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Fig. 1. Differentiable CSG optimization. Given the CSG model of a bike (left), our DiffCSG renders the corresponding shape in a differentiable manner, such
that its continuous parameters can be optimized to best match multi-view renderings of a target shape (right, pink). Our solution builds upon differentiable

rasterization to compute image gradients with respect to CSG parameters (middle). Here we visualize the per-pixel gradient contribution for the global scale

parameter s, the seat height A, the

, and the wheel radius r (we cropped the gradient visualizations around the areas of interest for h, [ and r). In

this example, the optimization decreased the seat height, increased the wheel radius, and made the handles vanish by setting their size to 0 (top middle). The

optimization also adjusted the orientation of the pedals.

Differentiable rendering is a key ingredient for inverse rendering and ma-
chine learning, as it allows to optimize scene parameters (shape, materials,
lighting) to best fit target images. Differentiable rendering requires that each
scene parameter relates to pixel values through differentiable operations.
While 3D mesh rendering algorithms have been implemented in a differen-
tiable way, these algorithms do not directly extend to Constructive-Solid-
Geometry (CSG), a popular parametric representation of shapes, because
the underlying boolean operations are typically performed with complex
black-box mesh-processing libraries. We present an algorithm, DiffCSG, to
render CSG models in a differentiable manner. Our algorithm builds upon
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CSG rasterization, which displays the result of boolean operations between
primitives without explicitly computing the resulting mesh and, as such,
bypasses black-box mesh processing. We describe how to implement CSG
rasterization within a differentiable rendering pipeline, taking special care to
apply antialiasing along primitive intersections to obtain gradients in such
critical areas. Our algorithm is simple and fast, can be easily incorporated
into modern machine learning setups, and enables a range of applications
for computer-aided design, including direct and image-based editing of CSG
primitives. Code and data: https://yyyyyhc.github.io/DiffCSG/.
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1 INTRODUCTION

Constructive-Solid-Geometry (CSG) represents 3D shapes as para-
metric primitives (e.g., cylinders, cuboids) combined with boolean
operators (e.g., union, intersection, difference) [Voelcker and Re-
quicha 1977]. CSG models are particularly popular in rapid pro-
totyping as they allow designers to create editable shapes whose
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Fig. 2. Ideation. Given two intersecting primitives (a), the result of subtracting one primitive from the other can be obtained by computing boolean operations
on meshes explicitly (b). However, the topology of the resulting mesh (number of vertices, connectivity) needs to be updated for any parameter change (b-c),
which is costly and complex to implement in a differentiable way. The Goldfeather algorithm displays the result of the subtraction while maintaining the
original primitive meshes (d), but the discontinuity formed along the intersection of the two primitives is not anti-aliased (d, inset). We detect intersection

edges explicitly and apply anti-aliasing on them (e), which allows back-propagation of gradients from pixels to primitive triangles, all the way to primitive

parameters.

dimensions can later be adjusted to best fit different designs [Maker-
Bot 2023; Marius Kintel 2023; Oehlberg et al. 2015].

However, authoring and reusing CSG models requires program-
ming skills, not only to define the primitives and boolean operators
that form the shape’s structure but also to adjust the individual pa-
rameters of all its components. Although specialized solutions exist
to optimize certain CAD programs, they can only handle a small
number of parameters [Michel and Boubekeur 2021], or support
unions of primitives but no intersections or differences [Cascaval
et al. 2022; Gaillard et al. 2022; Kodnongbua et al. 2023]. In contrast,
differentiable rendering has recently gained popularity as a flexible
way to optimize shape parameters to best fit target images [Zhao
et al. 2020], enabling diverse applications like image-based shape
reconstruction [Loubet et al. 2019] and text-based shape generation
[Chen et al. 2023; Liao et al. 2023]. Unfortunately, existing differen-
tiable renderers are not well suited to optimize parameters of CSG
models.

On the one hand, fast differentiable rasterizers work on meshes
[Laine et al. 2020]. But computing boolean operations on meshed
primitives is a complex and costly operation [Cherchi et al. 2022],
that needs to be executed for any parameter update since such oper-
ations produce drastically different meshes for different parameter
values (Fig. 2b,c). Furthermore, boolean operations are typically
implemented with mesh processing libraries that do not support
automatic differentiation. On the other hand, boolean operations
can be expressed on Signed Distance Fields (SDFs) in a differentiable
way [Kania et al. 2020], but custom analytical SDF expressions need
to be defined for each type of primitive.

