaging with personal data. Such ex-

pressive representations have also been proposed as a

way to popularize data sciences, including among chil-

dren [4]. More broadly, drawing can be seen as a cogni-

tive tool that makes the invisible contents of mental life

visible [5].

Email address: anran.qi@inria.fr (Anran Qi)

Throughout this paper, we use the term hand-drawn

infographics to emphasize the creative nature of these

representations, which often function as a form of per-

sonal visualizations [6]. Figure 1b illustrates a typical

hand-drawn infographic,1 where small geometric fig-

ures, or glyphs [7], represent quantities of interest. Each

glyph is easy to draw and encodes several data dimen-

sions via variations in shape, color, size, or other visual

parameters. This technique of using glyphs to visually

represent multivariate data can cover many scenarios

and is simple enough for non-professionals to use (see

Figure 7). However, since such infographics are drawn

by hand, the corresponding data often does not exist in

digital form, making it difficult to edit, modify, reuse,

and expand the visualization.

In this paper, we propose a method to recover data

from hand-drawn infographics composed of individual

glyphs. Our goal is to address scenarios where users do

not manually enter the parameter values of each glyph.

The first scenario is reverse-engineering hand-drawn

visualizations containing tens to hundreds of glyphs,

where we allow users to later edit the extracted data

or the glyphs themselves (Figure 1d, e). The second

1Bahareh Heravi, Information Design at UCD.
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Figure 1: Sketch2Data is a reverse engineering system that recovers data from glyph-based hand-drawn infographics. In this example, the glyphs

represent personal compliments received or given by an individual. The orientation of the triangle depicts the hour of the compliment (12-3, 3-6,

6-9, 9-12), and one or two lines on its side show whether the compliment occurred in the morning (am) or the afternoon (pm). The disks or suns in

the triangle’s corners indicate whether the compliment was received or given, while their number conveys the strength of the compliment. Finally,

the color denotes the person who gave or received the compliment (e.g., a friend, family member, or colleague), and a dot or cross signifies whether

the compliment was delivered in person or via text/email. Sketch2Data pipeline works as follows. The user defines a parametric glyph template

(a), which maps the visual parameters of the glyph (P1, P2, ..., P5) to categorical data dimensions (see text for an explanation of the meaning of

these dimensions). Sketch2Data recognizes the parameters of hand-drawn glyphs (b) and infers the underlying data table (c). The system supports

a bi-directional workflow, where users can generate new instances of their hand-drawn infographics: by editing the data table (d), such as changing

the values mapped to P4 for some entries (e.g., from to ) or by editing the parametric glyph template (e), such as changing P5 to a new color

theme. The infographic is borrowed from B. Heravi’s student collection ("week of compliments").

scenario, inspired by recent work in information visu-

alization [8, 9], is casual data recording, where people

quickly draw glyphs on a notebook or a simple drawing

app in situ and later convert them into a data table.

In contrast to traditional charts and graphs, which are

the focus of existing reverse-engineering tools [10, 11],

hand-drawn glyphs are expressive depictions of data

that exhibit significant diversity. Given this diversity,

our strategy is to enable users to create a specialized

machine learning model overfitting the glyph type they

seek to analyze. We do not aim to develop a general,

pre-trained model that supports unseen glyphs because

our preliminary experiments with an open-set detector

[12] reveals that it fails to detect diverse glyphs accu-

rately even when provided with several exemplars, as

illustrated in Figure 21 and 22 in the supplemental doc-

ument.

We observe that many glyphs can be represented as

compound objects composed of a few graphical ele-

ments, called marks, where each mark admits a finite

set of variations across one or several visual dimensions,

such as shape, color, or texture. These dimensions are

mapped to the semantic meaning of the data. Hence, the

first step of our method consists in letting users define

a parametric template for the glyphs in a given hand-

drawn visualization (Figure 1a). As in prior systems

supporting glyph design [13, 14, 15, 16], users specify

the graphical variations of individual marks and define

their relative positioning through alignment constraints

on their bounding boxes. This template enables the au-

tomatic generation of all possible glyph variants, facil-

itating the synthesis of a training dataset tailored to the

specific visualization the user seeks to reverse-engineer.

Using this dataset, we train deep neural networks to lo-

cate real instances of a glyph within the visualization

and automatically determine their visual parameter val-

ues, thereby recovering their meaning. With this strat-

egy, users can apply our method to new glyph types sim-

ply by creating new glyph templates.

Despite their ability to recognize complex visual pat-

terns, neural networks may fail to predict parameters ac-

curately when the glyph design or drawings are ambigu-

ous (see discussion in Section 7). Our method assists

the user in identifying such cases by quantifying the un-

certainty of predictions and providing a simple interface

for reviewing and correcting the results.

