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Figure 1: We evaluate design choices for implementing a fast pipeline to model appearance of 3D scene assets. Given the geometry of
the scene and an example image (left), we use generative image diffusion models and SVBRDF predictors to obtain multiview physically-
based material maps that are merged into a texture atlas for the scene, enabling rendering under arbitrary view and lighting (right, see
accompanying video for animated results). We evaluate how different single-image SVBRDF predictors — originally developed to process
photographs — perform in this generative context, both in terms of per-view accuracy and in terms of multiview coherence.

Abstract

Digital content creation is experiencing a profound change with the advent of deep generative models. For texturing, conditional
image generators now allow the synthesis of realistic RGB images of a 3D scene that align with the geometry of that scene.
For appearance modeling, SVBRDF prediction networks recover material parameters from RGB images. Combining these
technologies allows us to quickly generate SVBRDF maps for multiple views of a 3D scene, which can be merged to form
a SVBRDF texture atlas of that scene. In this paper, we analyze the challenges and opportunities for SVBRDF prediction
in the context of such a fast appearance modeling pipeline. On the one hand, single-view SVBRDF predictions might suffer
[from multiview incoherence and yield inconsistent texture atlases. On the other hand, generated RGB images, and the different
modalities on which they are conditioned, can provide additional information for SVBRDF estimation compared to photographs.
We compare neural architectures and conditions to identify designs that achieve high accuracy and coherence. We find that,
surprisingly, a standard UNet is competitive with more complex designs.
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1. Introduction

Modeling appearance for 3D scenes is one of the hardest steps in
3D content creation, requiring painstaking manual selection and
tweaking of material maps that encode the spatially-varying pa-
rameters of BRDFs (albedo, roughness, metallic). While genera-
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tive diffusion models have demonstrated potential for the related
tasks of image creation [SME21, HJA20] and texturing [RMA*23,
CSL*23], the very large datasets of images they require for train-
ing specialize them to the RGB domain. In parallel, the field of
single-image material estimation has matured to offer solutions for
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estimating SVBRDFs at scene scale [LSR*20, KSN24,ZDG*24].
We observe that image generators can be combined with mate-
rial estimators to form a fast pipeline for appearance modeling of
3D scenes (Figure 1). In this paper, we study the design choices
that underpin such a pipeline and compare different single-image
SVBRDF predictors when applied to multiple generated images of
a scene, seeking for both accurate per-view estimation and coher-
ence over multiple views, since these two properties are critical for
merging multiview predictions into an SVBRDF texture atlas.

Our study is motivated by recent work on object texturing using
2D diffusion models [RMA*23, CSL*23]. Combining these meth-
ods with single-image SVBRDF estimation, we design a pipeline
that takes as input the geometry of a 3D scene and outputs an
SVBRDF texture atlas for that scene, which we use to evaluate
the various design choices involved. This pipeline is controllable,
leveraging conditional image generation [ZRA23a] and image re-
projection and inpainting [ALF22] to iteratively generate multiple
views of the input scene conditioned on its geometry and user-
provided text or image prompts. Complementing multiview image
generation with per-view material estimation allows us to obtain
SVBRDF maps that we project onto a texture atlas to render the
scene from arbitrary viewpoints and under arbitrary lighting.

The main contribution of our work resides in the exploration of
various design choices for this material generation pipeline. Specif-
ically, we compare state-of-the-art SVBRDF estimation methods
in terms of both single-image accuracy and multiview coherence.
Furthermore, we assess whether SVBRDF prediction improves
when performed on deep features generated by the diffusion model
[LDP*23] rather than on its RGB output. We also study the benefit
of providing geometry information (depth and normal buffers) to
the material estimation module. Surprisingly, this analysis reveals
that a simple UNet that regresses SVBRDF maps is competitive
with more complex alternatives.

In summary, this paper introduces two contributions:

e An analysis of the design space of single-image SVBRDF esti-
mation for multiview material generation.

e Based on this analysis, a fast and controllable pipeline to gener-
ate SVBRDF textures over indoor scenes, combining generative
image models and SVBRDF predictors.

We will release code, model weights and data upon publication.

2. Related Work

Our work leverages recent diffusion models for semi-automated vi-
sual content creation. We refer readers to the recent tutorial by Mi-
tra et al. [MCP*24] and the report by Po et al. [PYG*24] for an
overview of this very active field, and focus our discussion on the
methods most related to our goal of generating SVBRDF textures
over 3D scenes.