We propose an efficient and flexible solution to optimize the
continuous parameters of CSG models using differentiable rendering.
On the one hand, we represent CSG models using boolean operators
applied on meshes, which allows us to support any primitive that
can be defined by a fixed tesselation, including the ones supported
by popular CSG modelers [Marius Kintel 2023] (cuboid, cylinder,
sphere, sketch-extrude). On the other hand, we do not compute mesh
boolean operations explicitly, avoiding the need to call complex
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black-box geometry processing libraries. By maintaining the original
tesselation of the primitives, we can backpropagate gradients from
any point on the shape to the primitive vertices, all the way to the
primitive parameters that control these vertices.

We achieve this unique combination of features by revisiting CSG
rasterization algorithms [Goldfeather et al. 1989; Stewart et al. 1998]
under the new perspective of differentiable rendering. CSG raster-
ization performs depth tests against front and back faces of each
primitive to deduce the fragments that form the rendered CSG shape
(Fig. 2d, Fig. 4). Then, differentiable rasterization provides a way to
backpropagate gradients from fragments to mesh vertices [Laine
et al. 2020]. However, care must be taken at discontinuities, such as
across contours and silhouettes where the set of vertices affecting
a pixel color change abruptly. In such cases, existing algorithms
achieve differentiability by leveraging antialiasing to interpolate
fragments across discontinuity edges [Laine et al. 2020; Li et al.
2018]. But fast rasterizers only apply antialiasing along visibility
edges detected on the input mesh — this is insufficient for CSG
rasterization as it also produces discontinuities at the intersection of
primitives. Since these discontinuities are not antialiased by state-
of-the-art differentiable rasterization (Fig. 2d - inset), they do not
provide valuable gradients. This lack of gradients is especially prob-
lematic for CSG optimization because primitive intersections are
precisely among the visual features that vary most for different
values of primitive parameters.

Fortunately, while computing boolean operations on meshed
primitives is a complex and costly procedure, detecting edges formed
by intersections of primitives is a much easier and tractable task.
Doing so in a differentiable manner allows us to feed additional
edges to the anti-aliasing module and achieve differentiability over
the entire CSG rendering pipeline (Fig. 2e - inset). We demonstrate
the simplicity and practicality of this approach by integrating it
in Nvdiffrast [Laine et al. 2020], a popular framework for differen-
tiable rasterization. We then evaluate our CSG optimization on a
benchmark of 50 CAD shapes and illustrate its potential on several

with intersection edges antialiased



downstream tasks, such as image-based editing and direct 3D shape
manipulation.

2 RELATED WORK

Modern Computer-Aided-Design (CAD) strongly relies on paramet-
ric representations of 3D shapes to encode variations of a design.
Constructive-Solid-Geometry (CSG) [Voelcker and Requicha 1977]
is one such representation where a design is defined both by dis-
crete parameters (number and type of geometric primitives, type
of boolean operators applied to these primitives) as well as by con-
tinuous parameters (position, orientation, and dimensions of the
primitives). CSG is the core modeling metaphor of popular software
like OpenSCAD [Marius Kintel 2023], as well as a key component
of feature-based CAD systems like OnShape [PTC 2024] and Fu-
sion360 [Autodesk 2024; Willis et al. 2021] that heavily rely on
sketch-extrude operators to create or remove geometry. In this pa-
per, we focus on application scenarios where the discrete structure
of the CSG model is given, while its continuous parameters need to
be adjusted. Such editing tasks frequently occur when users want
to reuse an existing design [Oehlberg et al. 2015], but are challeng-
ing to perform as soon as the design exposes multiple parameters
that are difficult to relate to the desired outcome [Gonzalez et al.
2024]. The ability to optimize continuous shape parameters can also
benefit reverse-engineering tasks where the structure of the CSG
model is discovered by other means, including methods based on
program synthesis that typically quantize continuous parameters to
a small set of integer values to treat all program tokens as discrete
variables [Du et al. 2018; Ellis et al. 2019; Sharma et al. 2018]. Our
approach could be used to refine continuous parameters once the
discrete structure has been discovered, or used in conjunction with
iterative program synthesis [Kapur et al. 2024] to jointly solve for
discrete and continuous parameters.

