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Figure 1: We propose a content-aware texturing method for 2D Gaussian Splatting. Our textures reconstruct intricate scene detail (a).
Gaussian primitives reconstruct the shape of the scene at low frequency of appearance; we show this in (b) where texturing is disabled. Our
method is adaptive, allowing different primitives to have different texel sizes, depending on scene content. On the right hand panel we display
primitives with progressively higher texel-to-pixel ratio. In regions with high frequency appearance, texels have size close that of pixels (e.g.,
the table cover (c)). For the low-frequency walls however (d), the ratio is high, with each texel representing a large number of input image

pixels.

Abstract

Gaussian Splatting has become the method of choice for 3D reconstruction and real-time rendering of captured real scenes.
However, fine appearance details need to be represented as a large number of small Gaussian primitives, which can be wasteful
when geometry and appearance exhibit different frequency characteristics. Inspired by the long tradition of texture mapping, we
propose to use texture to represent detailed appearance where possible. Our main focus is to incorporate per-primitive texture
maps that adapt to the scene in a principled manner during Gaussian Splatting optimization. We do this by proposing a new
appearance representation for 2D Gaussian primitives with textures where the size of a texel is bounded by the image sampling
frequency and adapted to the content of the input images. We achieve this by adaptively upscaling or downscaling the texture
resolution during optimization. In addition, our approach enables control of the number of primitives during optimization based
on texture resolution. We show that our approach performs favorably in image quality and total number of parameters used
compared to alternative solutions for textured Gaussian primitives.

1. Introduction

Gaussian Splatting [KKLD23; HYC*24] has become the method
of choice for the capture and real-time novel-view synthesis of real
scenes. It relies on flexible, easy-to-optimize Gaussian primitives

T work done at Google

© 2025 The Author(s).
Authors version

to represent the scene. However, in the standard approach, fine vi-
sual appearance — such as intricate texture on a surface — needs to be
represented with a large number of very small primitives even when
the geometric complexity is low. This wasteful limitation arises be-
cause each Gaussian primitive is associated with a single color sam-
ple, preventing the decoupling of appearance and geometric com-
plexity. Rendering techniques, on the other hand, have traditionally
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built on texture mapping to represent such detailed appearance. We
build on this tradition to propose a representation for textured Gaus-
sian primitives that is guided by the scene and its content.

In recent and concurrent work [SMAB25; RCB*25; CTP*25;
XCW*24] a number of methods introduce textured Gaussian prim-
itives, providing a spatially varying color. Most of these methods
use planar 2D Gaussians to match the dimensionality of traditional
textures. Each primitive carries several parameters (position, rota-
tion, scale, opacity and spherical harmonics (SH)), while textures
are 2D arrays of RGB(A) texels. The fundamental challenge of
such approaches is how to allocate model capacity across the scene
and between the number of texels and the number of primitives
used. Previous and concurrent solutions either deal with the issue
by imposing a fixed texture resolution per primitive [SMAB2S5;
XCW#*24; CTP*25], or propose heuristic approaches, that are far
from ideal [RCB*25]. This leaves open the question of how to share
resources in a more principled manner.

To answer this question, we propose a content-aware texturing
solution for 2D Gaussian primitives that uses the appearance com-
plexity as observed from the input images of the scene to make
informed decisions on how parameter resources are distributed. We
do this by first introducing a textured Gaussian primitive repre-
sentation in which texel size is fixed in world space. This makes
the appearance texture of each primitive independent of its size,
and therefore unaffected by the growing or shrinking that it under-
goes during optimization. This representation separates the param-
eters of geometry and appearance, allowing us to refine them inde-
pendently with appropriate allocation of memory capacity. More
specifically, we introduce a method to increase and decrease the
texel size as optimization evolves, by analyzing the frequency con-
tent that primitive textures can represent and determining the cor-
responding error. We pair that with a resolution-aware method to
control the overall number of primitives, striking a balance between
texture size and number of primitives. Our solution interacts closely
with the optimization, using the downscale/upscale mechanism to
reduce the error in appearance, while our control of the number of
primitives handles geometric error by spawning additional Gaus-
sians to capture geometric detail.

In summary, we propose three contributions:

e A texture representation for 2D Gaussians that defines texels
with a fixed world space size, supporting visual reconstruction
independent of the shape of the primitives.

e A progressive algorithm that adaptively determines texel size and
allows for content-aware fitting of the scene.

e A resolution-based solution to control the number of primitives,
adjusted to the textured representation.

Our experiments show that our method provides a good balance be-
tween visual quality and the number of parameters used for the rep-
resentation, comparing favorably to other textured Gaussian primi-
tives solutions proposed in recent and concurrent work.

2. Related Work
2.1. Traditional Representations

Texture Mapping was introduced in the early days of CG [Cat74]
and is widely used to effectively map detailed appearance infor-

mation onto a simpler geometric representation, such as triangles.
Textures are stored as 2D image arrays with a mapping function be-
tween the 3D surface and 2D texture coordinates. Computing this
2D surface parameterization is a well-studied and difficult prob-
lem [HLSO7; LKK*18; SGV*24]. Intrinsic 2D parameterizations
pose challenges even in traditional graphics pippelines [YLT19]
because they introduce difficulties in content creation and produce
visual artifacts in rendering. In the context of optimization for in-
verse problems — such as novel view synthesis — intrinsic param-
eterizations are also challenging since the geometry is not known
in advance [SGV*24]. An alternative, non-parametric way to store
localized information on the surface is by attaching it on the prim-
itives themselves, i.e., attaching colors to the vertices of a mesh,
requiring a very fine mesh subdivision to represent details. Mesh
Colors [YKH10; MSY20] extend this idea by using more color
samples along the edges and the faces of the triangles. This sig-
nificantly improves the representational capacity of non-parametric
appearance textures. While non-parametric appearance models are
limited in many ways, they have significant advantages in the con-
text of optimization since they overcome the need to jointly solve
for texture parameterization and the surface. Our representation is
also a non-parametric texture representation for Gaussian Splatting.

2.2. Representations for 3D Reconstruction

Scene reconstruction and novel view synthesis has recently uti-
lized differentiable rendering to recover 3D representations from
a set of images or video. Early methods utilized Multi-Plane
Images (MPIs) [MSO*19; ZTF*18], a collection of planes with
RGBA textures that are re-projected and rendered very effi-
ciently using homography transformations. The semi-transparent
and planar nature of the RGBA textures allowed the optimiza-
tion to converge to useful 3D representations, but the planar as-
sumption for the geometry is insufficient in most realistic cases.
Neural Radiance Fields (NeRF [MST*21]) popularized volu-
metric representations in the context of 3D reconstruction by
introducing an Multi-Layer Perceptron (MLP) that stores vol-
ume density and color. NeRF’s success resulted in follow-up
work that extended it to support anti-aliasing and unbounded
scenes [BMT#*21; BMV*22; ZRSK20], improve its training and
rendering speed [RPLG21; SSC22; MESK22; CXG*22; FYT*22;
BMV*23; WSN*23; SRYT24], increase its robustness when us-
ing fewer views [YYTK21; NBM#*22], and better reconstruct sur-
faces and handle reflections [VHM*22; LME*23; YHR*23]. Most
closely related to our work is Nuvo [SGV*24] that recovers a 2D
parameterization of a volume. For a more complete survey we refer
readers to [TTM*22].

