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(a) NDF sampling: 387 spp, 512.7 sec.

(b) vNDF sampling: 346 spp, 513.3 sec.

(c) Reference: 21k spp, 546 min.

Figure 1: Multiple renderings of a living-room scene showing several objects covered by different types of micrograins, using (a) NDF
sampling or (b) vNDF sampling, with (c) a reference rendering. The zoom insets highlight the impact of vNDF sampling with a noticeable
noise reduction mainly at grazing angles and in regions of inter-reflections, for near constant-time renderings.

Abstract

Importance sampling of visible normal distribution functions (VNDF) is a required ingredient for the efficient rendering of
microfacet-based materials. In this paper, we explain how to sample the vNDF for the micrograin material model [LRPB23],
which has been recently improved to handle height-normal correlations through a new Geometric Attenuation Factor
(GAF) [LRPB24], leading to a stronger impact on appearance compared to the earlier Smith approximation. To this end,
we make two contributions: we derive analytic expressions for the marginal and conditional cumulative distribution functions
(CDFs) of the vNDF; we provide efficient methods for inverting these CDF's based respectively on a 2D lookup table and on the

triangle-cut method [Hei20].

CCS Concepts
* Computing methodologies — Reflectance modeling;

1. Motivation and related work

Most physically-based rendering engines solve the rendering equa-
tion through Monte Carlo integration. This process produces noisy
images that can only be removed by computing more samples, or by
using denoisers (e.g., [SFA*24]) or more efficient importance sam-
pling algorithms. Even though denoisers are nowadays efficient, the
final image depends on the quality of the input image, which is
why the development of low variance sampling algorithms is still
required.

The sampling of Bidirectional Scattering Distribution Func-
tions (BSDF) has a significant impact on noise, which is miti-
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gated through importance sampling. For microfacet models [TR75,
WMLTO07], state-of-the-art BSDF sampling algorithms rely on
the sampling of the visible normal distribution function (vNDF)
[Hd14]. This method aims at avoiding the sampling of microfacet
normals that create invalid light paths. Naive methods only sample
the normal distribution function (NDF) whereby half of the sam-
pled normals at grazing angles are rejected, making this sampling
scheme inefficient.

Our goal in this paper is to introduce efficient importance sam-
pling for the micrograin formalism [LRPB23, LRPB24], used for
the rendering of porous layers. The current solution is limited to
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NDF importance sampling for both diffuse and specular micro-
grains. We extend their approach to vNDF importance sampling.

Multiple algorithms have been proposed to sample the vNDE.
Heitz et al. [Hd14] introduced an analytical inversion of the cu-
mulative VNDF based on fitted functions for the Trowbridge-Reitz
(GGX) distribution and on a piecewise inversion for the Beckmann
microfacet distribution [BS63]. Later, Jakob [Jak14] used an itera-
tive process based on Newton’s method for the Beckmann micro-
facet distribution. Heitz [Heil8] proposed a simpler approach rely-
ing on a geometric interpretation of the Trowbridge-Reitz (GGX)
NDF to generate microfacet normals (micronormals) in a unit trans-
formed space. This method has been recently improved by Dupuy
et al. [DB23] and Tokuyoshi et al. [TE24], who proposed algo-
rithms based on the sampling of a spherical cap. The vNDF of the
Student-T distribution has also been derived through an analytical
formulation [d’E23]. Other methods rely on tabulated data, such as
in the work of Lawrence et al. [LRR04] for mono-lobe distributions
and Chermain et al. [CSDD21] for multi-lobe distributions.

These methods are either based on a geometric construction
or on an inversion of the CDF which may be analytic, numeric
or tabulated. An alternative consists in using the Triangle Cut
method [Hei20], which allows for the analytic sampling of a PDF
without having to know the analytic expression of the correspond-
ing inverse CDF. The core idea of this method is to transform bi-
ased random samples generated from a "sufficiently good approx-
imation" P of the PDF P, into valid samples. All that is required
is the PDF P, its derivative P’, its CDF C, and a way to sample
the approximated PDF P. Since the vNDF is bivariate, this method
should be applied twice, once for the marginal CDF, and once for
the conditional CDF.