3D asset texturing. Automatic texturing of existing 3D assets
has seen rapid progress with the introduction of high quality im-
age generation methods [RBL*22, RDN*22]. Two main directions
have been explored, based on either Score Distillation Sampling
(SDS) [PJBM23] or on multiview texturing. SDS-based methods

rely on the gradient provided by an image generative model to op-
timize a 3D representation of an object or scene geometry and/or
texture [CLL*24, DOW*24]. Early versions of these methods rely
on many diffusion steps of the generative model, often requiring
dozens of minutes, while the more recent FlashTex [DOW *24] pro-
posed a hybrid approach leveraging strong initialization and neu-
ral hashgrids for faster optimization, requiring only 6 minutes for
texturing an object. Still, SDS-based approaches remain slower
than multiview texturing methods [ZCQ*24, RMA*23, CSL*23,
ZPZ*24,CDG*24,PWMAZ24,7ZXS*25, WXM*24,LXLW24] that
generate views around an object conditioned on its geometry, and
project these images over the object to form a texture atlas. Such
methods have so far been mostly demonstrated on isolated objects
to create RGB textures. We build on these methods to design a
pipeline that works on 3D scenes, and we augment RGB image
generation with material prediction to produce SVBRDF atlases.

Several approaches also extended Score Distillation Sampling
[ZLX*24, YOPM24, YHK*24] and multiview texturing [ZPX*24,
CDG"24, FSW*24] to create materials over 3D objects. The for-
mer family of methods relies on expensive inverse rendering to op-
timize material parameters such that they produce images with a
target appearance. In contrast, the latter family relies on retrieval in
alibrary of procedural materials to assign SVBRDFs to segments in
the generated RGB images. We share the same goal of augmenting
generated images with material information, but we evaluate the
performance of SVBRDF prediction rather than material retrieval
in the context of multiview texturing. Furthermore, the above meth-
ods target isolated objects while we target extended indoor scenes
that exhibit significant occlusions across views. Recent concurrent
work [VKDN*24, HWLW24] generate multi-view material maps
but also target isolated objects.

Finally, several methods have been proposed to automatically
generate 3D objects or scenes, including their geometry and
textures, from a single image or text prompt. Such methods
rely on SDS-based optimization of shape and colors [PJBM23,
LGT*23], on retrieval from datasets of 3D objects and materi-
als [YLH*23], on iterative generation of multiview-consistent im-
ages/depth/material maps [TZC*23,HCO*23,LWH*23,ZWZ*24],
or on volumetric generation [HZG*23, WZB*24]. While we focus
on the different scenario of applying materials on an existing scene,
we share their motivation for providing high-level controls on con-
tent creation, and some of their strategies for iterative generation of
multiview-consistent images [HCO*23].

Predicting SVBRDFs. Predicting reflectance of surfaces from
photograph(s) has been a long-standing challenge in Computer
Graphics and Vision. When many (consistent) views are avail-
able, inverse rendering aims at reconstructing material properties
through (gradient-based) optimization [JSR*22, LADL18, RHO1].
Alternatively, deep neural networks have been used to predict
material parameters for acquisition with limited signal, or when
the signal is not guaranteed to be consistent across views — as
is our case with generated images. Various neural methods were
proposed for acquisition on flat surfaces [DAD*18, DAD*19,
GSH*20,VMR*23], objects [VBP*24,LXR* 18,DLG21,HGY *24]
and, more recently, entire scenes from a single view [LSR*20,
KSN24,ZDG*24, WTC*25] or multiple views [CLP*23,LGL"*25,
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Figure 2: Overview of the SVBRDF texturing pipeline. We first generate a sequence of views of the scene using an image diffusion model
conditioned on depth and contours (Step 1). While the first view is generated entirely (top left), subsequent views are filled in by re-projecting
existing views and inpainting holes revealed by disocclusions (bottom left). We then estimate SVBRDF maps for each view (Step 2), and
merge them to form a texture atlas for the scene, enabling physically-based rendering with diverse materials (Step 3).

HWH*24]. We focus on single-image methods due to the lack
of a public dataset with paired renderings, SVBRDF maps, and
cameras from multiple views. The decomposition of scene re-
flectance and geometry has received significant attention in recent
years, leveraging the progress of generative models through fine-
tuning [KSN24,ZDG*24] or through manipulation and analysis of
their internal features [CVW23, BMHF23,ZRL*23,LDW™*24]. A
key aspect of our work is to evaluate these different approaches in
the context of material design for 3D scenes and to compare them in
terms of decomposition accuracy and consistency between views.