Gaussian Splatting [KKLD23] has emerged as an alternative,
point-based approach to NeRFs by replacing the volumetric field
with a collection of semi-transparent ellipsoidal primitives. This
technique achieves excellent quality and real-time rendering even
at high resolutions. Several methods built on top of 3DGS to pro-
vide anti-aliasing [YCH*24], by changing the appearance model
but are constrained by the 1-to-1 relationship between color sam-
ples and primitives [YGS*24; MST*25].

2D Gaussian Splatting [HYC*24] flattens one of the dimen-
sions of the ellipsoids to create planar discs or surfels to align bet-
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ter with surfaces. Surfels are parametrized by the set of parame-
ters A = {u,0,q,0,SH}, where u € R? is the primitive’s center,
o< R*? are the scales of the primal axes of the surfel, q € R*
is a quaternion that represents the rotation R, o is the opacity and
SH are the spherical harmonics coefficients used to get the view-
dependent colour ¢. The normal vector n of the surfel is the third
column of the rotation matrix R.

With this formulation, the intersection point between a ray r =
ro +td and a primitive can be computed as:

n-(u—rp)
“hnd (D

We also build on 2D Gaussian Splatting for our method.

p=ro+td,t=

The initial primitive-based representations were not as compact
as NeRFs, but a number of recent results allow competitive com-
pression strategies [BKL*24]. Several recent methods build on tra-
ditional CG solutions, demonstrating that disentangling appearance
from geometry can achieve significant improvements in terms of
storage and memory costs. Texture-GS [XHL*24] combines de-
ferred shading and a per-pixel UV coordinate to fetch appearance
from a texture. This assumes that the objects can be represented by
a sphere imposing topological constraints. Our results demonstrate
that non-parametric texture mapping is a convenient and flexible
way to recover texture during the optimization.

Recent and concurrent work [SMAB25; CTP*25; XCW*24,
RCB*25] have used textures to represent fine visual details.
[RCB*25] and [CTP#*25] use converged 2DGS and 3DGS point
clouds, respectively, as a starting point of their method, and then
proceed to add and optimize texture parameters. Several meth-
ods [SMAB25; CTP*25; XCW*24] use a fixed texture resolution
for each primitive that is a hyperparameter of the method. GS-
Tex [RCB*25] distributes a texel budget over the primitives propor-
tional to their size, resulting in different resolutions for different-
sized primitives. All these methods define their textures in the
Gaussian canonical space, with the textures undergoing the same
transformations as the primitive, which leads to texture stretching
and shrinking. SuperGaussians [XCW#*24] also experiment with
representing the texture with a small Neural Network. In our ap-
proach, we explore a different and more robust design that allows
for texture maps to dynamically adjust to the captured content.
Along with two strategies that control the size of the texels and
the number of primitives that are designed specifically for our rep-
resentation, we are able to reconstruct scenes without the need for
a pretrained model.

3. Method

We first define a new representation for appearance of the Gaussian
primitives that allows for content-aware texturing. We then show
how to adapt the texturing process to scene content, by taking into
account the different screen-space frequencies that need to be rep-
resented using textures. This is achieved in a progressive manner
that is compatible with the optimization process. Finally, we pro-
pose a resolution-based primitive management method that splits
primitives allowing the geometry and appearance of the scene to be
approximated as required.
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In contrast to the original 2D Gaussian Splatting ap-
proach [HYC*24] (see Sec. 2.2 and Eq. 1), we express the intersec-
tion between a camera ray and a primitive in different coordinate
systems, denoted by a superscript. This is done, as some coordinate
systems make some operations easier. Specifically:

e p" = pis the intersection point in world space,

e p"? =p" —pis in world space, centered on the primitive,

° p[ = R_lpw" is in the local, axis-aligned coordinate system of
the primitive. Since the last component of this point is 0, we
consider that pl eR?

o p°=S"'p’, where S = diag(o) is in the local, normalised coor-
dinate system of the primitive.

This last coordinate system can be considered as the “canonical”
space of the Gaussian primitive. The use of these spaces is purely
to facilitate some operations. For instance, Eq. 1 is evaluated in the
camera view space, where r( is on top of the origin, while anything
that involves querying the texture map is better done in a coordinate
frame local to the respective primitive.

The color of a ray r is computed by alpha blending:
C(r) =Y wi(pi)ci(d) =Y Ti0;Gi(pi)ei(d) )
i i

i—1

Ti =[] =0;Gj(p))) 3)
J

where w;(p;) is the contribution of the Gaussian, G(x) is the eval-
uation of the Gaussian function that defines the falloff G(x) =

_L(XTX) . .
e 2 , and T; is transmittance.

3.1. Content-Aware Textures for Gaussian Splats

We augment each 2D Gaussian primitive with a texture map 7. The
texture map adds a spatially varying offset ¢’ to the original spher-
ical harmonic color representation. The texture colors vary only
spatially and have no directional dependency. This representation
is compact and models only the diffuse properties of the surface,
akin to albedo multiplied by irradiance. As a result, the color of
each primitive is now also dependent on the intersection point be-
tween the ray emanating from the pixel and the 2D primitive:

¢; = SH(d) + bilerp(7;,u) 4)

where u are the coordinates in UV space at which the ray intersects
primitive i with a direction vector d, and SH are the spherical har-
monics. We need to carefully design the texture coordinate calcu-
lation that transforms the intersection point into local, normalized
primitive space p¢ to UV coordinates. As we discuss below, it is
especially important to consider how this mapping changes when
the primitive parameters are updated during optimization.

A simple mapping from the canonical space to UV texture space
fixes the relative texture coordinates on the primitive such that the
texture will stretch and deform with scaling and rotation of the
primitive:

C
u= (L + 0.5) * Tres )]
2Si

where s; is the extent of the texture in units of standard deviations
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of the Gaussian primitive, and Tres is the texture resolution. When
the extent of the texture is smaller than the primitive, some type of
padding needs to be applied.

Figure 2: Difference between two mappings for a primitive having
learned a particular texture. Top row: a naive approach distorts
the appearance after the primitive undergoes scaling. Bottom row:
in our approach, as texel size is fixed in world space, scaling the
primitive only reveals more part of the underlying texture, preserv-
ing existing content.

Recall that primitives change size and shape during the opti-
mization process. As a result, with such a texture mapping, the
appearance parameters of the texture are coupled with the param-
eters that control the shape of the primitive. During optimization,
small changes in the scale of the Gaussians result in changes of all
the values of the texture. This can induce local minima in the op-
timization process that are visible as texture stretching, see Fig. 2
(top).

Instead, we define a content-aware representation in which tex-
tures are adapted to scene content. Our goal is to have textures that
can faithfully represent the frequency of image details at the high-
est resolution present in the input images. To do this, we fix the
texel size with respect to the optimization process such that no op-
timizable parameters change it. We achieve this with a small mod-
ification to Eq. 5:

P!
u= E + Tofset (6)
where k; is the texel size and T is an offset to center the texture
map. In constrast to Eq. 5, the intersection point pl and hence the
texel size k; are defined in world space, with the same units as the
primitive’s scales G.

This mapping implies that the textures do not have a fixed texture
resolution. On the contrary, as the primitives grow or shrink, more
or less texture resolution is needed to cover their surface. This is
demonstrated in Fig. 2 (bottom). We modified our optimization
routines to allocate and de-allocate texture resolution dynamically.