Unfortunately, the application of the Triangle-Cut method to the
micrograin model [LRPB24] is not straightforward. First and fore-
most, no analytical formula for the marginal and conditional CDFs
for the vNDF have been derived yet. Second, the handling of mask-
ing and shadowing is more involved due to dependencies between
heights and normals.

In this paper, we show how the VNDF of micrograin distribu-
tions may be importance-sampled (see Figure 1 for a comparison
to NDF sampling). We first provide a vNDF formula for porous
microsurfaces, which differs from non-porous cases such as GGX
distributions (Section 3.1). We then derive the exact marginal and
conditional CDFs for this vNDF using the shape-invariance prop-
erty of micrograin structures (Section 3.2). Our sampling routine
relies on a 2D look-up table for the importance sampling of the
zenithal angle 0 and on the Triangle-Cut method for the azimuthal
angle ¢ (Section 4). We next show that our method is more efficient
than previous methods, both for diffuse and specular micrograins
(Section 5).

2. Background

Lucas et al [LRPB23] introduced the micrograin-based BSDF
model for the rendering of porous layers such as dust, pollen or
spray paint. Micrograins define a stochastic geometry similarly to
microfacets or microflakes: they are opaque half-ellipsoids ran-
domly distributed on a surface plane. The appearance of the base

surface is arbitrary whereas micrograins may be either specular or
diffuse. Thanks to the shape-invariance property of micrograins,
the model has been further improved to handle anisotropy by Lu-
cas et al. [LRPB24], where they introduced an exact masking and
shadowing term — also called Geometric Attenuation Factor.

The micrograin BSDF model is defined as a light and view de-
pendent combination of a micrograin layer BRDF fs and an arbi-
trary bulk surface BSDF f3p:

f(i,0) =10 fs(i,0) + Vp(i,0) f5(i,0). )

The proportion of the surface plane covered by micrograins is con-
trolled by the filling factor ty. The bulk surface is only visible
through pores between micrograins, which is characterized by the
pore visibility term V(i,0).

The importance sampling for this BSDF is defined in the work of
Lucas et al. [LRPB24]. Since the base surface is arbitrary, only the
sampling of fs is considered. The micrograin layer BRDF consists
of a sum of diffuse and specular terms. Both involve the Normal
Distribution Function (NDF) D(m) and the Geometric Attenuation
Factor (GAF) G(i,0,/) with m the micronormal, / the height of
the micronormal, i and o respectively the ingoing and outgoing di-
rections. One important aspect of the micrograin model compared
to microfacet models is that the micrograin normal corresponds to
the normal of a point on an half-ellipsoid; hence the heights and
normals are coupled through 4 = cos 8,,. The NDF is defined as :

1(m)?

—pT_
1 1 1 pe prBy 1(m)2+1

D) = ot om BB 70 ((m)2+ D2

@)

where #(m) = tanOm Cos[;q"“ + Singf’“‘, while Bi and Bi are the

semi-axis lengths of the micrograiné (they provide controls sim-
ilar to roughness parameters). The filling factor is then given by
T

To=1-— ¢ "BB Ttis used as a control parameter since it is con-
veniently bounded between 0 and 1. However, the density p of mi-
crograins is easily retrieved by using p = M Note that
the division by T¢ in Equation 2 is necessary to normalize the NDF,
since micrograins do not cover the entire surface plane. This is fur-

ther explained in Section 3 and illustrated in Figure 4a.

The height-correlated GAF is defined by G(i,0,h) = x " (i-
n)x " (0-n)Gg(i,0,h), with " the Heaviside function and Gy
the bidirectional distant GAF. For importance sampling, we only
need the unidirectional distant GAF:

epr(l,h)

Gaist(1,h) = 3

= PomA)’

where G (i, &) is the projected area from direction i of an ellipsoid
cap, obtained by cutting a micrograin by a plane at height 4. We
refer the interested reader to the work of Lucas et al. [LRPB24] for
more details on the fully-correlated bidirectional GAF.