3. A Multiview Pipeline for Fast Appearance Modeling of 3D
Scenes

We first describe a fast pipeline allowing users to apply materials
over the 3D geometry of an untextured indoor scene by specifying
high-level design goals in the form of text prompts or example im-
ages. This pipeline will allow us to investigate the design choices
required for this task.

We illustrate this pipeline in Figure 2. Most of its compo-
nents operate in image space, benefiting from the complementary
strengths of diffusion models for controllable generation of mul-
tiple views of the scene, SVBRDF predictors for material estima-
tion within each view, and multiview reprojection for texturing the
scene with the obtained SVBRDF maps. Importantly, each opera-
tion is fast to compute, allowing to generate materials over a scene
in minutes. We describe the first and third steps of this pipeline —
multiview image generation and multiview texturing — before dis-
cussing and evaluating important design choices for SVBRDF pre-
diction in Section 4.

3.1. Multiview Image Generation

The pipeline that underpins our study takes as input the geometry
of an indoor 3D scene and a sequence of viewpoints that cover that
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scene well. For all the results in the paper, we use five viewpoints.
We assume the first view is provided by the user. We generate the
other four views by an offset of 25 degrees in latitude and longi-
tude. The first step consists in generating multiview-consistent im-
ages of that scene observed from the given viewpoints. Inspired by
previous work on generative single-object texturing and novel view
synthesis [RMA*23,CSL*23,PWMAZ24,KSV*23,HCO*23], we
create consistent images of the scene by alternating image genera-
tion, image reprojection, and image inpainting (Figure 3).

Image generation. We initiate the process with the first viewpoint,
from which we render depth and contour maps that we use to con-
dition an image generative model — ControlNet with a Stable Diffu-
sion backbone [ZRA23a] — to obtain a photorealistic image aligned
with the scene geometry. We optionally allow users to further con-
trol the content of the generated image by providing a text prompt,
or an example image that contains representative materials to be
generated. In the case where an example image is provided, we use
the IP-Adapter approach [YZL*23] to obtain a text embedding for
that image, which can then be used as a condition for Stable Ditfu-
sion. We combine all these conditions using the Multi-ControlNet
pipeline from the Diffuser library [vVPPL*22].

We next project the generated image from the first viewpoint
into the second one using their respective cameras and depth maps,
which ensures that the portions of the scene observed in both view-
points are consistent. We hypothesize that while image reprojec-
tion only provides approximate placement of highlights, this ap-
proximation provides sufficient visual cues to estimate intrinsic ap-
pearance maps (metallic, roughness, etc.) because these quantities
depend more on the sharpness and contrast of highlights than on
their precise position. Our experiments demonstrate that, while po-
tentially counter-intuitive, the combination of simple reprojection
and per-view SVBRDF estimation can suffice to produce coherent
SVBRDFs, which can in turn be aggregated into a single texture
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Figure 3: We progressively generate multiple coherent views of the
scene by iterating over image generation conditioned on geometry,
image reprojection into a new viewpoint, and image inpainting.

atlas for physically-based rendering of specular and glossy reflec-
tions.

However, reprojection leaves holes at disocclusions, especially
in cluttered indoor scenes where visibility changes significantly be-
tween viewpoints. We fill in these holes using image inpainting, as
described in the next paragraph. We repeat the reprojection and in-
painting steps to progressively populate all viewpoints, using all
images generated so far to create the image of the next viewpoint.

Image inpainting. Reprojection provides us with a partially-
covered image in the new viewpoint, as well as an occlusion mask
indicating the parts to be filled-in. We feed this information to a
ControlNet trained to perform inpainting [ZRA23b], along with
the same text prompt used to generate the first image, if any. We
also provide a text embedding of the first generated image, which
helps in generating similar content in inpainted regions. We further
improve alignment of the inpainted image to the underlying scene
geometry by also conditioning ControlNet with depth and contour
maps, as done when generating the image of the first viewpoint. In
our experiments, the holes to inpaint cover up to 25% of the image.

3.2. Multiview Texturing

The above iterative procedure generates one image for each input
viewpoint while ensuring that the parts seen from several view-
points are consistent. Feeding each such image to a SVBRDF pre-
dictor gives material parameter maps for all viewpoints, as de-
scribed in the next section. The last step of our pipeline consists in
merging this image-space information into a common, scene-space
texture atlas.

In contrast to related work on object texturing that populates the
texture atlas incrementally [RMA*23, CSL*23, PWMAZ24], we
take inspiration from photogrammetry where all photographs are
merged at once to select the best observations available for each
texel. While several algorithms exist to perform this task, we use
the one implemented in MeshLab [CCCSO08] for its simplicity and
speed. This method takes as input the 3D mesh of the scene, its
texture coordinates, and the multiple images of the scene with their
respective camera parameters. It then assigns values to each texel
by blending its observations according to geometric and color cri-
teria. Since the SVBRDF maps we want to merge contain different
quantities (albedo, roughness, metallic), we apply the method on
each quantity independently.