We have created two benchmarks to evaluate our ap-

proach. The first benchmark contains 10 hand-drawn vi-

sualizations collected from the internet or drawn by our-

selves, and serves to evaluate the ability of our system

to reverse-engineer diverse glyphs. The second bench-

mark contains three designs, each drawn by 12 differ-

ent participants, and serves to evaluate the robustness

of our method to different drawing styles. Our results

show that Sketch2Data can handle a diverse set of visu-

alizations, assist in reverse-engineering with little user

effort, and allow the easy and effective creation of novel

visualizations.
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2. Related work

Drawing data representations. Sketching is an ex-

tremely flexible way of crafting data representa-

tions [17] and also serves as an effective tool for think-

ing and communication [18]. In addition, the hand-

drawn nature of a visualization can enhance engage-

ment, encourage annotation, and convey the uncertainty

of the underlying data [19, 20]. Previous work has intro-

duced a range of sketch-based systems for information

visualization. Some systems use drawings to rapidly

create charts and interact with them to tell stories based

on data [21, 22]. Other work, inspired by the Dear

Data project of Lupi and Posavec [1], focuses on how

drawing can support personal and expressive data vi-

sualization. DataInk [13], in particular, enables users

to draw artistic data glyphs, while DataSelfie [23] al-

lows users to collect data from questionnaires and vi-

sualize the results using custom hand-drawn visuals.

DataQuilt [24], in turn, supports hybrid glyphs that

blend freehand drawing with visual elements extracted

from images.

These systems require users to map existing data to

the visual parameters of the glyphs to generate visual-

izations. In contrast, we address the inverse problem

of recovering data from existing, hand-drawn visualiza-

tions. In the context of personal infographics, visualiza-

tions can serve as input substrates for data collection [8],

which has motivated a separate stream of sketch-based

systems that allow users to record their data by draw-

ing on a canvas [15, 25, 9]. While these systems re-

quire users to draw in dedicated interfaces that impose

specific steps in the visualization creation process, our

goal is to recover data from visualizations created us-

ing a wide variety of drawing tools, including raster and

vector-based software, as well as traditional mediums

such as pencils, markers, and watercolors.

Reverse engineering data visualizations. A substantial

body of work has focused on recovering data from exist-

ing visualizations. Most methods target graphs, charts

and plots produced by visualization software, typically

represented as clean bitmaps [10, 26, 27, 28, 29], vector

graphics [30, 31], or even source code [32]. Other sys-

tems automatically extract templates from specific vi-

sualization types, such as timelines [33] and network

graphs [34], and transfer them to new data. Rather than

recovering data values from visuals, Lu et al. [35] focus

on extracting the information flow of infographics.

Similarly to our work, most of these systems rely

on machine learning to detect and classify the elements

that compose a visualization. However, these machine

learning modules are specialized to standardized visu-

alizations and their constituent elements (bar charts,

pie charts, scatter plots, graphs, etc.) and are not ap-

plicable to the hand-drawn glyphs we target. More

closely related to our approach are systems for reverse-

engineering hand-drawn graphs [11] and astronomi-

cal diagrams [36]. However, these approaches exploit

domain-specific characteristics, such as the fact that

graphs can be segmented into nodes and edges and as-

tronomical diagrams are typically composed of lines,

arcs and circles. In contrast, by enabling users to spe-

cialize deep neural networks for a target hand-drawn vi-

sualization, our method can recognize glyphs with sig-

nificant variability in shape and style.

Sketch-based parametric design. By converting draw-

ings to parametric objects, our work also relates to im-

age vectorization. However, vectorization algorithms

typically output low-level geometric primitives param-

eterized by numerous control points, such as polylines,

Bézier curves, and color regions [37, 38, 39]. In con-

trast, we aim at recovering compound objects composed

of several graphical elements whose variations are con-

trolled by a small number of high-level parameters, such

as in Figure 1b where one parameter controls whether a

dot or a cross should be drawn. This makes our prob-

lem more closely related to sketch-based interfaces for

procedural modeling [40, 41, 42, 43], where deep neural

networks have been used to recognize pre-defined para-

metric shapes and predict their parameters. We follow

a similar strategy and adapt it to the domain of data vi-

sualization. Specifically, since hand-drawn infograph-

ics contain multiple glyphs, we split the problem into

two sub-tasks — glyph localization and glyph parame-

ter estimation. Furthermore, since we aim at supporting

diverse, expressive visualizations, we let users compose

their own glyphs by specifying their constituent graph-

ical elements and alignments. We then use synthetic

drawings to train custom neural networks to localize and

estimate the parameters of these glyphs.

3. Overview

Figure 2 illustrates the main components of our method

for recovering data from hand-drawn visualizations.