A key contribution of Lucas et al. [LRPB24] is to show that for
random micrograin distributions, the filling factor is generalized to:

(i h) = 1 — PO, 4)

Using this equation, the filling factor parameter T can be written
as 7(n,0) with n the geometric normal.
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Figure 2: (a) Geometric interpretation of the micrograin pro-
Jected area G and projected shadow Gs as provided by Lucas et
al. [LRPB24]. (b) Plot of 6(i,h) computed as the sum of o(n,h)
and os(i, h) for 6; = 60°. The projected shadow area Gy vanishes
for h > sin6;.

n geometric normal
m micronormal
To filling factor
P micrograin density
Bx.By anfractuosity
x vector X in the unit transformed space
D'(m’) | unit NDF
D} (m’) unit vNDF
Pl(i',0) unit marginal PDF
Cl(i',0) unit marginal CDF
Pl(i’,0]6) | unit conditional PDF
Cl(i,0|6) | unit conditional CDF
ol (i, n') unit micrograin projected area
' (i’,#’) | unit visible filling factor

Table 1: Notations for micrograin vNDF sampling.

The projected area of a micrograin o(i, #) is defined as:

o(n,h) if h > sin6;,
n

G(Lh):{ o(n,h) +os(i,h) otherwise, )

with o(n, /) the area of the intersection between the microgain
and the plane at height A, and os(n, k) the area of the micrograin
shadow, which exists only when /& < sin®;. For further informa-
tion on the definition and computation details of &, we refer the
interested readers to the work of Lucas et al. [LRPB24]. Figure 2
illustrates the geometric decomposition behind Equation 5, as well
as a plot for 8; = 60°.

The main notations regarding the importance sampling of micro-
grain normals are summarized in Table 1.
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3. Cumulative distribution functions

The micrograin distribution is shape-invariant. For simplicity, the
following derivations thus focus on a distribution of unit spheri-
cal micrograins. More general cases (including anisotropic distribu-
tions) are easily handled through space transformations. As shown
in Figure 3, anisotropic micrograin distributions can be transformed
into a unit space micrograin distribution.

3.1. Visible normal distribution function

Classically (e.g., [Heil4]), the visible density of a normal m is com-
puted from its density D(m) multiplied by the probability of being
visible from direction i, given by Gy (i,h). Then, the visible den-
sity is transformed by a factor % such that the distribution is
normalised based on the projected area of a microfacet in direction
i. In the micrograin model, the surface plane is not entirely filled.
Similarly to Equation 8, where the filling factor at normal incidence
T is used to normalize the distribution, pore visibility have to be
taken into account in the VNDF, which is achieved by:

T D(m)Gyjs (i,m) (i-m)
(i, 0) (i-n) '
Intuitively, the multiplication by Ty cancels the normalization in D,

while the division by 1(i,0) reintroduces the proper normalization
due to the filling factor from direction i.

Dy(i,m) = Q)

In order to express the VNDF in the unit transformed space,
we need to transform each of its terms in turn. First, as shown
by Heitz et al. [HDHN16] and further extended by Atanasov et
al. [AKDW22], the distribution of normals D(m) is defined from
a distribution D' (m’) in a unit transformed space by:

det (M) 1 /
D(m) = ———— m 7
where m’ is the transformed micronormal computed as m’ =

Hﬁiiz\l with M~! = diag(Bx,By, 1) the transformation that turns

half-spheres into micrograins of semi-axis By and By. To derive D',

we simply consider Bx = 1 and By = 1 in Equation 2, yielding:
—pmsin® 6, pefpcs‘ (n,n")

1, 1\ _ P€ _
D' (m') = T T 1 —e—po'(n0)’ ®)

where // = m’ - n is the height of the point on a micrograin with
normal m’ and Gl(v,h’) is the projected area of a unit spherical
cap of height 4’ from direction v.

As shown by Heitz [Heil4], the shadowing term can be com-
puted in the unit transformed space as long as the directions are also
transformed. Thus, we express Giy (i,m) in the unit transformed
space as:

Lo e—pcl(i"h’)

Gaig (I, m) = Gy (i, m') = pEpETrYOR ©
where i’ = % is the transformation of i in the unit transformed
space. Similarly to Gy;s, we rewrite the visible filling factor as:

1yst 1.1
ti,h) =t (i h)=1—¢ P T, (10)

Based on the relation between i and i/, we have (i-n) =
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Figure 3: Transformation of an anisotropic micrograin distribution (a) into of a unit space micrograin distribution (b). The micrograin
visibility is illustrated in (c) as a color gradient between visible (in blue) and not visible (in red) locations.