4. Evaluating SVBRDF Predictors for Multiview Appearance
Modeling

The above pipeline for generative material modeling requires ex-
tracting material maps from multiple images created via condi-
tional image diffusion. This material estimation needs to be both
accurate and consistent to facilitate the subsequent texture merging
process. We now describe the various design choices that emerge
from this setup, and analyze the impact of these choices.

4.1. A Design Space of SVBRDF Predictors

Scope of the study. The pipeline we have described in the pre-
vious section generates multiple photorealistic images of the 3D
scene. A first solution that comes to mind to estimate the mate-
rials in that scene is physically-based inverse rendering, i.e. op-
timizing for material parameters that best reproduce the multiple
images [ALKN19,NDDJK21, WZY *23]. However, this solution is
not practical because even though the pipeline generates plausible
images, the lighting conditions are unknown, and might even be
inconsistent due to the simple reprojection employed to iteratively
generate the views, preventing the use of physically-based inverse
rendering.

These considerations motivate our choice of focusing our
study on single-view SVBRDF prediction methods, and assessing
whether these methods produce material parameters of sufficient
quality and coherence to be combined into a single texture atlas.
Specifically, we conducted experiments on two key dimensions of
the design space of SVBRDF predictors: the choice of neural ar-
chitecture, and the choice of data channels provided as input to that
architecture, as summarized in Figure 4. For each of these choices,
we evaluate the per-view accuracy of the predicted SVBRDFs, as
well as their coherence across views.

Choice of architecture. Several neural network architectures have
been proposed over the past few years to predict SVBRDF maps
from a single image of an indoor scene. Early work relies on con-
volutional neural networks to predict material maps from RGB im-
ages, trained on paired datasets of images and ground-truth ma-
terial maps to minimize regression (MAE, MSE) and perceptual
losses (VGG, LPIPS). We evaluate Zhu et al.’s MGNet [ZLH*22]
as arepresentative architecture of this family, using their model pre-
trained on their InteriorVerse dataset, which we use for all compar-
isons. We also evaluate the performance of a standard UNet trained
on the same dataset, which we call the UNet-RGB architecture.

More recently, generative models, and in particular diffusion
models, have been repurposed for SVBRDF estimation. A key dif-
ference with regression-based methods is that generative models
treat the input RGB image as guidance within a stochastic genera-
tion process that seeks to capture the distribution of SVBRDF maps
that best explain the image. As a result, these methods can output
multiple plausible interpretations of a given input. We evaluate the
methods of Kocsis et al. [KSN24] and Zeng et al. [ZDG*24] as
representative works in this category, using their model pre-trained
on InteriorVerse. We follow the recommendations of Kocsis et al.
and average 10 predictions of their model to form their output, un-
less specified otherwise. Finally, we also evaluate the single-step
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Figure 4: SVBRDF predictors. We evaluate several architectures for SYBRDF predictions, taking as input an RGB image and optional

geometry buffers (dotted lines).

approach GenPercept by Xu et al. [XGL*25], which repurposes
a diffusion model to perform dense perception tasks deterministi-
cally. We trained their method on InteriorVerse for our evaluation.

Choice of input channels. The architectures discussed above were
developed to take photographs only as input. Yet, our target appli-
cation — generative material design for 3D scenes — provides us
with additional information, such as the scene geometry, that can
help the SVBRDF predictor. We have experimented with several
choices of additional information for the UNet and the GenPercept
architectures that we retrain on InteriorVerse.

First, we can complement the RGB input with depth and normal
maps to provide the neural networks with geometric information
about the 3D scene, which we expect to help in recovering sharper
maps along surface discontinuities, and in distinguishing shading
from albedo variations.