Given an input visualization, users first define a para-

metric template that captures all possible variations of

the glyphs it contains (Figure 2b). We describe a sim-

ple procedure for this task, where the users specify each

mark (graphical element) individually and define align-

ment constraints to assemble them. The resulting tem-

plate allows us to generate a large dataset of synthetic
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Figure 2: Overview of our method: given an input hand-drawn infographic (a), the user defines a parametric glyph template by specifying all

elements that compose the glyph and their visual variations (b). Based on this template, we synthesize an annotated dataset of glyph drawings

(c) and use it to train a glyph detector (d) and a parameter predictor (e). A simple interface (see accompanying video) allows users to review the

recovered data, make corrections, and even refine the template to achieve higher accuracy.
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Figure 3: (a) Two examples of a hand drawn parametric glyph. (b) The

glyph’s template is defined using two marks (graphical elements): a

leaf and a face. (c) The glyph is created by anchoring the bottom of

the leaf to the top border of the face (either to the left or right). (d)

Each visual parameter of a mark (color and shape of the face, position

of the leaf) is mapped to a data dimension.

drawings of the specific glyph in the visualization (Fig-

ure 2c), where each drawing is associated with ground

truth parameter values. We use this dataset to train two

neural networks: one for localizing glyph instances in

the visualization (Figure 2d) and another for estimating

their parameter values (Figure 2e). To help users iden-

tify potential ambiguities in the template, our method

reports uncertainty in its predictions. It also provides

a user interface for comparing each glyph to its recon-

structed representation and correcting potential errors

(see examples in accompanying video).

4. Parametric glyph templates

In data visualization, glyphs are visual objects that de-

pict data dimensions by varying in position, shape,

color, texture, or other visual attributes [7]. A glyph

can be compound, grouping multiple visual elements

together, which are often referred to as marks [44].

A number of visualization authoring tools [13, 14, 15,

16] provide interfaces for creating custom parametric

glyphs. Building on these works, we define a glyph as a

group of graphical elements, or marks, organized using

simple composition rules. Each mark can vary accord-

ing to one or several visual parameters that encode a

data dimension. We focus in our work on categorical

data, where the visual parameters are limited to a finite

set of values, and our goal is to recover these values for

each drawing of a glyph.

Figure 3a illustrates two variations of a typical hand-

drawn glyph, which, in our example, captures a client’s

experience in a restaurant. This glyph is made of two

marks, the squared face and the leaf (Figure 3b), com-

posed by anchoring the bottom-center of the leaf to the

top left or right corner of the face (Figure 3c). This

glyph can vary according to three visual parameters,

where each parameter is mapped (bound) to a categor-

ical data dimension (see Figure 3d for details). Our

system concentrates on visual recognition and outputs

a data table where each visual parameter can take dif-

ferent values, as defined by the glyph template. Users

are free to map these values to any semantic meaning,

such as mapping the four possible values of the color

parameter to four different types of meal in Figure 3.

We refer to the parametric definition of a glyph —

i.e., the definition of its marks, and their variations and

composition — as the glyph template. In our prototype,

the user first creates all possible variations of each mark

using a vector drawing software and then specifies how

4



marks are composed together. We fix the relative po-

sition of two marks through a parent-child relationship,

where we anchor a reference point of the child mark

(e.g., the center, top or bottom of its bounding box) to

a reference point of the parent mark. In Figure 3c, for

example, the bottom-center point of the leaf (child) is

anchored to the top-left point of the face (parent). Once

defined, the template allows the automatic generation of

all possible variations of the glyph. We provide a visual

summary of all parametric templates used in our results

in Figure 4 in the supplemental document.

5. Recognizing hand-drawn glyphs

While hand-drawn glyphs often depict a small number

of data dimensions, each admitting a finite set of values,

combinatorial explosion quickly yields a large number

of glyph variations even in simple cases (the illustra-

tive example in Figure 3 covers 24 variations, while the

more complex examples in Figure 7 include hundreds

of variations). This complicates a direct lookup com-

parison between each hand-drawn glyph and all possi-

ble variations of its template. In addition, a direct com-

parison would require an image metric robust to mis-

alignment and other defects inherent to hand drawings.

Instead, we tackle this challenge by adopting a machine

learning approach to glyph recognition, using deep neu-

ral networks to both locate glyphs in an image and to

estimate the parameter values of each glyph instance.

5.1. Synthesizing training data

Training neural networks to detect and recognize a spe-

cific type of glyph requires a dataset that covers all pos-

sible variations of that glyph, including common defects

found in hand-drawn examples. Since drawing all these

images by hand would be impractical, we generate syn-

thetic drawings to obtain sufficient data.