("-n) ||M . We show in supplemental material that (i-m) =
(' -m’)[|[M~ ][] M" m||. We may now rewrite Equation 6 as:

det(M) Dl(m,>G.]1i.vr(i/vml)<i/'ml> To 11
W7 i i) wwg (D

Dy(i,m) =

det(M .
= i DV '), (12)

where D$ — the visible normal distribution function in the unit
transformed space — is obtained by using Equations 8, 9 and 10:

pe—pﬁl(i/-ﬁ’) (' -m’)

1,41 /
D = .
V(l am ) 1 _e—PGI(i/70) <i/ ,n>

13)

Note that in Equation 13, the variation in ¢y, only comes from
<i’ -m’>. As we will see in Section 4, this observation is key to the
efficient sampling of the VNDF.

Common vNDF sampling routine are built upon the Smith GAF
assumptions, where the visibility is independent of the micronor-
mal thus simplifying the sampling procedure. In our case, the GAF
cannot be neglected as illustrated in Figure 3(c).

3.2. Marginal and Conditional Cumulative Distributions

In previous work [LRPB23, LRPB24], importance sampling of the
micrograin model was done on the NDF of Equation 2. In the case
of unit spherical micrograins (see Equation 8), the corresponding
CDF is given by:

1
L 1 — ¢— PO (ncos®) _ Tl(n,cose)
C(8)= | —e—pol@0) O "

which is the ratio between the visible filling factors at heights cos 6
and 0 respectively, both at normal incidence. This ratio has a ge-
ometric interpretation as seen in Figure 4a. Note that Equation 14
does not depend on any azimuthal micronormal angle ¢, since mi-
crograins are fully visible at normal incidence.

In contrast, the vNDF of Equation 13 does depend on a mi-
cronormal azimuthal angle, since micrograins are not fully visible
away from normal incidence. We thus need to compute a marginal
cumulative distribution function (mCDF) and its conditional dis-
tribution function (cCDF). These two functions, once inverted, are
then used to generate (8,¢) samples from the vNDF, first by sam-
pling 6 and then by sampling ¢ knowing 0 (see Section 4).

Marginal Cumulative Distribution. In order to compute the
mCDF, we first define the marginal probability density function:

P O ) = ST DL m’) sin Oy dpy (s)
—pcl(i’.cusem,) 6., .
- pi—ewcla’m S(TI’I;") JIR (i -m') dow,  (16)

where we show in the supplemental document that :

sin@py (™ ., _dGl(i’,cosem/)
) /7n<1 m') Aoy = 36 ) a7

By integrating the marginal density function using the equality

5‘ W' (x)e " Wdx = 1 — "X we retrieve the following mCDF:

0
CLE0) = [ P O ) By (18)
0

B ]_e—pcl(i/,cose) B Tl(i/,COSG) (19
T l—epd'@0) T 1l(i,0)

This generalizes Equation 14 to any direction i’. Figure 4b gives
a geometric interpretation of this generalization.

Conditional Cumulative Distribution. Considering 6 and assum-
ing without loss of generality that ¢;; = 0, we compute the follow-
ing conditional cumulative distribution function for ¢ € [—dg,d4]:

1/ D, (i’ ) sin@
CLi018)= 2, i gy" doms 0)
Using Equation 15 and Equation 13, most of the terms can be can-
celled out, thus the equation is simplified into:

J2 g, (110 )

Cli,0)0) = ,
V( ¢| ) f?lq,q<il'm,>d¢m’

@n

" tanOtan®y
the micrograin [LRPB24] (i.e., i’ - m’ = 0 when ¢y, = 40;), and
1’ is the vector of zenithal angle 8 and azimuthal angle ¢p,;.

where +¢, = farccos ( 1 ) bound the visible portion of

As detailed in Supplemental Material through a straightforward
derivation, C‘l, is given in analytical form:

C‘l, (i/7¢ | 9) _ %+ 1 sin¢sin8y sinB4¢cos B, cos (22)

2 sing, sinB; sinB-+¢, cos 6;/ cosO *
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Figure 4: Geometric interpretation of the Cumulative Distribution Function (CDF) given by the ratio of the visible filling factor at height h
over the visible filling factor at height 0 for both directions n (a) and i’ (b).

4. Importance sampling

We now look at how to sample 0 in Section 4.1; then knowing 6,
we explain how to sample ¢ in Section 4.2.