Second, since the RGB images we take as input are the result
of a generative process, we can complement each image with deep
activation features extracted from the neural network that gener-
ated that image. Indeed, recent studies suggest that the feature
maps produced by generative models of images carry semantic in-
formation about the content of the images they generate, allow-
ing the recovery of semantic labels [BRV*21,ZLG"21], keypoint
correspondences [LDP*23, PTL*23, HSM*24], depth, normal and
albedo [CVW23, BMHF23, ZRL*23]. To evaluate whether such
deep features benefit SVBRDF prediction, we follow the approach
of Luo et al. [LDW*24,LDP*23] to extract so-called hyperfeatures
from the denoising UNet of Stable Diffusion used to generate the
first view or of the one used to inpaint the other views. We then
concatenate these hyperfeatures with the feature maps of the bot-
tleneck of the SVBRDF prediction UNet. We call this the UNet-HF
(Hyperfeatures) architecture. While the Stable Diffusion activation
features (which aggregate into a hyperfeatures tensor) are readily
available for the images generated by the pipeline, they are not pro-
vided for the images of the InteriorVerse dataset we use for training.
We solve this by performing inverse DDIM sampling [SME21] to
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“invert” each training image using Stable Diffusion, providing us
with the UNet activation features corresponding to that image.

Implementation details. We base our implementation of the
UNet-RGB architecture on the denoising diffusion UNet from
the Diffusers library [VPPL*22], and our implementation of the
UNet-HF architecture on the Readout Guidance [LDW *24] code-
base for extracting hyperfeatures from Stable Diffusion’s denois-
ing UNet, using 11 timesteps and a projection dimension of 384 (as
in [LDP*23]). For single-step diffusion, we follow the implemen-
tation of GenPercept provided by Xu et al. [XGL*25]. We provide
additional details for each architecture in supplementary.

4.2. Accuracy and Coherence of SVBRDF Predictors

We investigate two main dimensions in the design space of
SVBRDF generations for 3D scenes — the choice of neural archi-
tecture and the effect of different inputs for SVBRDF estimation.
For each dimension, we evaluate the accuracy of SVBRDF predic-
tions for single images as well as the coherence of the predictions
over multiple views. We provide both quantitative and qualitative
evaluation of both criteria.

Training data and procedure. We use the pre-trained models pro-
vided by Zhu et al. [ZLH"22], Kocsis et al. [KSN24] and Zeng
et al. [ZDG™*24], which have all been trained on the InteriorVerse
dataset [ZLH*22]. In addition, we also train the UNet models and
the single-step diffusion model [XGL*25] on InteriorVerse.

We conduct our evaluation on the InteriorVerse test dataset be-
cause it is the only public dataset containing the BRDF maps we
are interested in. The dataset provides viewspace BRDF maps for
basecolor (called "albedo"), metallic and roughness. The basecolor
is modulated by the metallic, and encodes both diffuse albedo and
specular color, as commonly used in physically-based pipelines
[BS12]. As noted in RGB<+X [ZDG*24] the rendering images of
InteriorVerse contain Monte-Carlo noise, which we denoise using
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Figure 5: Qualitative results of SVBRDF estimation for a test set image from Interiorverse, with closeups on the right. tIndicates training
without normals and depth maps as input. Note how different methods provide a different tradeoff between accuracy, sharpness, and fine
details.
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BASECOLOR ROUGHNESS METALLIC
PSNR1 SSIM+ LPIPS| | PSNRT SSIM1 LPIPS] | PSNR1+ SSIM+ LPIPS |
Zhu2022 [ZLH*22] 17.11 0.668 0.229 13.38 0.348 0.422 14.93 0.676 0.419
Kocsis2024 [KSN24] 19.83 0.743 0.163 14.83 0.469 0.337 17.95 0.805 0.327
RGB<+»X [ZDG*24] 20.35 0.763 0.131 11.38 0.220 0.401 6.68 -0.019 0.604
UNet-RGB' 20.26 0.772 0.126 16.92 0.642 0.265 19.52 0.834 0.274
UNet-RGB 21.66 0.803 0.109 17.73 0.672 0.241 20.13 0.843 0.256
UNet-HF' 20.74 0.775 0.139 17.20 0.642 0.269 19.82 0.830 0.280
UNet-HF 21.25 0.784 0.134 17.27 0.626 0.265 19.99 0.830 0.276
GenPelrcethr 22.94 0.799 0.107 19.57 0.701 0.201 20.97 0.850 0.256
GenPercept 22.67 0.793 0.113 19.26 0.689 0.202 20.83 0.847 0.254

Table 1: Quantitative analysis of SVBRDF estimation. The metrics are computed over the InteriorVerse test dataset (2633 images), color
coded between Worst and best.  Indicates training without normals and depth maps as input.

our loss L1 loss

groundtruth

”

Figure 6: When training using the FLIP loss colorspace
[ANA*20], the basecolor converges faster to the right hue and lu-
minance than when using a simple L1 loss in RGB colorspace. Note
in particular the hue of the wall and floor. The results are shown af-
ter only a few epochs of training to emphasize differences.