Several approaches have been recently proposed for differentiable
execution of CAD models, but most of them do not apply to CSG.
Cascaval et al. [2022] and Gaillard et al. [2022] use automatic dif-
ferentiation to relate the position of mesh vertices to the shape
parameters that control these vertices, which allows them to offer
users a bidirectional workflow where CAD models can be edited
either in parameter space or in mesh space. Kodnongbua et al. [2023]
further combine differentiable CAD execution with differentiable
rendering to fit CAD models to images. Similarly, Worchel and Alexa
[2023] demonstrate how to extract triangle meshes from parametric
surfaces (Bézier, B-spline, NURBS surfaces) in a differentiable way,
enabling differentiable rendering of such surfaces. However, ex-
tending these systems to CSG would require implementing boolean
operations on meshes within an automatic differentiation frame-
work, a non-trivial task given the complexity of robust mesh boolean
algorithms [Cherchi et al. 2022]. A notable exception is the work
of Gonzalez et al. [2023], which allows users to edit the position,
rotation, and scale of CSG primitives directly in 3D space. But this
system relies on instrumenting the CSG editor OpenSCAD [Marius
Kintel 2023] with custom 3D widgets, rather than employing differ-
entiable execution to automatically optimize arbitrary parameters.

Michel and Boubekeur [2021] propose a method to assign a unique
identifier to any point of a parametric shape expressed by a direct
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acyclic graph (including CSG trees), enabling to compute pointwise
derivatives by finite differences rather than through automatic dif-
ferentiation. While this approach is well adapted to click-and-drag
interactions, its computational cost limits it to models controlled
by a small number of parameters. In contrast, our approach com-
putes gradients with respect to tens of parameters, over all visible
points of the object, enabling image-guided optimization of CSG
parameters.

Given the difficulties induced by boolean operations on meshes,
several authors perform machine learning with CSG models us-
ing alternative shape representations such as occupancy grids and
signed distance functions (SDFs) [Kania et al. 2020; Lambourne et al.
2022; Ren et al. 2021], where boolean operations are expressed as
min/max functions implemented with softmax to achieve differen-
tiability. Recently, Liu et al. [2024] proposed to replace the min and
max operators by a unified, fuzzy-logic operator that enables to
also optimize the type of boolean operation applied on primitives.
However, employing SDFs raises several challenges. First, the SDF
of each primitive type needs to be defined analytically, as a func-
tion of the primitive parameters. While analytical SDFs have been
defined for simple primitives such as spheres, cylinders and cuboids
(see supplemental material from [Kania et al. 2020; Ren et al. 2021]),
expressing complex primitives, such as sweep surfaces formed by
Bézier curves, would be more involved [Inigo Quilez 2023]. Second,
evaluating SDFs throughout optimization is costly, as demonstrated
in our evaluation (see Sec. 4.3). Finally, optimizing SDFs according
to image-based losses requires rendering them with differentiable
sphere tracing, which is also a costly procedure [Bangaru et al. 2022;
Vicini et al. 2022]. Our solution avoids these challenges by working
with meshes, which are easy to define for diverse parametric prim-
itives and are fast to rasterize. Yet, we avoid computing boolean
operations on meshes explicitly and instead leverage differentiable
rasterization to backpropagate image-space gradients to primitive
vertices, all the way to primitive parameters.

3 METHOD

Figure 3 provides an overview of our algorithm. Our method takes as
input a CSG model composed of a set of parametric primitives com-
bined with boolean operations (Fig. 3a). We build on the Goldfeather
algorithm [1989], which performs visibility tests during rasteriza-
tion to render CSG models without computing boolean operations
on meshes explicitly. While we can perform these visibility tests
in place of the standard depth test in a differentiable rasterization
pipeline (Fig. 3b), the final image contains edges not present in the
original geometry. We detect these edges explicitly by finding in-
tersections between the parametric primitives (Fig. 3c). We then
provide the detected intersection edges along with visibility edges
to the anti-aliasing module of a differentiable rasterization pipeline
(Fig. 3d), which allows back-propagation of image-space gradients
to the respective primitives.

We now provide background details about the CSG rasterization
and differentiable rasterization algorithms we build upon, before
describing how we combine these two components with intersection
edge detection to achieve differentiable CSG.
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Fig. 3. Algorithm Overview. Our algorithm adapts a differentiable rasterization pipeline (light blue) to render CSG models (a) in a differentiable way. First,
we replace the standard depth test by the Goldfeather algorithm (b), which selects among front and back faces of the CSG primitives the ones to be displayed
according to boolean operations. Second, we detect intersection edges between CSG primitives (c) and provide these edges to the anti-aliasing module (d).
Proper anti-aliasing is critical to allow back-propagation of gradients from the final image all the way to the primitive parameters.