4.1. Sampling 6

By using a uniform random number &y between 0 and 1 and set-
ting &y = Cé (i,8), we may try to derive the inverse function of
Equation 19 to retrieve 6 sampled according to the vNDF. Sadly,
the inversion is soon halted at:

In (1 1 (i’,0)§0> o
— =0 (i 0), 23
U (%) o (i',cos9), (23)
since 6! cannot be inverted for an arbitrary 0. If we now write & =
In(1—7' (i’ 0)&)
T )
[0,6'(i,0)] range, the sampling of cos is then given by:

as a non-uniform random sample defined in the

o' (i,E) = coss, (24)
where 6! is the inverse projected area function.

According to Equation 5, we may invert ¢! in two different
ways, depending on the existence of a micrograin shadow:

e When there is no micrograin shadow (i.e., cos® > sin6;/) the
definition of ¢' is simplified to ¢! (i’,cos8) = c'(n,cos8) =
(1 —cos?0); hence 6~ ! is given in analytical form:

—1/s/ = )
E)=4/1—= 25
o '(,2) = 1- 2. @5)

o In the presence of a micrograin shadow, due to the complexity of
its area o, we did not find an analytical solution for its inverse.
One way to get around this issue is to store o 'intoa2D lookup
table. Note that this table has to be computed only once since it
does not depend on material parameters, only on = and 6;. The
use of a low-dimensional lookup table is possible here because
we reduced the problem of sampling 6 to the inversion of ¢!,
which by definition does not depend on material parameters. We
provide the lookup table in supplemental material as well as the
code to generate it.

The full sampling for the cosine of 0 is described in Listing 1.
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1 vec3 sample_cos_theta(veec3 i, float tau_0, float xi) {
2 float Xi = pixln(l-xixtau(i,0))/ln(l-tau_0);

3 if(Xi <= pixi.zxi.z) { // if no shadow

4 return sqrt(l-sigmaxinv_pi);

5 }

6 return inv_sigma_tab.get (i.z, Xi);

7 }

Listing 1: Sampling routine for cos®.

4.2. Sampling ¢ knowing 0

Ideally ¢ would be retrieved by inverting the conditional cumula-
tive distribution function. However we need an alternative solution
since C{ cannot be inverted. While 6 could be sampled through a
2D lookup table, ¢ requires a 3D lookup table since it also depends
on 0. We therefore opt for the triangle cut method to sample ¢.

The triangle cut method relies on an area-preserving 2D mapping
to transform biased samples from an approximated PDF, into valid
samples for the base PDF. To create samples with this method, we
need: the PDF (Eq. 26), its derivative (Eq. 27), its CDF (Eq. 22),
and an approximation of the PDF (Eq. 28) with a way to sample it.

The conditional probability density function is defined as the
derivative of Equation 22:

1/ _ 1 cos¢sin®; sin6+-cosO;s cosO
Py (l 0 | 9) ~ 2sind,sin Gi/l sin 0+¢, coslei/ cosB’ (26)

and its derivative with respect to ¢ is given by:

s/
dPV(l .0 | 9) _ 1 —sin¢sinB; sin® 27
do — 2 5sin¢,sinB; sinO+¢, cosb;/ cosO @n

As shown in Figure 5, we approximate P! with a tent function:
51 hy —ho
mmwm:—X—wum. (28)

q

The tent is centered on ¢ = 0, bounded by £¢g4, with sy = p! i, O |
0) and hy = ¢L — hg respectively the minimum and maximum
q
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height. The cumulative distribution function of Equation 28 is :

- o

clio10) = [ P00 €)oo 29)
1 hodg — 5
= §+¢ |¢|Té+hl , (30)

which properly integrates to 1 when ¢ = ¢4. Thus the inverse CDF
is given by:

e (28 R (1-28) — ) ife <4,
&en=9 ", . . |
= (hl - \/T(l —2&)) +h1> otherwise.
(3D
1 void sample_tent (float xi ,float phi_g, float hO,
2 floats phi, float& pdf)
3
4 float hl = 1./phi_g - hO0;
5 float hl_sqgr = hlxhl;
6 float hO_sgr = h0xhO;
7 phi = phi_g/ (h1-h0);
8 if(xi < 0.5)
9 phi *= sqgrt (2+hl_sqr*xi +h0_sqrx (1-2xxi))-hl;
10 else
11 phi *= hl -sqgrt ((hl-h0)*(1.-2.»x1)/phi_g + hl_sqr);
12 pdf = (hO-hl)/phi_q +abs (phi) +hl;

Listing 2: Sampling routine for Pl (i, ¢ | 0).