Mitsuba’s Optix integration. We crop each image to get a square
which we resize to 5122 during training. Additionally, some images
of the InteriorVerse dataset contain very few objects or very little
detail, and are sometimes rendered from cameras pointing outside
the scene. We remove such data (4% of the dataset) by removing
files below 2MB. We will release this curated dataset upon publi-
cation, together with the code and network weights.

Regarding the training procedure of these predictors, we use a
combination of L-PIPS loss [ZIE*18] £"%¢ and L1 loss computed
over the perceptual color space proposed by ALIP [ANA*20] Ef Lip
for the basecolor, which we found to behave better than the L1 loss
in RGB space (see Fig. 6). We use a regular L1 loss for both metal-
lic and roughness. The training loss is thus the sum of three groups
of terms corresponding to basecolor, metallic and roughness, re-
spectively weighted by oy, O, O

0 (LEHP £ 0y £Y88) O - L1 + 00 (L1 +Ar - £78), (1)

where o, = 1.0, o, = 2.0, o = 0.5, and A, = A, = 0.5, which we
empirically find to work best.

We train each estimator with a maximum budget of 8 days using
4 GPUs (either RTX 6000s or RTX 8000s). We train all networks
with an Adam optimizer and a learning rate of 10e-5.
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Single-view prediction. We first study how the different architec-
tures and inputs perform on a single-image prediction task.

We run each method on the InteriorVerse test set, composed
of 2633 HDR images, which we process with the tone-mapping
and normalization algorithms recommended by the authors of each
method. As suggested by [KSN24], we lift the luminance ambi-
guity in the estimation by reporting scale-invariant metrics for the
basecolor. This is computed by normalizing the output of each
method by the ratio between the ground-truth and the predicted
per-channel means. We report standard quantitative error metrics
(PSNR, SSIM and LPIPS) in Tab. 1 and we provide representative
qualitative comparisons in Fig. 5. We provide additional qualitative
results in supplemental materials.

The simple UNet-RGB with geometry cues performs surpris-
ingly well on all metrics, being only outperformed by GenPercept
(irrespectively of the use of additional geometric information). The
UNet-HF with geometry cues is placed third. From visual inspec-
tion (Fig. 5), we see that the method of Kocsis et al. [KSN24] and
RGB++X [ZDG"24] create smooth, piecewise-constant maps, as is
the case for ground truth SVBRDFs. However, these piecewise con-
stant maps are not always accurate, in particular for roughness and
metallic maps where different objects made of the same materials
are assigned different — often erroneous — values, as is the case for
the insets in the corresponding rows of Fig. 5 where the roughness
and metallic maps should be uniform over the wall rather than be-
ing correlated with the basecolor. MGNet [ZLH*22] tends to pro-
duce splotchy results in all maps, compromising quality. Finally,
GenPercept [XGL*25] is the most accurate according to numerical
metrics (Tab. 1), yet struggles to recover fine details, as is the case
of the thin structures of the lamp and wall panel in Fig. 5. Overall,
each method provides different tradeoffs between sharpness and
accuracy, as illustrated by additional examples in the supplemental
material. The use of additional geometric inputs tends to improve
the overall accuracy of the predictors.

Multi-view consistency. Since our goal is to generate SVBRDF
maps to texture a 3D scene, multi-view consistency is important
to avoid artifacts in the merged texture atlas. Even if the SVBRDF
maps of each image are plausible, if they are not consistent, seams
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Consistency |,

Methods Basecolor Roughness Metallic Runtime
[KSN24]XT 0.281 0.227 0.219 ~6s
[KSN24]*10 | 0.124 0.100 0.104 | 60.8+1.3s
[ZDG*24] 0.155 0.247 0.542 11.1+0.2s
[ZLH"22] 0.073 0.100 0.105 41+£5ms

UNet-RGB 0.064 0.078 0.060 36+ 1 ms

UNet-RGB' 0.089 0.117 0.077 36+2 ms

UNet-HF 0.056 0.050 0.041 335+34 ms

UNet-HF' 0.060 0.064 0.048 409+ 12 ms

GenPercept 0.072 0.104 0.069 69 +4 ms

GenPerceptT 0.075 0.108 0.069 74£2 ms

Table 2: Consistency analysis. Results are color coded between
Worst and best. Tindicates training without normals and depth
maps as input. The runtime is reported on an RTX 3090. For Koc-
sis et al., *N indicates the number of predictions that are averaged,
since this stochastic method is capable of sampling multiple predic-
tions for a given input. Note how feeding diffusion hyperfeatures
to the UNet architecture greatly improves multi-view consistency
compared to RGB input, especially for roughness and metallic.