The parametric template described in Section 4 al-

lows us to generate all variations of the glyph. We

augment this data by generating drawings subject to

global and local deformations that frequently occur in

real drawings. We adjusted the range of these deforma-

tions such that the synthesized glyphs visually resemble

the original designs. Specifically, global deformations

include random rotation (within [−1,1] degrees) and

random scaling (within [0.9,1.1] horizontally and verti-

cally), except for designs where the orientation or scale

of the glyphs varies significantly. In such cases, we ad-

just the deformation ranges accordingly, as with designs

(1) and (3) in Figure 7). Local deformations include

random rotation, translation and scaling of individual

Figure 4: We augment our training data by applying various deforma-

tions as well as image noise and compression on the synthetic glyphs

to mimic hand-drawn ones. For each example, we show the original

synthetic glyph (top) and its deformed version (bottom).

lines that compose the graphical marks, by an amount

that users can adjust depending on variations observed

in the input drawings. Furthermore, we mimic draw-

ing inaccuracies by shortening or extending the lines

by a random amount, and applying random shifts to

points regularly placed along the lines. Finally, we ap-

ply JPEG compression with a mean quality of 75(±20)
and Gaussian image noise with a mean of 0(±3) to sim-

ulate imaging artifacts. Figure 4 illustrates representa-

tive glyphs before and after deformations. Table 2 in

the supplemental document provides an ablation study

showing that this data augmentation increases the aver-

age accuracy of parameter estimation from 0.83 to 0.94

on our benchmark. Note however that additional data

augmentation might be needed for glyphs that exhibit

more variation than the ones we experimented with, for

instance using the rendering library proposed by Wood

et al. [19].

For the localization dataset, we generate 2,000 im-

ages of randomly placed glyphs, ensuring that glyphs

do not overlap. We adjust the number of glyphs within

each image to approximately match the number of orig-

inal glyphs in the input visualization. For the parame-

ter estimation dataset, we generate between 10,000 and

20,000 images of individual glyphs, depending on the

total number of parameter combinations that the glyph

template admits.

5.2. Glyph detection

The task of detecting and localizing glyphs in the input

visualization relates to object detection, with two spe-

cific difficulties. First, hand-drawn glyphs are abstract

graphical objects for which no pre-trained model exists.
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Second, the glyph detector must be robust to the signif-

icant visual variations encoded by the glyph, which are

further combined with pen stroke variations inherent to

hand-drawing. We address these difficulties by training

a custom object detector for each glyph template, lever-

aging the synthetic drawings in our training data.

We rely on the Yolo-v8n architecture [45], a state-of-

the-art object detector that outputs labeled axis-aligned

or object-oriented bounding boxes of detected objects.

We initialize the model with weights pre-trained on the

COCO segmentation dataset [46], and fine-tune on our

localization dataset. Note that we fine-tune the model

for each glyph template, such that the model specializes

in that glyph. We train the model to output axis-aligned

bounding boxes, except for cases that contain glyphs in

different orientations, such as design (3) in Figure 7.

Fine-tuning the object detector only takes 10 minutes

on average on a single NVIDIA RTX A6000 GPU with

48GB memory.

5.3. Estimating parameters from cropped glyphs

Once a glyph has been detected, the next step consists

in recovering the value of its visual parameters. Since

we target categorical data, we cast parameter estimation

as a classification task, where each possible parameter

value corresponds to one label. Extending to continu-

ous parameters would require training the network to

perform a regression task, as demonstrated by related

work in procedural modeling [42], but we leave this for

future work.

We build our parameter estimation network on the

ResNet-18 architecture [47], initialized with weights

pre-trained on the ImageNet dataset [48]. For each

glyph template, we replace the final layer of the ResNet-

18 architecture by N branches, where N is the number

of parameters of a glyph. Each branch is formed of

three fully-connected layers of dimensions 256, 128 and

M respectively, where M is the number of values that

the parameter can take. We train the resulting neural

network on the synthesized dataset for that glyph, us-

ing a cross-entropy loss to measure agreement between

the predicted parameter values and the ground truth.

In practice, we freeze all parameters of the ResNet-18

backbone, except for the last ResNet block, which we

fine-tune along with the branches we have added. Train-

ing this architecture takes approximately 5 minutes on

average.

5.4. User quality refinement

Despite the high-level accuracy of the pipeline we have

described (see Section 6), it remains prone to errors in
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Figure 5: In these two examples, visualizing the top 5 most uncer-

tain predictions of a parameter (RC) reveals that they correlate with

specific values of that parameter (window-shaped glyph for the top

example, pink circle for the bottom example), even though the val-

ues are actually predicted accurately in most cases. The user edits the

parametric template to better depict these values, such that they do not

yield high uncertainty anymore. These corrections also improve the

accuracy of parameter estimation overall.

the presence of drawing inaccuracies or ambiguities in

the parameter values that need to be distinguished. Our

method provides an efficient procedure for users to as-

sess and correct errors in the generated results. We

propose two mechanisms to support this. First, we re-

port the uncertainty of the neural network’s predictions,

which can help identify difficult cases and diagnose am-

biguities in the parametric glyph template. Second, we

provide a user interface that allows users to review the

predictions side-by-side with the original glyphs and

correct any erroneous parameter values.

Uncertainty estimation. We compute uncertainty of the

parameter estimation by running an ensemble of neural

networks [49], each trained on a different subset of the

dataset. In our implementation, we train 10 such net-

works on subsets of our training data by drawing ran-

dom samples that cover 70% of the data (see Section 3

in the supplemental document for the influence of the

number of networks in the ensemble). We express the

uncertainty of a given parameter as the average pairwise

distance between the predictions given by all networks,

and keep the most frequent value as the final prediction.