Since the number of texels can grow quadratically, we risk run-
ning out of resources if every primitive has a texture. Our goal is
to maintain an expressive representation while carefully managing
resources. To achieve this, we enforce two properties on our rep-
resentation: First, the projected sampling frequency of the texture
needs to be bounded by the image sampling frequency of the clos-
est camera. This means that the projected texel size should never be
smaller than the smallest input pixel that can see it. Second, texel

sizes should adapt to scene content, i.e., smaller texel sizes should
be allocated for high frequency image content.

The first goal can be achieved using a conservative choice to
determine minimum texel size as the pixel size back-projected in
world space from the input training view closest to the primitive’s
center k” similarly to [PKK*24].

min”’

Regarding the second goal, optimal texel sizes cannot be de-
termined at initialization since pritimives change size and rotate
dynamically during optimization. We need a way to adapt to the
freqency content of the scene progressively. To do this, we next
introduce an adaptive strategy to determine texel size during opti-
mization, where we downscale and upscale texture by adapting to
the scene content. We complement this approach with a resolution-
aware primitive management method that add primitives to repre-
sent geometric — rather than appearance — error. We describe these
two components in the following sections.

3.2. Progressive Adaptive Texel Size Determination

Our goal is to adapt textures to the frequency content of the in-
put images. We also need to achieve this in a progressive manner
that fits well with the optimization process. We define a texel size-
to-pixel size ratio tpp,, which we manipulate during optimization
using downscaling and upscaling operations.

We define the texel size k based on the minimum pixel size kﬁin’
with #, p,. as follows:

k=KD p, ™

We use this parameter to assign a low 7, p, to primitives in regions
with fine details. As a result, such primitives will have more tex-
els for a given primitive size. Similarly, primitives that lie in ar-
eas with low-frequency appearance will have a higher ratio, giving
them relatively fewer texels. To provide a lower bound of 1 and fa-
cilitate texture rescaling operations, #; p, can only take values that
are powers of two.

To this end, we propose two strategies to increase and decrease
tppr leading to a downscale and an upscale of the texture map re-
spectively. Note that texel size and texture resolution are linked,
but not the same. In the operations below, when texel size changes,
texture resolution will change but only because the primitive size is
unchanged.

Increase of texel size-to-pixel size ratio - Downscaling: Our
goal is to find texture maps that represent low frequency details and
decrease their texel size accordingly. We do this by applying a low-
pass filter on textures and then comparing them to the originals.
The error £; is weighted by the Gaussian falloff of the primitive,
leading to the following equation:

&)= ﬁ gG(p) (Torig (p) - Tiowpass (p)) ®

If this error is less than a threshold t45, we assume that the tex-
ture map can be reconstructed with good-enough fidelity by the
downscaled version. Hence, we double #, p,., which reduces the to-
tal number of texture parameters by 4. This reduces the resolution
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Figure 3: We illustrate the downscale and upscale process used.

of texture, since the world-space size of the texels has grown. The
size of the primitive is however unchanged.

Decrease of texel size-to-pixel size ratio - Upscaling: In re-
gions where the texel size of the primitives involved is too large
to capture the fine, underlying details, we expect our images to be
blurry, and thus induce large error. To identify these regions, we
estimate primitive error using the approach presented in [RPK24].
Specifically, for a primitive 7, a ray r, a camera view T and corre-
sponding RGB error image £, we compute the per primitive error
for a single view:

Ef =}, &(r)wi(r) ©)
reP;
where P; are all the pixels covered by the primitive. Here we as-
sume that we have one ray per pixel, emanating from its center.
Differently from [RPK24], instead of taking the maximum error
over views, we perform a weighted sum, with the weight being the
total contribution of a primitive in that image.

ETW®
E; = 2”6“7’7’ wi= Y wi(r) (10)
YrenW; reP;

where IT is the set of all input views. This choice assigns an error
value to each primitive that is proportional to their contribution to
the rendered image.

We choose the top 10% of primitives with the highest error, and
upscale their textures by a factor of 4, by halving #, p,. With smaller
sized texels, these primitives can better fit to the scene content, re-
ducing their error.

Progressive texel size adaptation. The calculation of the per
primitive error E; and the application of upscale/downscale process
happens regularly during optimization. Texel size adapts to scene
content during this process, getting bigger for primitives that lie in
low-frequency regions, and smaller for primitives that exhibit large
error, as shown in Fig. 1(right).

There are two main sources of error: appearance and geometry.
For the first case, our upscaling approach reduces error as the opti-
mization progresses. However, for the case of geometry that is not
well represented, an additional step is required. To address this and
complete our content-aware method, we next introduce resolution-
aware splitting.
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3.3. Resolution-aware Primitive Management

In Gaussian splatting methods where each primitive contains one
color sample, densification — i.e., adding new primitives through
cloning and splitting — plays an essential role in improving the re-
construction of the scene. This results in a local increase in both
the geometric (position, scale, rotation) and appearance parameters
(SH, opacity) that are treated together since they are tied to a single
Gaussian primitive. However, this is not always ideal, since there
are cases where the geometry is low frequency and has been ap-
proximated well, but we are missing texture detail, or conversely,
cases where the color information is low frequency, but the underly-
ing surface is not correctly represented. The latter case can appears
as holes, “softened” edges or elongated primitives in places where
they are not required.

P split x 9 split y

Figure 4: Left to right:The primitive has been upscaled to a reso-
lution greater than T, in both axes. Our splitting approach creates
four new primitives, each with half the scale and texture resolution
in both axes.

Our separation of geometric and appearance parameters provides
an additional degree of freedom, allowing us to independently de-
cide whether to increase the number of parameters linked to geom-
etry, i.e., increasing the number of primitives or to appearance, i.e.,
increasing texture resolution.

Given that we do not have a supervision signal explicitly for
geometry, we attempt to first match the appearance, using the up-
scaling approach described above. If the error is still high despite
upscaling, we interpret the remaining error as geometric. In these
cases, we can add more primitives, locally increasing the geomet-
ric degrees of freedom. We found that densification strategies that
were based on cloning either partially [KKLD23] or entirely in the
case of 3DGS-MCMC [KRS*24], are incompatible with our repre-
sentation. This is because the superimposition of multiple textured
primitives makes convergence difficult and requires an excessive
number of parameters. As a result our primitive management is
based on splitting, which fits well with our method. We describe
this next.