3.1 Background on CSG Rasterization

Fig. 3 (light blue) depicts the main stages of a modern rasterization
pipeline [Laine et al. 2020]. Starting from input triangle meshes,
the rasterization module projects the triangles on the screen and
uses the depth buffer to test which fragments are visible. These
fragments are subsequently shaded and anti-aliased.

The Goldfeather algorithm [1989] is a simple modification of this
pipeline (Fig. 3(b)), which consists of replacing the depth test with a
combination of depth and parity tests that implements the boolean
operations applied on primitives. Fig. 4 illustrates the algorithm
on two convex primitives, A and B. To display the intersection of
the two primitives, the algorithm checks whether there is an odd
number of polygons lying between the front faces of the primitives
and the camera (Fig. 4(b)). For the subtraction of A from B, the
algorithm keeps the fragments from back faces of A that have an
odd number of polygons from B occluding them from the camera,
and keeps the fragments from front faces of B that have an even
number of occluding polygons from A (Fig. 4(c)). For a union of
primitives, the standard depth test is applied. We refer the reader
to [Goldfeather et al. 1989; Kirsch and Dollner 2005; Stewart et al.
1998] for additional details, such as the handling of non-convex
primitives and algorithm optimizations.

3.2 Background on Differentiable Rasterization

Differentiable rendering aims at computing how much the pixel
values of an image change in reaction to small changes in scene
parameters (geometry, material, light, camera). Differentiable ren-
dering is a critical ingredient of inverse rendering, which aims at
optimizing scene parameters to best match a target image. In the
past few years, significant progress has been made in differentiable
rendering based on either raytracing [Bangaru et al. 2020; Zhang
et al. 2020, 2023; Zhao et al. 2020] or rasterization [Cole et al. 2021;
Laine et al. 2020; Liu et al. 2019]. We focus on rasterization for its
real-time performance, and extend it to CSG models for differen-
tiable CSG rendering.
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Fig. 4. Goldfeather algorithm. The algorithm takes as input individual
primitives of the CSG model (a). For an intersection, only the front-facing
fragments that are occluded by an odd number of polygons are displayed
(b, crosses depict occlusions along viewing rays). For a subtraction, the two
primitives apply different parity tests against each other (c). Considering
B — A, the algorithm displays the front-facing fragments of B that are
occluded by an even number of polygons from A, and the back-facing
fragments of A that are occluded by an odd number of polygons from B.

We build our algorithm on the differentiable rasterizer of Laine
et al. [2020], i.e. Nvdiffrast, which implements the main steps of
the rasterization pipeline in a differentiable way. Several steps of
this pipeline are continuous by construction, such as barycentric
interpolation of vertex attributes, or trilinear interpolation of texture
values, and as such easy to differentiate. In contrast, the visibility
test creates sharp discontinuities in the image, which provide no
gradients for vertex positions. Similar to Li et al. [2018], Laine et
al. apply screen-space anti-aliasing along visibility edges to obtain
smooth discontinuities (Fig. 3(d)), where pixels crossed by silhouette
edges are blended with their neighbors, with weights determined
by edge coverage (see Fig. 5). However, Laine et al. only consider
edges from the input triangle mesh, and only apply anti-aliasing
on the ones that correspond to silhouettes. This procedure is not
sufficient to obtain proper gradients for the Goldfeather algorithm,
since this algorithm introduces sharp discontinuities along primitive
intersections, which can occur away from silhouettes and do not
necessarily align with the input mesh edges.



3.3 Differentiable Rasterization of CSG Models

Differentiation through primitive intersections. Our key idea is
to make the Goldfeather algorithm compatible with differentiable
rasterization by explicitly detecting and antialiasing intersection
edges between CSG primitives. To do so, we consider all pairs of
triangles from different primitives and express their intersections as
a function of the triangle vertices (see supplementary for technical
details). We perform this computation in parallel using PyTorch for
both differentiability and minimal overhead. To tell which pixels are
crossed by visible intersection edges, we then render the detected
intersection edges into pixels using OpenGL with depth test. Finally,
we send these pixels along with the endpoints of their crossing
edges to the anti-aliasing module for pixel blending, as is done for
silhouette edges.

Fig. 5 depicts the anti-aliasing calculation, which we adapted
from Laine et al. [2020] to account for intersection edges. In this
calculation, pixel blending is a function of the endpoints of intersec-
tion edges, which we themselves express as a function of primitive
vertices, allowing gradient back-propagation from pixels to inter-
section points and from intersection points to primitive vertices via
the automatic differentiation mechanism in Nvdiffrast and PyTorch.