In the case of a tie, we keep the value with the highest

average probability in the prediction vector.

Figure 5 illustrates two examples of using uncertainty

to iterate on the parametric template of a glyph. In the

first example, the top 5 most uncertain predictions of the

glyph’s first parameter correspond to the same parame-

ter value, depicted as a rectangle crossed by a horizontal

and a vertical bar. By inspecting the original glyphs de-

picting that value, the user notices that in the paramet-

ric template, the horizontal bar is lower than it should

6
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Figure 6: Screenshots of our interface for reviewing and correcting

glyph detection and parameter estimation. For glyph detection (a), the

interface displays each detected bounding box one by one, allowing

the user to either keep or discard it. For parameter estimation (b),

the interface provides a visual summary of the parametric template

(top), a comparison of the detected and reconstructed glyphs (center),

and the estimated value of each glyph parameter (bottom). The user

can choose to keep the estimated value or correct it by selecting the

appropriate parameter value.

be. Similarly, in the second example, visualizing the top

5 most uncertain predictions reveals that three of them

contain a pink circle with a spike, while the parametric

template did not include that spike. This examination

provides important information, as correcting the tem-

plate and retraining the method fixes these issues and

improves accuracy in both cases.

User interface for data review. Figure 6 shows two

screenshots of the user interface we developed for data

review and correction. We provide as Appendix a screen

recording of this interface in action. For glyph detection

and localization, the interface displays each detected

bounding box and asks the user to either accept or re-

ject it. Most glyphs are well detected, but false posi-

tives can occur in the presence of background strokes.

Some glyphs can also be detected multiple times, yield-

ing duplicated data if not rejected. For parameter esti-

mation, the interface displays the detected glyphs one

by one along with their visual reconstructions and the

corresponding parameter values. This allows users to

quickly scan the recovered data and correct erroneous

values.

6. Evaluation and applications

In this section we evaluate the accuracy of our glyph

detection and parameter estimation on two usage sce-

narios. The first scenario corresponds to the case where

the user wants to recover data from an existing visual-

ization. The second scenario corresponds to the case

where the user wants to collect new data by drawing

instances of a prescribed glyph template. We end this

section by demonstrating various applications enabled

by reverse-engineering hand-drawn infographics.

6.1. Reverse engineering existing infographics

We first evaluate whether our system can recover accu-

rate data from diverse, existing hand-drawn infograph-

ics.

Evaluation protocol. We have created a benchmark

of 10 hand-drawn infographics collected from diverse

sources, including from data designers who advocate

drawing for visualization, as well as from coursework

of design schools. For copyright reasons, we redesigned

4 of these infographics, using the original ones as vi-

sual inspiration. We also include one image created with

a previous sketch-based data visualization system [13].

Figure 7 provides an overview of this benchmark.

These infographics are composed of diverse glyphs

that depict data dimensions through variations in shape,

color, orientation, location, size and texture, and were

drawn with pencils, markers, watercolor, and digital

pen. The number of glyphs within each image varies

from 23 to 315 (73 on average), the number of glyph

parameters from 2 to 5, and the number of values per

parameter from 2 to 16. Refer to the supplemental doc-

ument for detailed statistics.

For each image, we have used our system and its

correction interface (Subsection 5.4) to annotate ground

truth parameter values for each detected glyph.

Results. Table 1 reports the accuracy of our glyph de-

tector for each of the 10 infographics in our benchmark,

and we provide visualization of the detected bounding

boxes in Figure 5 to 20 in the supplemental document.

The detector is very accurate overall, the most challeng-

ing case being the Boyfriend visualization that contains

many small glyphs, as well as background curves and

annotations that do not appear in the synthetic training

data.

Furthermore, Table 2 reports the accuracy of the pa-

rameter estimation for each parameter of each type of

glyph, along with the Pearson correlation between pa-

rameter accuracy and neural network uncertainty. The

accuracy is high overall (0.94 on average) and exhibits

a negative correlation with uncertainty for most param-

eters (-0.4 on average), which indicates that reporting

uncertainty can help users identify erroneous cases. Fig-

ure 8 shows typical results for each type of glyph, and

7
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Figure 7: Our benchmark of ten hand-drawn infographics. (1) Boyfriend: Dear Data Week 29 ©Giorgia Lupi. (2) Dog: DataInk ©Haijun Xia. (3)

Lollipop: redesigned, inspired by Dear Data Week 36. (4) Thoughts: Dear Data Week 38 ©Stefanie Posavec, (5) Tree: redesigned, inspired by

course work on data visualization from Université Paris Nanterre. (6) Smell: Dear Data2 Week 47 ©Andy Kriebel. (7) Leaf: redesigned, inspired

by post on medium. (8) Sound: post on Facebook ©Anita Boeira, (9) Triangle: course work of Information Design, UCD iSchool, instructor:

Bahareh Heravi ©Baker Kerrigan. (10) Book: redesigned, inspired by post on X.
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Figure 8: Examples of reconstructed glyphs. For each, we show the original glyph cropped from the input image (GY, left) and the one reconstructed

from the estimated parameters (RC, right).

we provide full reconstruction of each visualization in

Figure 5 to 20 in the supplemental document.