Similar to the approach for upscaling, we take the top 10% of
primitives with the highest error, and check which of these exceed
a threshold Ty for texture resolution. The primitive is replaced by
two new primitives, each displaced by 1 standard deviation of the
Gaussian. This process is performed separately for each axis; the
new primitives have half the scale (size) in each corresponding axis,
as aresult, half the texture resolution, G(1) times the opacity, where
G is the Gaussian. The texture map of the newly added primitives
is created by sampling the original point at the respective locations.
Fig. 4 illustrates the splitting process for a primitive that happens to
have a texture resolution greater than Ty in both axes. A flowchart
of how upscaling and splitting interact is shown in Fig. 5. Alg. 1
displays in high level how the two methods are integrated in code.
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Tanks&Temples

SSIM?T PSNRT LPIPS| Points Texels Params FPS [SSIM7T PSNR1 LPIPS| Points Texels Params FPS |SSIM1 PSNR1 LPIPS| Points Texels Params FPS

3DGS-MCMC ‘0.903 29.81 0.311 1323K 0.0M 78.1IM 265‘0.831 27.82

0.232 2587K 0.0M 152.6M 103‘0.855 2425 0211 695K 0.0M 41.IM 230

2DGS* 0.899 29.52 0.324 1444K 0.0M 83.8M 96 | 0.801 27.18
BBSplat 0.898 29.25 0.318 160K 41.0M 173.0M 27 | 0.781 26.67
GSTex 0.906 29.63 0.323 1503K 10.0M 117.2M 21 | 0.802 27.06
Ours 0.907 30.03 0.303 222K 21.6M 78.IM 70 | 0.795 27.00

0.282 2079K 0.0M 120.6M 91 | 0.834 2337 0239 872K 0.0M 50.6M 165
0.273 237K 60.9M 257.0M 23 | 0.848 23.62 0.178 300K 76.8M 324.3M 38
0.285 2025K 10.0M 147.5M 20 | 0.842 2348 0.240 877K 10.0M 80.9M 20
0.263 218K 46.6M 152.6M 67 | 0.835 2343 0.225 164K 10.4M 41.1IM 121

Table 1: We compare our method against 2DGS* trained with no geometric regularisations, BBSplat and GSTex, with default settings. We
show standard quality metrics (PSNR, SSIM, L-PIPS), total number of primitives, texels and parameters. Our method achieves competitive
results while using significantly fewer, highly expressive primitives. We also include 3DGS-MCMC for completeness, please note that 3DGS-
based methods achieve better NVS but worse geometry quality compared to all approaches based on 2DGS (see discussion Sec. 5.1).

DeepBlending
SSIM?T PSNRT LPIPS{ Points Texels Params FPS

Mip-Nerf-360
SSIM?T PSNRT LPIPS| Points Texels Params FPS [SSIM{ PSNR1{ LPIPS| Points Texels Params FPS

Tanks&Temples

BBSplat | 0.895 28.93 0332 72K 185M 78.1IM 57 | 0.768 26.02 0.291
GSTex 0.896 28.29 0.354 222K 21.6M 78.IM 60
Ours 0.907 30.03 0303 222K 21.6M 78.1M 70

0.748 25.19 0352 217K 46.6M 152.6M 46
0.795 27.00 0.263 218K 46.6M 152.6M 67

141K 36.1IM 152.6M 33 | 0.801 22.77 0.259 47K 123M 51.8M 87
0.745 20.65 0.363 164K 104M 41.IM 67

0.835 2343 0.225 164K 104M 41.IM 121

Table 2: We compare against BBSplat and GSTex in a same parameter setting, by adjusting their primitive count and texels accordingly.
The slight discrepancy in BBSplat’s parameters in Tanks & Temples is due to a sphere sampling method they use to model the background

and distant objects.

input image

Texture
threshold
reached

High error:
Upscale

Split Further
optimization

Figure 5: The primitive has high error, and successive upscal-
ings result in a texture resolution above threshold. In this case, the
error is geometric rather than due to appearance. Our algorithm
performs a split, and further optimization will match the geometry.

3.4. Training and Regularisation

As in [KKLD23], we train our model using the weighted sum of
the per-pixel £ and the structural similarity losses, between the
ground truth and the rendered images:

LrgB = (1 —Asstv) L1 +AssvLssvm 11
with Agsmv = 0.2.

We observed that textures could finish converging to high-
frequency settings, even though alpha-blending would create a
smooth result. This prevented them from being downscaled, lead-
ing to high parameter usage. To resolve this, we apply a sparsity
regularization on the texel values, pushing them towards zero,

Litexture = Mexture Z |C;77| (12)
i
We constrain the texel values in the [—1, 1] range, using a sigmoid
activation, scaled and shifted accordingly:

¢ =20(T) -1 (13)

where o(x) is the sigmoid function and 7 are the unactivated
texture features. Intuitively, this parametrization coupled with the
sparsity loss forces the view-dependent color SH(d) to learn the
base color of the surface, while the texels operate as offsets to
model high-frequency details. An example of this is illustrated in
Fig. 1(left).

Finally, as in [PKK*24; KRS*24], we incentivize low-
contribution primitives to effectively disappear by applying an
opacity regularization term:

1 N
£0pacity = }Lopacity N Z 0;. (14)
i

Taking both training objectives and regularizations into consid-
eration, the total loss is formed as:

L = LrgB + Liexture + £opacity~ (15)

4. Implementation

We have implemented our method using the 3DGS codebase, in-
troducing 2D primitives as in 2DGS. Unlike 2DGS, we do not use
the R? — R? transformation to find the intersection point using
three non-parallel planes. Instead, we use Eq. 1 directly in camera
space. We did not observe any instability issues. Since our method
requires per-ray querying of texture maps, both the forward and
backward passes incur additional overhead, that is not compensated
by the smaller number of primitives rendered. In general, compared
to 2DGS, training time is 1.5-2 times longer, and rendering is 25%
slower.

As the texture grids can have different resolutions, we created
custom “jagged” tensor data structure to be used for their storage.
The texture resolution for each primitive gets (de-)allocated dy-
namically, so that it covers the extent of the primitive, that is +3
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Figure 6: We provide renderings from one scene per dataset for every method, trained with default settings. Our method is able to reconstruct
high frequency details on images, even while using fewer parameters compared to the other methods.

standard deviations. This dynamic memory management happens
every 100 iterations. A hard limit of 256 texture resolution is en-
forced to avoid using too much memory. When a primitive grows
outside of its allocated texture grid, either because memory has not
been allocated yet or it has surpassed the hard limit, zero-padding
is used. Since we are storing an offset, zero-padding reduces to the
DC color.

We observed that limiting the #;p, to be greater or equal to 2
did not have a detrimental effect on the visual quality, as subtexel
scaled details can be retrieved thanks to alpha blending and the
overlap of our primitives. We thus allow upscaling to happen only
for primitives with a 7, p, greater or equal to 2.

Storage and Memory Considerations. The size of our repre-
sentation is tied to the number of parameters used, with each pa-
rameter saved as a 4-byte float, as in previous Gaussian Splatting
implementations. However, most Gaussian Splatting compression
techniques (see [BKL*24]) are applicable to our approach either
directly or with minor modifications. For our newly introduced tex-
ture maps, our choice to use a sigmoid activation to limit the effec-
tive range of the texel values allows for a very efficient application
of K-means clustering compression. Please see Tab. 5 for complete
statistics.

5. Results and Evaluation

We test our method on 13 indoor and outdoor scenes from three
different standard datasets. We evaluate on all scenes of Mip-NeRF
360 [BMV*#22], two scenes from Tanks & Temples [KPZK17], as
well as two scenes from Deep Blending [HPP*18]. Fig. 6 shows
that our method faithfully reconstructs the input images.

© 2025 The Author(s).
Authors version

5.1. Evaluation

We compare our method against 2DGS [HYC*24] as a base-
line, and two 2DGS texturing methods, namely (unpublished) BB-
Splat [SMAB25] and GStex [RCB*25], for which the code was
available at the time of submission. Directly comparing to 3DGS-
based models is not straightforward and might lead to mislead-
ing conclusions, since these models have different properties and
consistently perform better for NVS but worse in geometry recon-
struction, compared to 2DGS-based solutions [HYC*24]. For the
same reason, and because the code was not available at the time
of submission, we do not compare against [CTP*25], which is a
3DGS-based method with textured primitives. This model uses a
pretrained 3DGS-MCMC model as initialization, similar to GStex,
and includes RGBA textures, similar to BBSplat. We thus expect
it to suffer from the disadvantages of both these two models (see
discussion of the second experiment). We ran these methods on all
scenes using our machines to ensure fair comparison. For 2DGS,
the normal consistency and depth distortion regularization terms
were disabled, as they are designed to enhance the geometric re-
construction but often result in lower novel view synthesis (NVS)
quality.