Two conditions have to be satisfied for the approximated func-
tion. First, the domains of definition should be identical between
P‘} and f"}, which is true by construction. Second, the mapping
should be bijective and preserve areas. On the right side of Fig-
ure 5, we show the transformed unit square grid with our triangle
cut mapping. We did not find any overlap that would have resulted
in purple lines crossing each others indicating surjections. On the
left side of Figure 5, the blue histogram always closely matches
the PDF (Eq. 26). Additional test cases are provided in the Sup-
plemental materials. Given our experiments, we consider that the
approximated function satisfies both conditions.

The validation of the sampling algorithm for ¢ is done empir-
ically by testing the entire range of input parameters. More vali-
dations are available in the supplemental material. The sampling
algorithm for ¢ is provided in Listing 3 where we used notations
from Listing 1 of the Triangle-Cut method paper [Hei20] .

The full sampling for m’ is described in Listing 4. Note that

since we assumed in Equation 22 that ¢ = 0, we need to rotate
m’ around the geometric normal n such that it is defined with re-
spect to i’ (as done in the last line).

5. Results

All results are generated with an 8-core, 3.60 GHz AMD Ryzen
7 3700X CPU except for Figure 1 generated with an 8-core,
2.30 GHz Intel Core i7-11800H CPU. Rendered images in Fig-
ures 6, 7, 8 and 9 are computed with a custom pathtracer using a
BRDF integrator and MIS integrator for Figure 1. We report RMSE
for tone-mapped images in all results. The sampling of the bulk

vec3 sample_phi(vee3 i, float cos_th, vec2 xi){

1

2 float sin_thi = sqrt(l - wi_u.z » wi_u.z);

3 float tan_thi = sin_thi / wi_u.z;

4 float sin_th = sqrt(l - cos_th = cos_th);

5 float tan_th = sin_th / cos_th;

6 float phg = pi;

7 if (sin_thi > cos_th)

8 phg = acos(-1. / (tan_thi x tan_th));

9 float cos_phg = cos(phq), sin_phg = sin(phq);
10 float cos_thi_th = cos_thi*cos_th;

11 float sin_thi_th = sin_thi*sin_th;

13 float cst = 1./(2.%(sin_phg*sin_thi_th+phg*cos_thi_th));
14 float h0 = cst«* (cos_phg+sin_thi_th+cos_thi_th);

15 float x_a, g_x_a;

16 sample_tent (xi.x, phg, hO, x_a, g_x_a);

18 float sin_ph = sin(x_a), cos_ph = cos(x_a);

19 float F_x_a = 0.5+cstx (sin_ph*sin_thi_th+x_axcos_thi_th);
20 float f_x_a = cst«(cos_phsin_thi_th+cos_thi_th);

21 float fprime_x_a = -cst*sin_ph+sin_thi_th;

22

23 return tricut_remove_bias( xi, x_a, f_x_a,

24 F_x_a, fprime_x_a, g_x_a);
25 }

Listing 3: Sampling routine for P\ i,0]0).

vec3 sample_m_unit (vee3 i, float tau_0, vee3 xi) {
float cos_th = sample_cos_theta(i, tau_0, xi.x);
float sin_th = sqgrt(l-cos_th*cos_th);
float phi = sample_phi(cos_th, xi.yz);

vec2 r = normalize (i.xy);
// apply rotation

1

2

3

4

5 vec3 m = veec3(cos(phi)*sin_th, sin(phi)=*sin_th, cos_th);
6

7

8 return vee3 (m.X*r.X+m.y*r.y, M.X*r.y-M.y*IL.x, M.z);

9

Listing 4: Sampling routine for the visible micronormal m’ in
the unit transformed space.

BRDF component impacts variance in these results, but since it is
kept unchanged between NDF and vNDF sampling, comparisons
remain valid.