Three of the 10 infographics appear more challenging

— Lollipop, Sound, and Triangle — we next discuss

them in more details by showing examples of the in-

put drawing (GY), the recovered glyph (RC) and ground

truth glyph (GT).

������ ������ ������

Several parameters of the Lol-

lipop are depicted by a varying

number of elements forming a

mark, such as the number of in-

scribed circles, or the number of

dots or ticks along the line. As

shown as inset, while the neu-

ral network distinguishes dots from

ticks (top vs. bottom), it miscounts

the number of circles (top) or ticks (bottom) as the cor-

responding visual patterns are very similar. These fail-

ure cases are consistent with previous studies on the per-

formance of convolutional neural networks for graphi-

cal perception tasks [50], and would require more ad-

vanced architectures that include attention mechanisms

for counting [51]. Furthermore, the Lollipop template

admits 2160 different combinations of parameter val-

ues, making the estimation of precise parameter values

much more challenging than for the other designs.

������ ������ ������

The Triangle glyph is illus-

trative of another challenging

case, which is the use of small

marks to depict data values.

One parameter is depicted by

the presence of a small dot or

cross, and another parameter is depicted by the pres-

ence of one or two small ticks on the side. When drawn

by hand, such small details are difficult to distinguish,

especially in low-resolution images.
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Table 1: Evaluation of glyph detector for our benchmark. For each

design, we report the number of glyphs to be detected (Num), the

number of true positive detection (TP), false positive detection (FP),

and false negative detection (FN), from which we compute precision

and recall. The Boyfriend design exhibits a large number of false

positives due to the presence of background pen strokes.

Design Num TP FP FN Precision Recall

Book 28 28 1 0 0.97 1.00

Boyfriend 94 88 118 6 0.43 0.94

Dog 63 63 0 0 1.00 1.00

Leaf 23 23 0 0 1.00 1.00

Lollipop 35 35 0 0 1.00 1.00

Smell 45 45 0 0 1.00 1.00

Sound 315 315 19 0 0.95 1.00

Thoughts 45 45 0 0 1.00 1.00

Tree 23 23 0 0 1.00 1.00

Triangle 57 57 1 0 0.98 1.00

Avg. 0.93 0.99

������ ������ ������

The Sound glyph encodes only

two parameters, but each param-

eter can take around 10 differ-

ent values, making the difference

between some of the values sub-

tle, especially when hand-drawn.

Such subtle variations can be dif-

ficult to perceive, even for humans. In the inset, the

glyph template shows subtle variations in shape (top)

and color (bottom), which confuses parameter estima-

tion.

6.2. Glyphs drawn by different people

We conducted a study to evaluate the second usage sce-

nario where users record data by drawing glyphs ac-

cording to a prescribed template. We have collected

drawings of the same glyphs from multiple participants

and evaluate the sensitivity of our approach to variations

in individual drawing styles.

Participants. We recruited 12 volunteers from two dif-

ferent research laboratories (six from each). The par-

ticipants were local Ph.D. students or researchers. All

participants signed a consent form and agreed that their

drawings would be distributed under a CC0 license. The

study was approved by the ethical committee of our in-

stitution, approval code Inria COERLE 2024-54.

Protocol. After a brief training task using the Sound

example (see Figure 7), we asked participants to draw

infographics following three glyph templates: Smell,

Leaf, and Book. For each template, we introduced a

hypothetical data-collection scenario and provided par-

ticipants with three A4 sheets: (i) a data sheet contain-

ing data values that they should encode visually in their

glyphs, (ii) a template specification sheet outlining the

mappings between data values and glyph visual param-

eters, and (iii) a drawing sheet. In addition, we provided

marker pens of different colors and specified which col-

ors to use. For each scenario, participants were asked to

draw 10 different glyphs (30 glyphs in total), with each

glyph corresponding to a unique row in the data table.

Data values were randomly generated, and each pair of

participants (one from each laboratory) tested a differ-

ent combination of values.

Participants were free to draw the glyphs and their

individual strokes in any order. Some participants drew

the glyphs sequentially (i.e., working row by row in the

data table), while others employed alternative strategies,

such as drawing one visual parameter at a time (i.e.,

column by column) or drawing with one color pen at

a time. We instructed participants to scale their draw-

ings similarly to the 2-3 examples printed at the top of

their drawing sheet. We re-scaled their drawings if they

significantly violated this instruction.

Results. We applied our approach to scans of

the participants’ drawings (using a TOSHIBA e-

STUDIO3515AC printer at 600 dpi in JPEG format).