Qualitative Evaluation. In Figure 6, we show visual results for
the different models. We show test views (i.e., not used for train-
ing) from one scene of each dataset. Our method succeeds in recon-
structing high-frequency details with high fidelity, even with fewer
parameters. Similarly, Figure 7 displays visual results from the
second experiment, which highlight that other texturing methods
struggle when constrained to the same parameter budget as ours.
GSTex uses a point cloud that is not trained with textured primitives
in mind and a static heuristic distribution of texels, which causes it
to not reconstruct well large parts of the scene. BBSplat succeeds in
geometrically reconstructing the scene, but exhibits texture stretch-



8of 11 Panagiotis Papantonakis & Georgios Kopanas & Frédo Durand & George Drettakis / Content-Aware Texturing for Gaussian Splatting

BBSplat
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GStex

Figure 7: Adjusting BBSplat and GSTex to use the same budget as our method, results in significant visual degradation.

ing, which appears as blurriness. This is due to the choice of map-
ping between intersection points and UV coordinates.

Quantitative Evaluation. For our quantitative comparisons, we
present results for three error metrics, SSIM, PSNR, and LPIPS
[ZIE*18], that are typically used to evaluate NVS. Additionally,
we report the number of primitives and texels used, which pro-
vides a precise measure of the resources required for each method
and demonstrates whether and how much textures contribute to the
scene reconstruction. Finally, since the models’ capacity is directly
tied to the number of parameters used, we include the relevant col-
umn so that we can make fair comparisons and draw meaningful
conclusions.

The formula for the number of parameters differs slightly among
the models. For 2DGS, GSTex each primitive has 58 parameters (3
for position, 2 for scale, 4 for rotation, 1 for opacity, 48 for color),
while for BBSplat this number is 57, as it lacks opacity. In our
method, in addition to the parameters of 2DGS, we include one
additional per primitive for the texel size, pushing the number to 59
parameters. Regarding the parameters coming from texels, GSTex
and our method have 3 per texel, while BBSplat has one additional,
corresponding to the alpha channel.

In Table 1, we compare methods trained with default settings. In
most cases, our approach achieves competitive or superior quality
across all three metrics, while requiring a lower number of train-
able parameters. Focusing on the composition of these parameters,
our converged models have significantly fewer, but more expres-
sive primitives than the baseline as illustrated in Fig. 1 (left). This
highlights the ability of our model to account for the difference in
complexity between geometry and appearance. In contrast, GSTex
uses a pretrained 2DGS point cloud and has a fixed budget of tex-

els, distributed at initialization time; this results in limited usage
of texture. This is in part because it starts with a converged set of
primitives from 2DGS that is not well adapted to a solution with
texture. On the contrary, we optimize both primitives and textures
from scratch.

Moreover, while our primitive count is close to BBSplat’s, the
total number of parameters used is significantly lower than theirs.
This can be attributed to our content-aware texel size determination,
which dynamically allocates model capacity to regions according
to their needs, as opposed to the fixed texel to primitive ratio that
BBSplat imposes.

To emphasize the importance of our content-aware texturing ap-
proach, we next compare the other texturing methods by fixing both
the primitive and texel budgets to ours. In GSTex this is feasible,
because it allows the distribution of a given texel budget over a pre-
trained 2DGS point cloud. We first trained 2DGS with the specified
primitive budget and then gave the texel budget as input to GSTex.
However, in BBSplat, controlling both the primitive and texel bud-
gets is not possible, as the method imposes a fixed ratio between the
two, determined by the texture resolution (16x16). Therefore, we
calculated the number of primitives that would result in the same
number of trainable parameters. Table 2, reports these results under
these fixed parameters. Note that BBSplat uses a skybox to model
background and distant objects in outdoor scenes, which was not
taken into consideration when calculating the number of primitives.
This accounts for the slight discrepancy in the number of parame-
ters. Both the other methods observe a noticeable to significant drop
in performance. This is possibly due to the fact that model capacity
is not distributed efficiently both across primitives and across parts
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DeepBlending

Mip-Nerf-360

Tanks&Temples

SSIMT PSNR? LPIPS| Texels Params FPS |SSIMT PSNR?T LPIPS| Texels Params FPS [SSIM?T PSNR? LPIPS| Texels Params FPS

Points40k | 0.890 28.78 0.346 13.2M 419M 121 | 0.758 25.80 0.304 42.2M 1289M 97
0.777 2639 0.285 439M 136.5M 79
0.785 26.68 0.275 45.0M 142.0M 68
Points160k | 0.905 29.98 0.308 199M 69.IM 56 | 0.791 26.88 0.269 45.7M 146.6M 46

Points80k | 0.898 29.56 0.328 155M 512M 88
Points120k | 0.903 29.88 0.315 17.9M 60.7M 75

0.809 22.74 0.246 15.4M 484M 162
0.823 2325 0.235 123M 41.7M 108
0.830 23.34 0.232 109M 39.6M 96
0.833 23.44 0.227 10.5M 40.8M 88

Table 3: We run our technique with a limited primitive budget. An increased primitive count increases quality, without proportionally

increasing the number of texels and parameters.

of the scene. In this setup, our method performs consistently better
on average than previous solutions.

As a third experiment, we run our method with a low, fixed
primitive budget, by skipping the splitting procedure whenever the
model exceeds it. The adaptive texel size strategies were left un-
changed. Table 3 shows the results. As expected, the performance
gets better with an increasing primitive count, as the use of prim-
itives with a fixed gaussian falloff prevents faithfully reconstruct-
ing sharp edges with sparser point clouds. However, we note that
the number of texels does not grow proportionally to the number of
primitives or even diminishes, in the case of Tanks & Temples. This
is a direct result of our choice of texture coordinate mapping func-
tion and the adaptive texel size determination strategy. Our separa-
tion of geometric and appearance parameters allows our models to
automatically achieve a balance between the two that is appropriate
for the scene.

6. Limitations and Discussion

Our method presents a good balance of resources used for textured
Gaussian Splatting, allowing a smooth variation between number
of primitives and number of texels used to represent a scene. How-
ever, like all other methods that build on 2DGS, we do not achieve
the quality of 3DGS. Using 3D primitives with texture raises in-
teresting questions about how to represent texture: should one use
a 2D texture on a plane, or rather a voxel or hash-grid in 3D ?
While Textured-GS [CTP*25] proposes a first solution using the
former approach, the analysis presented in the paper is insufficient
to determine how well the choices made perform compared to our
solution.

We do not have any special treatment for anti-aliasing. For NVS,
the user can only navigate freely within — or at least close — to the
convex hull of the input cameras. Since we choose a #; p, value that
is at least 2, aliasing will rarely by occuring in this range of view-
points. Nonetheless, a complete solution for anti-aliasing would be
an interesting avenue of future work.

We did not investigate the use of dedicated GPU hardware ca-
pabilities for texture. Given that our implementation of textured
Gaussian Splatting uses a custom CUDA renderer, it is unclear how
beneficial this would actually be. However, for the case, e.g., of We-
bGL renderers [Kwo], this may be a much more interesting direc-
tion that could allow accelerated rendering, especially in the case
of low-end hardware.