Overall, as shown in Table 2, vNDF sampling is between 3 and
3.9 times slower than naive NDF sampling using a lookup table of
resolution 1024 x 1024. The vNDF sampling cost increases with
the angle of incidence both during the sampling of 6,, and ¢m.
When sampling Om the tabulated inversion method (line 6 in List-
ing 1) is invoked more frequently. Similarly for ¢m, the use of the
acos function (line 8 in Listing 3) is more frequent due to the pres-
ence of shadows. Cache misses can also account for some of the in-
creased costs due to random access to the lookup table. This implies
that the sampling cost increases with anfractuosity, as micrograins
cast larger shadows. Note that since the triangle cut method relies
on a 2D mapping, the sampling of ¢ is done using two random vari-
ables, leading to additional computation overhead.

Figure 6 shows the estimated variance as well as the efficiency
of the vNDF and NDF importance sampling routines (both aver-
aged over 300 realizations). Note that the estimated variance does
not converge to 0, but to the variance of the estimator. These met-
rics have been computed for multiple pixels from Figure 7. The
estimated variance is systematically below the previous sampling
routine. However, its cost also has to be considered with respect to
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Figure 5: Triangle-Cut validation for the generation of ¢ samples
using a tent function for the approximation of P} (i’ ,0|0). The sam-
pling histogram is shown in purple and matches the PDF in blue,
the approximation PDF is in red.

the entire rendering cost, which is why we also compare the two
methods in terms of efficiency (defined by m [Vea98)).
Efficiency is a relevant metric as it measures simultaneously how
well a Monte-Carlo estimator reduces noise (i.e., the variance) and
how fast it is to achieve that noise reduction. The blue curves of
Figure 6 show that, for a fixed number of samples (x-axis), our
method is consistently more efficient (e.g., at 100 spp, 245% more
efficient in (a), 126% more efficient in (b), 77% more efficient in
(c)), except for near normal incidence (d), where the VNDF impor-
tance sampling is slightly less efficient than regular NDF sampling
(e.g., at 100 spp, 0.15% less efficient). As detailed in supplemental
material, the efficiency of vNDF estimator is 30% more efficient

submitted to EUROGRAPHICS 2025.

0; 20° 40° 60° 80°
NDF (ns) 76.42 76.39 76.32 76.25
vNDF (ns) 226.81 | 25243 | 276.29 | 289.33
c0s Oy (ns) 86.25 107.0 | 126.36 | 136.87
O (nS) 107.91 | 112.89 | 1174 | 120.18
rotation (ns) 32.66 32.53 32.53 32.28
vNDF/NDF 297 33 3.62 3.79

Table 2: CPU mean sampling costs for the NDF and the vNDF
sampling (m) for multiple angles of incidence. Mean sampling
costs are given in nanosecond and averaged over 10 samples. We
split the vNDF sampling cost in three group corresponding to the
sampling of cos Oy given in Listing 1, the sampling of Oy given
in Listing 3 and additional computation cost required to rotate m’
around the geometric normal by ¢y given in Listing 4. Note that de-
spite a higher sampling cost, vNDF sampling yields a better overall
efficiency, as shown in Figure 6.

than the NDF estimator when applied to all pixels belonging to the
object.

Scenes in Figure 8 and 9 are made of a gray diffuse probe
(Kgz = 0.5) covered by micrograins and lit by a low-frequency en-
vironment map. When using green diffuse micrograins in Figure 8,
the noise is much less noticeable with our vNDF sampling routine
compared to NDF sampling at near constant rendering time, es-
pecially at grazing angles. In the same context, the noise is also
reduced for gold conductor micrograins as shown in Figure 9.
We also provide FLIP error images and Root-Mean Square Error
(RMSE) values computed with respect to the converged renders,
highlighting that our vNDF sampling routine achieves better con-
vergence with less noise at high roughness levels. The benefits of
our method are more noticeable at large filling factors, where a
greater number of samples are generated from the micrograin layer
rather than the base layer. More results are provided in supplemen-
tal material.

One of the main advantage of using the vNDF impor-
tance sampling is to have a bounded sample weight w =
W € [0,F(i-m)] , rather than an unbounded weight

= W € [0,400] in the case of the NDF impor-

tance sampling [WMLTO7]. This is particularly important for more
complex scenes with multiple light bounces, such as in Figures 1
or 7, to avoid fireflies due to uncontrolled light path contributions.
In this context, our sampling routine provides lower variance and
better results for equal-time renderings.