Figure 9 presents examples of glyphs drawn by 6 of the

participants, illustrating the variation in their drawing

styles. Despite this variation, our glyph detector and

parameter estimator performed well, with an aver-

age precision of 0.99, recall of 0.99, and parameter

estimation accuracy of 0.96 (see Table 4 to 6 in the

supplemental document). This demonstrates that our

system adapts to diverse drawing styles.

����

The Leaf design achieved near-perfect

scores across all participants, with an aver-

age parameter estimation accuracy of 0.99.

Only two parameters were incorrectly esti-

mated from the drawings of Participant 11

(inset), due to the ambiguous depiction of

facial expressions. The Smell design resulted in more

errors, with an average accuracy of 0.90, as it requires

distinguishing small details, such as triangles pointing

up or down versus a disk. Participant 10’s drawings

exhibited the lowest performance across all metrics —

precision (0.87), recall (0.93), and parameter estimation

accuracy (0.87). This low performance aligns with our

estimation of uncertainty, which is higher for this par-

ticipant than for the others on average. As shown in

Figure 9, this participant struggled to respect the spatial

relationships and relative sizes of the graphical elements

that form the glyphs.

9



Table 2: Estimation accuracy for each parameter (P) and its correlation (Pearson correlation coefficient ranging from -1 to 1) with uncertainty (C).

Note that correlation is undefined (N/A) for parameters with perfect accuracy.

Design P1 C1 P2 C2 P3 C3 P4 C4 P5 C5 Avg. P Avg. C

Book 1.00 N/A 1.00 N/A 1.00 N/A 1.00 N/A 1.00 N/A

Boyfriend 1.00 N/A 1.00 N/A 0.97 -0.43 1.00 N/A 0.99 -0.42

Dog 1.00 N/A 0.94 -0.61 1.00 N/A 0.98 -0.61

Leaf 1.00 N/A 1.00 N/A 1.00 N/A 1.00 N/A

Lollipop 0.71 -0.48 0.71 -0.19 0.74 0.10 0.46 -0.23 1.00 N/A 0.73 -0.20

Smell 1.00 N/A 1.00 N/A 1.00 N/A 1.00 -0.46 1.00 -0.46

Sound 0.92 -0.24 0.88 -0.41 0.90 -0.33

Thoughts 1.00 N/A 0.98 -0.65 0.91 -0.35 0.96 -0.50

Tree 0.91 -0.34 1.00 N/A 1.00 N/A 0.97 -0.34

Triangle 1.00 N/A 0.70 -0.32 0.82 -0.30 0.93 -0.58 1.00 N/A 0.89 -0.40

Avg. — — — — — — — — — — 0.94 -0.41
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Figure 9: The first four boxes show glyphs drawn by six participants (�, where N is the participant’s number) alongside their corresponding

reconstructions (RC). The last box displays glyphs created using pencil, watercolor, and a digital pen, along with their reconstructions (RC). Red

crosses indicate erroneous estimations for two glyphs of Participant 10, where our reconstruction misses the arc of the arrow (top) or is not elongated

and not framed in yellow (center).

6.3. Glyphs drawn with different materials

To evaluate the robustness to different drawing mate-

rials, the first author of the paper replicated the task

and created three additional infographics from the same

three pre-defined glyph templates using three different

drawing tools (10 drawings each): pencil, watercolor,

and digital pen.

Results. We provide, in Table 8 in the supplemental

document, detailed statistics on the accuracy of our

glyph detector and parameter estimation for each of the

three infographics and each drawing tool. These materi-

als also include visualizations of the detected bounding

boxes and the reconstructed glyphs based on the esti-

mated parameters. The detector is very accurate, with

only two false positives in the Smell design. The param-

eter estimation is also nearly perfect, despite the visual

differences introduced by each tool, as illustrated in Fig-

ure 9 (right).

6.4. Editing hand-drawn infographics

We illustrate various applications enabled by our ability

to recover data from hand-drawn infographics.

Visualization editing. Figure 10 shows how our method

can be used to turn a set of hand-drawn glyphs into clean

vector graphics (a → b) that can be further edited and

enriched in any graphics design tool. For example, by

modifying the shape (a→ d), or the color (a→ e) of the

glyph template, users can quickly experiment with vari-

ants of the visualization. Similarly, editing the data ta-

ble itself allows users to visualize partially updated data

values while preserving unchanged ones (a → c). Fi-

nally, users can easily explore alternative glyph layouts

(a→ f).

Figure 11 showcases a more advanced editing sce-

nario where a hand-drawn infographic is first reversed-

engineered using our method (a→ b) and then regener-

ated with different glyph templates (c), resulting in new

visualizations of the same data in drastically different

styles (d, e, f).

Style transfer. While vector graphics offer a clean and

precise look, users may sometimes prefer to preserve

the original hand-drawn aesthetics of their infographics.