© 2025 The Author(s).
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7. Conclusion

We have presented a new representation for textured 2D Gaussian
Splatting, that is driven by scene content. By adaptively choos-
ing texel size to fit the content of the scene, and carefully bal-
ancing resources used with our resolution-aware spltting approach,
we provide a versatile method that allows users to choose between
more primitives or more texture while preserving image quality.
Our method provides an additional point in the design space of
primitive-based NVS algorithms, building on the long tradition of
texture mapping in CG rendering.

8. Acknowledgements

This work was funded by the European Research Council (ERC)
Advanced Grant NERPHYS, number 101141721 https://
project.inria.fr/nerphys. The authors are grateful to the
OPAL infrastructure of the Université Cote d’Azur for providing
resources and support, as well as Adobe and NVIDIA for software
and hardware donations. F. Durand acknowledges funding from
Google, Amazon, and MIT-GIST. The authors thank the anony-
mous reviewers for their valuable feedback.

References

[BKL*24] BAGDASARIAN, MILENA T., KNOLL, PAUL, L1, YI-HSIN, et
al. “3DGS.zip: A survey on 3D Gaussian Splatting Compression Meth-
ods”. arXiv preprint arXiv:2407.09510 (2024) 3, 7.

[BMT#*21] BARRON, JONATHAN T., MILDENHALL, BEN, TANCIK,
MATTHEW, et al. “Mip-NeRF: A Multiscale Representation for Anti-
Aliasing Neural Radiance Fields”. Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). Oct. 2021, 5855—
5864 2.

[BMV*#22] BARRON, JONATHAN T., MILDENHALL, BEN, VERBIN,
DOR, et al. “Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance
Fields”. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). June 2022, 5470-5479 2, 7.

[BMV#23] BARRON, JONATHAN T., MILDENHALL, BEN, VERBIN,
DOR, et al. “Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance
Fields”. Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2023, 19697-19705 2.

[Cat74] CATMULL, EDWIN EARL. A subdivision algorithm for computer
display of curved surfaces. The University of Utah, 1974 2.

[CTP*25] CHAO, BRIAN, TSENG, HUNG-YU, PORZI, LORENZO, et al.
“Textured Gaussians for Enhanced 3D Scene Appearance Modeling”.
CVPR.20252,3,7,9.


https://project.inria.fr/nerphys
https://project.inria.fr/nerphys

10of 11

[CXG*22] CHEN, ANPEI, XU, ZEXIANG, GEIGER, ANDREAS, et al.
“TensoRF: Tensorial Radiance Fields”. Computer Vision — ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Pro-
ceedings, Part XXXII. Tel Aviv, Israel: Springer-Verlag, 2022, 333-350.
ISBN: 978-3-031-19823-6. DOI: 10.1007/978-3-031-19824—
3_20. URL: https://doi.org/10.1007/978-3-031~
19824-3_202.

[FYT#*22] FRIDOVICH-KEIL, SARA, YU, ALEX, TANCIK, MATTHEW,
et al. “Plenoxels: Radiance Fields without Neural Networks”. CVPR.
2022 2.

[HLS07] HORMANN, KAI, LEVY, BRUNO, and SHEFFER, ALLA. “Mesh
parameterization: Theory and practice”. (2007) 2.

[HPP*18] HEDMAN, PETER, PHILIP, JULIEN, PRICE, TRUE, et al.
“Deep blending for free-viewpoint image-based rendering”. ACM Trans.
Graph. 37.6 (Dec. 2018). 1SsN: 0730-0301. por: 10 . 1145 /
3272127 .3275084. URL: https ://doi.org/10.1145/
3272127.3275084 7.

[HYC*24] HUANG, BINBIN, YU, ZEHAO, CHEN, ANPEI, et al. “2D Gaus-
sian Splatting for Geometrically Accurate Radiance Fields”. ACM SIG-
GRAPH 2024 Conference Papers. SIGGRAPH ’24. Denver, CO, USA:
Association for Computing Machinery, 2024. 1SBN: 9798400705250.
DOI: 10.1145/3641519.3657428. URL: https://doi.org/
10.1145/3641519.3657428 1-3,7.

[KKLD23] KERBL, BERNHARD, KOPANAS, GEORGIOS, LEIMKUHLER,
THOMAS, and DRETTAKIS, GEORGE. “3D Gaussian Splatting for
Real-Time Radiance Field Rendering”. ACM Transactions on Graphics
(2023). DO1: 10.1145/3592433 1,2,5,6.

[KPZK17] KNAPITSCH, ARNO, PARK, JAESIK, ZHOU, QIAN-YI, and
KOLTUN, VLADLEN. “Tanks and temples: benchmarking large-scale
scene reconstruction”. ACM Trans. Graph. 36.4 (July 2017). ISSN: 0730-
0301. DOI: 10.1145/3072959.3073599. URL: https://doi.
org/10.1145/3072959.3073599 7.

[KRS*24] KHERADMAND, SHAKIBA, REBAIN, DANIEL, SHARMA,
GOPAL, et al. “3D Gaussian Splatting as Markov Chain Monte
Carlo”. Advances in Neural Information Processing Systems. Ed. by
GLOBERSON, A., MACKEY, L., BELGRAVE, D., et al. Vol. 37.
Curran Associates, Inc., 2024, 80965-80986. URL: https : / /
proceedings .neurips.cc/paper_files/paper/2024/
file / 93be245fce00a9bb2333cl7ceaedb732 - Paper —
Conference.pdf 5, 6.

[Kwo] KwWOK, KEVIN. Splat Viewer. URL: https://github.com/
antimatterl5/splat?tab=readme-ov-file9.

[LKK*18] L1, MINCHEN, KAUFMAN, DANNY M, KiM, VLADIMIR G, et
al. “Optcuts: Joint optimization of surface cuts and parameterization”.
ACM transactions on graphics (TOG) 37.6 (2018), 1-13 2.

[LME#*23] LI, ZHAOSHUO, MULLER, THOMAS, EVANS, ALEX, et al.
“Neuralangelo: High-Fidelity Neural Surface Reconstruction”. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2023, 8456-8465. DOI: 10 . 1109 /CVPR52729 . 2023 .
00817 2.

[MESK22] MULLER, THOMAS, EVANS, ALEX, SCHIED, CHRISTOPH,
and KELLER, ALEXANDER. “Instant neural graphics primitives with a
multiresolution hash encoding”. ACM Trans. Graph. 41.4 (July 2022).
ISSN: 0730-0301. por: 10 . 1145 / 3528223 . 3530127. URL:
https://doi.org/10.1145/3528223.3530127 2.

[MSO*19] MILDENHALL, BEN, SRINIVASAN, PRATUL P, ORTIZ-
CAYON, RODRIGO, et al. “Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines”. ACM Transactions on Graph-
ics (ToG) 38.4 (2019), 1-14 2.

[MST*21] MILDENHALL, BEN, SRINIVASAN, PRATUL P., TANCIK,
MATTHEW, et al. “NeRF: representing scenes as neural radiance fields
for view synthesis”. Commun. ACM 65.1 (Dec. 2021), 99-106. I1SSN:
0001-0782. pOI: 10.1145/3503250. URL: https://doi.org/
10.1145/3503250 2.