6. Discussion and Future Work

In this work, we provided the theorical foundations to sample the
porous micrograin VNDF. We used those to define the first vNDF
sampling routine for micrograins based on a 2D lookup table and
the Triangle-Cut method. Our sampling routine provides better ef-
ficiency and convergence rate than previous methods.

We did not find an analytical way to sample 6, even when using
the Triangle-Cut method. However, we derived all the necessary
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Figure 6: Comparisons of the estimated variance (blue) and ef-
ficiency (red, log scale) for different pixels from Figure 7 between
vNDF (solid) and NDF (dashed) sampling. Comparisons are done
over 1024 samples per pixel (spp). The estimated variance is av-
eraged over 300 realisations. Insets illustrate the selected pixels
[from one of the realizations at the gth spp (green vertical line). In
most cases, our sampling routine is more efficient at the exception
of sampling near normal incidence (d).

functions in the supplemental document such that the only missing
ingredient is a sufficiently good approximation of P} (i’,8) which
we have not found yet.

Performance-wise, our current sampling routine requires three
random numbers to sample 0 and ¢. Finding a way to reduce this
number would directly result in a gain in performance.

Finally, the main limitation of the micrograin BRDF is the lack
of multiple scattering. We consider that our work is a step toward
this goal. Indeed this is a required ingredient for a stochastic evalu-
ation of multiple scattering in microfacet models [HHdD16]. What
remains to be found is an efficient method for sampling the vNDF
at an arbitrary height and direction inside the micrograin structure.
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(a) NDF: 41 spp, 6015 ms (b) vVNDF: 38 spp, 6084 ms (c) Reference: 27k spp, 68 min

Figure 7: Multiple renderings of a statue covered by micrograins using (a) NDF sampling and (b) vNDF sampling, with (c) the refer-
ence. Insets highlights of the impact of the vNDF sampling with a noticeable noise reduction mainly and lower RMSE at grazing an-
gles for constant time renderings. The skull has a conductor base material covered by blue diffuse micrograins (19 = 0.4, p =31n =
[0.18299,0.42108,1.37340] and « = [3.4242,2.34590,1.77040]). The face is made of the same base material but is covered by densely
packed gold micrograins (19 = 0.9, p = 0.3, K; = [0.18299,0.42108,0.67340]).

79=0.1,p=0.1 79 =0.5,p =038 1 =0.5p=3 15=09,$=0.8

4020 ms 4025 ms | 4051 ms 4076 ms | 4021 ms 4002 ms [ 4035 ms 4013 ms
71 spp 66 spp @ 63 spp —-——_— 55 spp @ 58 spp - 49 spp | 59 spp 51 spp

rmse rmse f§ rmse rmse f§ rmse rmse rmse
0.023364 0.02405 | 0.03634 0.028695 [ 0.044694 0.032007 0.031175

Figure 8: Renderings with NDF sampling (red) and vNDF sampling (blue) at near constant time with green diffuse micrograins (K; =
[0.18299,0.67340,0.42108]) on top of a gray Lambertian base (K; = 0.5), lit by an environment map for different filling factors © and
anfractuosities B. Both the FLIP error images and RMSE metrics, computed with respect to converged renders, illustrate a reduction in noise
achieved by our method. This improvement is especially noticeable at grazing angles when compared to NDF sampling.
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T =0.1,=0.1 7 =0.5,=0.38 7 =05p=3 1% =09,=0..38
4053 ms 4001 ms
71 spp - 69 spp

4008 ms 4032 ms
78 spp 67 spp

4011 ms | 4047 ms 4059 ms
83 spp {75 spp 60 spp

rmse rmse
0.023518 0.023797 | 0.028201 0.025954

rmse rmse f§ rmse rmse
0.029212 0.02166 [ 0.035769 0.029735

Figure 9: Renderings with NDF sampling (red) and vNDF sampling (blue) at near constant time, with gold micrograins (M =
[0.18299,0.42108, 1.37340], x = [3.4242,2.34590,1.77040]) on top of a gray Lambertian base (K; = 0.5), lit by an environment map for
different filling factors T and anfractuosities 3. Both the FLIP error images and RMSE metrics, computed with respect to converged renders,
illustrate a reduction in noise with our method. This is especially noticeable at grazing angles when compared to NDF sampling.
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