To achieve this, we used the glyphs reconstructed by our

method, along with their original hand-drawn represen-

tation, to train a Pix2Pix model [52] capable of transfer-

10
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Figure 10: Reverse engineering the input hand-drawn illustration

(a) drawn by Participants 1, 2, and 3 to a clean vector infographic

(b). This allows various operations such as editing the data table itself

(c), redesigning (d) and recoloring (e) the marks of Leaf template and

creating a new layout for the glyphs (f).

ring the hand-drawn style onto synthesized glyphs.

We demonstrate this application on the Sound de-

sign from Figure 7 because it contains a large num-

ber of glyphs that can serve as training samples. The

design consists of 315 glyphs with two parameters,

creating a parametric space of 11 shapes and 10 col-

ors. While there are 110 possible glyph variations,

only 47 appear in the original design, with varying

frequencies. To balance the dataset, we ensured that

each shape appeared 50 times in as many colors as

possible. This was achieved by duplicating instances

of under-represented shapes and removing instances

of over-represented shapes. Furthermore, each hand-

drawn glyph was aligned with its reconstructed version

based on their respective bounding boxes.

Figure 12 shows four original glyphs alongside mul-

tiple variants synthesized with this approach. The para-

metric template dictates the overall shape and color of

the glyph, while style transfer gives it a hand-drawn

look. Figure 13 illustrates how this approach gener-

alizes to unseen parameter combinations, with the 47

original glyphs highlighted by dashed frames. The ap-

proach enables us to synthesize all 110 possible glyph
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Figure 11: Reverse engineering the original hand-drawn illustration

of Thoughts (a) into a clean vector infographic (b) allows to visualize

the same data using different templates (c). In this example using

Lollipop template (d), Dog template (e), and Boyfriend template (f).

�������� ����������� �������� �����������

Figure 12: Using style transfer [52], we can synthesize glyph variants

that retain the hand-drawn style of the original image.

variants. However, style transfer requires a sufficient

number of hand-drawn glyph examples to be trained,

and as such cannot be applied to small designs that only

contain a few glyphs. An interesting direction for future

work would be to use the stylized glyphs as additional

training samples to refine our model.

7. Conclusion and discussion

The act of drawing has long been advocated as a means

for individuals to closely observe objects of interest,

whether the human figure, landscapes, or buildings

[53, 54]. Hand-drawn infographics play a similar role

for data: by drawing glyphs, people can visually rep-

resent quantities that matter to them, record their val-
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Figure 13: Although only 47 shape and color combinations were

present in the original design (highlighted with dashed frames), we

can use style transfer to synthesize the remaining 63 combinations.

Note that the synthesis is more precise for shapes that are well-

represented in the original data (such as shapes 2 and 4), compared

to shape 10, which appeared only in black and white.

ues and explore their trends [2]. We have introduced a

method to recover data from hand-drawn infographics,

creating a bridge between expressive data representa-

tions and their digital forms.

Our approach leverages deep neural networks to de-

tect glyphs and estimate the values they represent, de-

spite significant variations in how they are drawn. We

have also developed a user interface that helps identify

and correct spurious errors in this estimation, allowing

users to quickly extract accurate data from infographics

containing up to several hundred glyphs.

Most of the errors we observed arise from ambigu-

ities in the glyphs themselves, such as the use of sim-

ilar colors and shapes to represent different data val-

ues, or the use of very small graphical elements. Such

cases typically lead to high uncertainty in predictions

(Figure 5). In this work, we refine the template de-

sign through a user-in-the-loop process guided by un-

certainty and observe improvements in recognition ac-

curacy. More formal investigations on template quality

and glyph ambiguity could help inform designers about

the readability of their glyphs. Other sources of error

include the presence of graphical elements other than

glyphs, such as background curves in the Boyfriend de-

sign (Figure 7, (1)). These issues could be addressed ei-

ther by performing background removal before running

glyph detection or by incorporating background distrac-

tors into the synthetic training dataset.

Our work also leaves challenging open problems

for future work. We already discussed the possi-

bility to extend our method to continuous parameter

values by using regression instead of classification.

Our implementation of

glyph templates could

also be extended to sup-

port additional geometric

relationships between

marks, for instance a radial

arrangement of the glyphs

shown in inset.2 In addi-

tion, while we focused on

recognizing individual glyphs, the layout of the glyphs

can conveys additional information, such as a creating

graph structure as in the inset. Existing work on inverse

procedural modeling could aid in recovering distribu-

tional [55] or hierarchical [56] layouts. Going further,

machine learning methods could be used not only to

recover the parameter values of individual glyphs but

also to construct the parametric glyph template that

encapsulates all observed glyph instances. Recent work

on neuro-symbolic programming has demonstrated

automatic recovery of graphical structures from images

and 3D shapes [57, 58], and their abstraction into

parametric programs [59]. However, these methods are

typically trained with far more examples than those

available in a single hand-drawn visualization. Com-

bining these methods with user interaction presents a

promising direction to support glyph authoring from a

small set of glyph instances.
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