Panagiotis Papantonakis & Georgios Kopanas & Frédo Durand & George Drettakis / Content-Aware Texturing for Gaussian Splatting

[MST*25] MALARZ, DAWID, SMOLAK-DYZEWSKA, WERONIKA, TA-
BOR, JACEK, et al. “Gaussian splatting with NeRF-based color and opac-
ity”. Computer Vision and Image Understanding 251 (2025), 104273 2.

[MSY20] MALLETT, IAN, SEILER, LARRY, and YUKSEL, CEM. “Patch
textures: Hardware support for mesh colors”. IEEE Transactions on Vi-
sualization and Computer Graphics 28.7 (2020), 2710-2721 2.

[NBM*22] NIEMEYER, MICHAEL, BARRON, JONATHAN T., MILDEN-
HALL, BEN, et al. “RegNeRF: Regularizing Neural Radiance Fields for
View Synthesis From Sparse Inputs”. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June
2022, 5480-5490 2.

[PKK*24] PAPANTONAKIS, PANAGIOTIS, KOPANAS, GEORGIOS,
KERBL, BERNHARD, et al. “Reducing the Memory Footprint of
3D Gaussian Splatting”. Proc. ACM Comput. Graph. Interact. Tech.
7.1 (May 2024). pol: 10 . 1145 / 3651282. URL: https :
//doi.org/10.1145/3651282 4, 6.

[RCB*25] RONG, VICTOR, CHEN, JINGXIANG, BAHMANI, SHERWIN,
et al. “GStex: Per-Primitive Texturing of 2D Gaussian Splatting for
Decoupled Appearance and Geometry Modeling”. Proceedings of the
Winter Conference on Applications of Computer Vision (WACV). Feb.
2025, 3508-3518 2, 3, 7.

[RPK24] ROoTA  BULO, SAMUEL, PORzI, LORENZO, and
KONTSCHIEDER, PETER. “Revising Densification in Gaussian
Splatting”. Computer Vision — ECCV 2024: 18th European Conference,
Milan, Italy, September 29-October 4, 2024, Proceedings, Part LXIII.
Milan, Italy: Springer-Verlag, 2024, 347-362. ISBN: 978-3-031-
73035-1. por: 10 . 1007 /978 -3-031-73036~-8_20. URL:
https://doi.org/10.1007/978-3-031-73036-8_205.

[RPLG21] REISER, CHRISTIAN, PENG, SONGYOU, LIAO, YIYI, and
GEIGER, ANDREAS. “KiloNeRF: Speeding up Neural Radiance Fields
with Thousands of Tiny MLPs”. International Conference on Computer
Vision (ICCV). 2021 2.

[SGV*24] SRINIVASAN, PRATUL P, GARBIN, STEPHAN J, VERBIN,
DOR, et al. “Nuvo: Neural uv mapping for unruly 3d representations”.
European Conference on Computer Vision. Springer. 2024, 18-34 2.

[SMAB25] SviTov, DAVID, MORERIO, PIETRO, AGAPITO, LOURDES,
and BUE, ALESSIO DEL. BillBoard Splatting (BBSplat): Learnable Tex-
tured Primitives for Novel View Synthesis. 2025. arXiv: 2411 .08508
[cs.CV].URL: https://arxiv.org/abs/2411.08508 2, 3,
7.

[SRYT24] SHARMA, GOPAL, REBAIN, DANIEL, YI, KWANG M0O, and
TAGLIASACCHI, ANDREA. “Volumetric rendering with baked quadra-
ture fields”. European Conference on Computer Vision. Springer.
2024,275-292 2.

[SSC22] SuN, CHENG, SUN, MIN, and CHEN, HWANN-TZONG. “Direct
Voxel Grid Optimization: Super-fast Convergence for Radiance Fields
Reconstruction”. CVPR. 2022 2.

[TTM*22] TEWARI, AYUSH, THIES, JUSTUS, MILDENHALL, BEN, et al.
“Advances in neural rendering”. Computer Graphics Forum. Vol. 41. 2.
Wiley Online Library. 2022, 703-735 2.

[VHM*22] VERBIN, DOR, HEDMAN, PETER, MILDENHALL, BEN, et al.
“Ref-NeRF: Structured View-Dependent Appearance for Neural Radi-
ance Fields”. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2022, 5491-5500 2.

[WSN*23] WANG, ZIAN, SHEN, TIANCHANG, NIMIER-DAVID, MER-
LIN, et al. “Adaptive Shells for Efficient Neural Radiance Field Ren-
dering”. ACM Trans. Graph. 42.6 (Dec. 2023). 1SSN: 0730-0301. DOI:
10.1145/3618390. URL: https://doi.org/10.1145/
3618390 2.

[XCW*24] Xu, Rui, CHEN, WENYUE, WANG, JIEPENG, et al. Super-
Gaussians: Enhancing Gaussian Splatting Using Primitives with Spa-
tially Varying Colors. 2024 2, 3.

© 2025 The Author(s).
Authors version


https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3072959.3073599
https://proceedings.neurips.cc/paper_files/paper/2024/file/93be245fce00a9bb2333c17ceae4b732-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/93be245fce00a9bb2333c17ceae4b732-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/93be245fce00a9bb2333c17ceae4b732-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/93be245fce00a9bb2333c17ceae4b732-Paper-Conference.pdf
https://github.com/antimatter15/splat?tab=readme-ov-file
https://github.com/antimatter15/splat?tab=readme-ov-file
https://doi.org/10.1109/CVPR52729.2023.00817
https://doi.org/10.1109/CVPR52729.2023.00817
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3651282
https://doi.org/10.1145/3651282
https://doi.org/10.1145/3651282
https://doi.org/10.1007/978-3-031-73036-8_20
https://doi.org/10.1007/978-3-031-73036-8_20
https://arxiv.org/abs/2411.08508
https://arxiv.org/abs/2411.08508
https://arxiv.org/abs/2411.08508
https://doi.org/10.1145/3618390
https://doi.org/10.1145/3618390
https://doi.org/10.1145/3618390

Panagiotis Papantonakis & Georgios Kopanas & Frédo Durand & George Drettakis / Content-Aware Texturing for Gaussian Splatting

[XHL*24] XU, TIAN-XING, HU, WENBO, LAI, YU-KUN, et al. “Texture-
GS: Disentangling the Geometry and Texture for 3D Gaussian Splatting
Editing”. Computer Vision — ECCV 2024: 18th European Conference,
Milan, Italy, September 29—October 4, 2024, Proceedings, Part XXV.
Milan, Italy: Springer-Verlag, 2024, 37-53. 1SBN: 978-3-031-72697-2.
DOI: 10.1007/978-3-031-72698-9_3. URL: https://doi.
org/10.1007/978-3-031-72698-9_3 3.

[YCH*24] YU, ZEHAO, CHEN, ANPEI, HUANG, BINBIN, et al. “Mip-
Splatting: Alias-free 3D Gaussian Splatting”. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2024, 19447-19456 2.

[YGS*24] YANG, Z1Y1, GAO, XINYU, SUN, YANG-TIAN, et al. “Spec-
Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian
Splatting”. Advances in Neural Information Processing Systems. Ed.
by GLOBERSON, A., MACKEY, L., BELGRAVE, D., et al. Vol. 37.
Curran Associates, Inc., 2024, 61192-61216. URL: https : / /
proceedings .neurips.cc/paper_files/paper/2024/
file / 708e0d691a22212e1e373dc8779cbe53 —~ Paper —
Conference.pdf 2.