S
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Figure 7: We show the Stop-the-Pop [RSP*24] metric along a
video of the predicted maps for the synthetic scene ’kitchen-005’,
for the basecolor, on each method. UNet-HF is the most consistent
across views (orange and yellow).

and blur may appear in the texture-space material maps, which may
negatively affect rendering quality. Fig. 8 and 9 point to such seams
in the merged texture atlas obtained with [KSN24] and [ZDG*24].

For a qualitative evaluation of multi-view consistency, we find
that short video segments of a fly through of the maps using differ-
ent methods are particularly informative. We include such videos
in our supplemental materials. These show that UNet-HF results
in the lowest level of flickering. We evaluate this quantitatively us-
ing the flickering metric proposed by Stop-the-Pop [RSP*24] that
warps each frame of the video to its subsequent frame and com-
putes the ALIP [ANA*20] difference between the two images. As
we have geometry and camera information, we use pixel-perfect
depth maps and cameras for the warping, instead of an optical flow
estimation as in Stop-the-Pop. We report in Tab. 2 the sum of ILIP
metrics over 5 synthetic scenes that are not part of InteriorVerse,
with 100 views each, warping only successive frames to evaluate
short range flickering. We visualize the metric over time for a given
scene in Fig. 7.

—— UNet-RGBY

GenPerceptf

— Kocsis24 x10
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This experiment reveals that the UNet-HF provides the best
multi-view consistency overall. A possible interpretation of this re-
sult is that the deep features extracted from the image generation
models have little dependence on viewpoint, yielding similar mate-
rial values for objects seen in different views. Note also that aver-
aging 10 predictions increases coherence for the method by Kocsis
et al. [KSN24], but in our experiments we noticed that this tends to
reduce overall contrast and details. The runtime column of Table 2
illustrates that regression models (bottom section) are much faster
than generative models (top section) because they only need a sin-
gle inference through the architecture (compared to 50 inferences
for diffusion models). The UNet-HF architecture accumulates acti-
vation features during RGB image generation, and hence requires
only a single inference pass through the SVBRDF estimator. As
for accuracy, providing additional geometric inputs to the predic-
tors consistently improves the consistency of the estimations.

Runtime analysis. Table 2 additionally provides the runtime of
each predictor, generative methods on top and regression meth-
ods in the bottom. We see that the former [KSN24,ZDG*24] have
runtimes of at least 6 seconds, making them unsuitable for a fast,
interactive texturing pipeline. This is due to multiple factors: the
sampling strategy which requires many iterative steps, the inde-
pendent predictions of each channel for the method by Zeng et
al. [ZDG*24], and the averaging of multiple outputs for Kocsis
et al. [KSN24]. On the other hand, regression-based methods (in
the bottom part) only require a single inference making them more
suitable for a fast texturing pipeline.

5. Easy and Powerful 3D Scene Appearance Modeling

We now provide results of the multiview texturing pipeline de-
scribed in Section 3, which leverages image generation and
SVBRDF estimation for appearance modeling of 3D scenes. We
adopted the UNet-HF SVBRDF predictor to produce these results
since this is the design that achieves the highest multi-view consis-
tency with competitive single-view accuracy.

Implementation. We based our implementation of multi-view im-
age generation on the Stable Diffusion ControlNet and Control-
Net Inpainting pipelines from the Diffusers repository [vPPL*22].
Specifically, we use Stable Diffusion v1.5 and the associated Con-
trolNets (revision v1.1) [ZRA23b] for contour, depth, and inpaint-
ing. We generate images at 7687 resolution to obtain fine details in
the textures.

Results. Figures 11 , 12 and 13 show three scenes and different
results conditioned either by text or image prompts. The generated
SVBRDF atlases exhibit different materials, with a specular min-
eral floor and a rough carpet in Fig. 11. A golden vase and a dark
plastic vase are also displayed. Fig. 12 shows white, blue, and black
marble, and thin golden structures, a stone wall, and copper furni-
ture. Finally, Fig. 13 shows a rough rug-like material and a specular
white mineral for the floor. Additional texturing results are shown
in the supplementary materials (file and video).