[YHR*23] YARIV, LIOR, HEDMAN, PETER, REISER, CHRISTIAN, et
al. “BakedSDF: Meshing Neural SDFs for Real-Time View Synthe-
sis”. ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH ’23.
Los Angeles, CA, USA: Association for Computing Machinery, 2023.
ISBN: 9798400701597. pOI: 10.1145/3588432.3591536. URL:
https://doi.org/10.1145/3588432.3591536 2.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh colors”. ACM Transactions on Graphics (TOG) 29.2 (2010), 1-
112.

[YLT19] YUKSEL, CEM, LEFEBVRE, SYLVAIN, and TARINI, MARCO.
“Rethinking texture mapping”. Computer graphics forum. Vol. 38. 2.
Wiley Online Library. 2019, 535-551 2.

[YYTK21] Yu, ALEX, YE, VICKIE, TANCIK, MATTHEW, and
KANAZAWA, ANGJOO. “pixelNeRF: Neural Radiance Fields From One
or Few Images”. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2021, 4578-4587 2.

[ZIE*18] ZHANG, RICHARD, ISOLA, PHILLIP, EFROS, ALEXEI A., et al.
“The Unreasonable Effectiveness of Deep Features as a Perceptual Met-
ric”. Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). June 2018 8.

[ZRSK20] ZHANG, KAI, RIEGLER, GERNOT, SNAVELY, NOAH, and
KOLTUN, VLADLEN. “Nerf++: Analyzing and improving neural radi-
ance fields”. arXiv preprint arXiv:2010.07492 (2020) 2.

[ZTF*18] ZHOU, TINGHUI, TUCKER, RICHARD, FLYNN, JOHN, et al.
“Stereo magnification: learning view synthesis using multiplane im-
ages”. ACM Trans. Graph. 37.4 (July 2018). 1SSN: 0730-0301. DOI:
10.1145/3197517.3201323. URL: https://doi.org/10.
1145/3197517.3201323 2.

Appendix A: Implementation Details

In this section we provide some more details on the implementa-
tion.

The texture grids are initialized with a value of 0 on every chan-
nel and start optimizing after 500 iterations. To avoid running out
of memory and to avoid early overfitting, at 500 iterations, we set
t pr for each primivite so that their smallest axis is 8 texels wide, in
practice using the closest power of two value. The error calcula-
tion along with the adaptive texel size determination and resolution-
aware primitive management strategies run every 250 iterations,
until 25k iterations. The threshold 7y starts at 64 and is progres-
sively reduced to 32 within 7000 iterations. We implement down-
scaling and upscaling using pytorch’s interpolate function, with a
scale factor of 2, which translates to reductions or increases of the
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number of texels by a factor of 4, respectively. Upscale is done us-
ing nearest neighbour interpolation, so that we avoid changing the
appearance of the texture, that could disrupt that optimizer.

Appendix B: Hyperparameter Tuning

We provide here some intuition on their impact of hyperparameters
to the final model.

The quantile of the error E used in both texel size adaptation and
primitive management routines affects how aggressively they act
on the model. A lower quantile means more aggressive changes as
more primitives are potentially upscaled and/or split, while a higher
one has the opposite effect. T+ controls how many primitives are
split or not, contributing to the total number of primitives. Setting
this hyperparameter to a low number leads to a model with more
primitives, as it is easier for primitives to fall above the texture
resolution threshold. Finally, Awexwre controls the variance of the
texture maps, with higher values leading to smoother results, while
downscale parameter #45a affects how easily a texture map can get
downscaled, and thus having a simpler appearance. Both of these
hyperparameters have a direct effect on the number of texels. A low
Atexture and high z4¢ result in models with few texels per primitive,
while the opposite configuration leads to more texels being used
overall, increasing the number of parameters used.

Algorithm 1: Texel Size Adaptation and Primitive Man-
agement Routine

if iter mod 250 = O then
forall primitives do

Compute E;;

if texture resolution > 1 and E; in top 90% then
Split primitive along overflowing axes;

end

if topr > 1 and E; in top 90% then
Decrease texel size (Upscale);

end

else if £; < 14, then
Increase texel size (Downscale);

end

end
end

Note that since the number of primitives and the number of tex-
els are linked through our resolution-aware primitive management,
a change in one hyperparameter can have secondary, indirect ef-
fects. For example, encouraging the spawning of more primitives
by using a lower T/ can lead to fewer texels, since each primi-
tive represents a more localized and therefore simpler part of the
scene. This is demonstrated in the third experiment (Tab 3) with
Tanks&Temples. Our method is robust enough to operate with dif-
ferent ratios of primitive and texel budgets, converging to good re-
sults and automatically adjusting the allocation of model capacity.
In Tab. 4 we provide two additional models, one with more primi-
tives, as a result of a lower T;» and one with less texels, as a result
of a higher 7g;.
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DeepBlending
SSIM1T PSNR1T LPIPS| Points Texels Params FPS [SSIM?T PSNR1 LPIPS| Points Texels Params

Mip-Nerf-360

Tanks&Temples

FPS [SSIM1 PSNR?1 LPIPS| Points Texels Params FPS

Default 0.907 30.03 0.303 222K 21.6M 78.1IM
Higher 45| 0.903 29.90 0.324 196K 7.9M 35.4M
Lower 7, | 0.907 30.08 0.300 316K 22.0M 84.8M

70 | 0.795 27.00 0.263
67 | 0.791

2697 0.277

218K 46.6M 152.6M
233K 33.8M 115.1M
66 | 0.812 27.30 0.244 542K 46.3M 170.8M

67 | 0.835 23.43 0225 164K 10.4M 41.1M
60 | 0.829 23.40 0246 165K 6.6M 29.4M
52 10842 23.67 0217 281K 10.9M 49.3M

Table 4: We provide results for two extra models, trained with different T4, and T, to demonstrate the effect of these hyperparameters in the

final model.

Scene SSIM1T PSNR1TLPIPS| Points Texels Params FPS Mem Texels/
Primitive
drjohnson | 0.906 29.78 0.314 293K 20.8M 79.7M 77 318MB 70.9
playroom | 0.907 30.28 0.293 152K 22.5M 764M 64 305MB  147.7
bicycle 0.726 2422 0.254 186K 83.9M 262.7M 84 1050MB  450.5
bonsai 0.933 3146 0253 291K 9.0M 44.1M 35 176MB 30.8
counter 0.900 28.79 0.261 237K 124M 51.3M 41 205MB 52.2
flowers 0.531 20.22 0392 177K 61.3M 1945M 74 777TMB  345.6
garden 0.832 26.56 0.156 164K 51.7M 1647M 112 658MB  314.6
kitchen 0915 3090 0.173 288K 9.6M 459M 40 183MB 33.3
room 0.921 31.72 0272 212K 17.7M  65.7M 62 262MB 83.3
stump 0.756 26.09 0.273 228K 101.4M 317.6M 77 1270MB  444.5
treehill 0.641 23.01 0.335 180K 72.2M 2272M 77 908MB  398.8
train 0.795 21.38 0.279 172K 7.2M 31.8M 139 127MB 41.7
truck 0.875 2547 0.172 156K 13.7M 50.4M 103 201MB 87.3

Table 5: Per-scene metrics of our model, grouped by their dataset.
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