Being fast and image-based, this pipeline provides a convenient
and easy way to design and iterate over the relightable appearance

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Figure 8: Qualitative comparison of single-image SVBRDF estimations merged in a texture atlas. On the left we show the input of three
SVBRDF estimation techniques (Kocsis 2024, RGB2X, UNet-HF). The top row shows the SVBRDf predictions produced for each image.
While Kocsis 2024 and RGB2X produce sharp, piecewise constant maps, these maps are not consistent across views, resulting in visible
seams when merged in a texture atlas and rendered from a novel viewpoint (bottom row, red arrows). The UNet-HF architecture achieves

higher consistency across views, which reduces the presence of seams (right).

of an untextured 3D scene geometry. Since the first RGB image
is generated in a few seconds, the user can easily iterate over the
appearance of the first view. Similarly, if the user is not satisfied
by the inpainting in a view, they can regenerate that view (though
we did not use this feature in our results). All relit results shown
are computed from the final merged atlas, not from a single-view
estimate. Note that the viewpoint used for relighting are different
from the five views used for generation. We include further results
that illustrate the benefits of our appearance modeling pipeline in
our supplemental video.

6. Limitations and Future Work

We base our study on the InteriorVerse dataset which, while be-
ing the only one available, has limitations in terms of diversity and
precision of the ground truth PBR materials. It contains a small
number of materials for floor, walls and furniture, and metallic ob-
jects are rare. In addition the distributions of roughness and metallic
values are uneven (99% of the roughness values are below 0.8). A
richer training dataset should result in improved variety of gener-
ated materials.

We focused our study on single-image scene material estima-
tion methods, which can still suffer from inconsistencies across
viewpoints despite our careful choice of architecture and inputs.
Multi-view SVBRDF extraction from photographs has been ex-
plored [DAD* 19, CLP*23], but the generated images we are deal-

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

ing with present illumination inconsistencies that might challenge
such approaches.

We demonstrated the complementarity of image generation and
material prediction by implementing a fast pipeline for appearance
modeling of 3D scenes. This pipeline suffers from a few limita-
tions. First, the reprojection may cause artifacts in the presence of
thin objects and small geometry, as illustrated in Fig. 10. Second,
as we rely on a diffusion model for appearance generation, and
deep networks for material estimation, the expressivity and pre-
cision of our pipeline is limited by the quality of the models and
training datasets. For example, we noticed that image inpainting
sometimes produces visible seams, which might remain visible in
the merged texture atlas. Finally, using our prototype, a few itera-
tions of prompt engineering can be required to achieve the desired
appearance, which could be improved with the better prompt ad-
herence of recent diffusion models [PEL*23, PX22].

7. Conclusion

In this paper we study the complementarity of generative image
models and deep material predictors by evaluating the different
choices required in a pipeline for designing materials over 3D
scenes. This pipeline takes the untextured geometry of a 3D scene
as input and lets the designer provide additional conditions (e.g.
text or image prompts). From this input, the pipeline quickly gen-
erates an SVBRDF texture atlas compatible with physically-based
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Figure 9: Rendered textured scenes using different SVBRDF estimators. [ZLH* 22] produces sharp but splotchy maps, [KSN24] generates
monotonic maps lacking details, while [ZDG*24] generates blurry maps with visible seams due to the inconsistent estimations. UNet-RGB,
UNet-HF and GenPercept produce more contrasted results with reduced seams artifacts, providing tradeoffs in terms of sharpness, colors

and consistency. Please see the accompanying video for an animated result.

lines depth generated image

| |
Figure 10: Thin objects may cause artifacts due to reprojection, as

shown in the right part of the wooden fork, which does not generate
clean material and geometry.

rendering. This simple pipeline enables rapid design iterations, and
will directly benefit from the rapid progress in image generation
control and quality.

We study the impact of the type and input of neural architec-
tures for SVBRDF estimation in the context of this 3D material
texturing pipeline. Surprisingly, we find that a simple single-pass
UNet architecture can outperform more complex recent solutions
in terms of accuracy of prediction, even though recent methods can
provide appealing piecewise constant results. We also note that the
use of hyperfeatures improves multi-view consistency, possibly be-
cause they encode richer semantic information that is more invari-
ant to view changes than RGB values. Finally, we find that pro-
viding depth and normals as additional channels provides marginal
results improvements.
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Figure 11: An example of material design for a living room scene. On the left, we show the two different prompts as well as images used
to design the appearance of the scene (the middle image is a shaded version of the input geometry). For each prompt we show the material
maps extracted from the generated image, and below the maps three different viewing and lighting conditions (moving light source).
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Figure 12: An example of material design for a bathroom scene. On the left, we show the two different prompts used to design the appearance
of the scene. For each prompt we show the material maps extracted from the generated image, and below the maps three different viewing
and lighting conditions (moving light source).
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Figure 13: An example of material design for a bedroom scene. On the left, we show the two different image prompts used to design the
appearance of the scene. For each prompt we show the material maps extracted from the generated image, and below the maps three different

viewing and lighting conditions (moving light source).
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