Back-propagation to primitive parameters. The above differen-
tiable rasterization allows us to back-propagate gradients from
image pixels to mesh vertices. We next need to back-propagate
gradients from vertices to primitive parameters. While one could
express each vertex of the primitive mesh as a function of primi-
tive parameters, this solution makes the implementation of each
primitive tessellation quite cumbersome. We ease implementation
of some of our primitives by binding vertices to the corresponding
parameters via intrinsic scaling factors. For example, we express
the radii (resp. height) of a tapered cylinder as horizontal (resp. ver-
tical) scaling of its vertex positions, respectively. An exception is
the Bézier curve, for which the polynomial expression that dictates
vertex positions is a function of the curve control points. We then

/ P before after
p ______
TP Ae—1/eB I |-
g~
1 AN 7
; / N 1 / P before after
\\\ A | _eB P S —»

/q

Fig.5. Pixel anti-aliasing. On the left, an intersection edge (p, q) is formed
by the top face of the gray cube and the vertical face of the blue cube. The
two endpoints of the intersection edge are colored red. On the right, when
considering the color blending of the crossing pixels (i.e., the gray pixel
A and the blue pixel B) of the intersection edge, two typical options may
apply depending on which pixel is most covered by the edge. In the top case,
edge (p, q) intersects the segment connecting centers of A, B inside pixel
B, which leads to the color of A blending into B, i.e., ColoraBfter = a * Color®
+(1-)* ColorEefore. In the bottom case, the edge covers A the most, so the
color of B is blended into A, i.e., Color;\fter =a* Color® + (1-a) * Colorﬁefme.
The blending weight « is a linear function of the location of the crossing
point, from zero at the midpoint to 0.5 at the pixel center.
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Fig. 6. Primitive tessellation. For sphere (a), the only parameter is the
radius r. For cylinder (b), we sample 16 points along the top and bottom
circles to form the triangulation. Other than the height parameter h, we
support taper, i.e., the top radius r; and the bottom radius rp, can be different.
Box (c) is the most simple primitive. We employ 12 triangles in the mesh
and expose the height h, width w, and depth d as the primitive parameters.
For sketch-extrude (d), we resort to piecewise Bezier curves to represent
the sketch (d, left) and sample 15 points on each Bezier curve to form the
triangulation after extrusion (d, right). In this case, all the control point
positions (half of them are drawn) and the extrude distance h are parameters.

express the extrinsic primitive parameters (position, orientation,
uniform scale) as additional transformation matrices.

Primitive tessellation. Our method can handle arbitrary primitives
with fixed tessellations. For proof of concept, we implemented the
most common and expressive primitives shown in Fig. 6. We adopted
a coarse tessellation of the primitives to favor efficiency over shape
smoothness.

3.4 Gradient-based Optimization of CSG Parameters

Our algorithm is highly modular and can be plugged into differ-
ent inverse-rendering applications based on gradient descent. In
a typical optimization protocol, given a pre-defined CSG model
with primitive parameters {6;}, a target image Iarget, and camera
parameters pcam, we optimize the parameters to achieve the target:

arggﬂ;inl = |II ({0i}, peam) — Trargetl, (1)
where I({0;}, pcam) is the rendered image from our DiffCSG, and the
loss can be pixel-wise L1 or Ly loss. When multi-view target images
with corresponding camera parameters are given, we extend the
optimization by averaging over all views. Depending on applications,
we experimented with target images representing the per-pixel
normal of the target shape, or the solid color of its constituent
primitives (Sec. 4). We used an image resolution of 512x512 for all
our experiments.

We implemented our optimization using PyTorch and the Adam
optimizer [Kingma and Ba 2014] with a default learning rate 1e~>.
We set the loss threshold to 5¢~* regardless of whether color or
normal images are used for the target, and the maximum number of
optimization steps to 5000. We terminate the optimization as soon
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as one of these conditions is reached. These three hyper-parameters
can vary when applying the optimization to different applications.

4 RESULTS AND DISCUSSION
4.1 Benchmark Evaluation

We provide as supplemental materials an evaluation of our algorithm
on a benchmark of 50 CSG models. For each model, we applied ran-
dom perturbations of primitive parameters to obtain source shapes
that we then optimize to best align with the shape produced by the
default parameters. This evaluation reveals that the success rate of
our optimization depends on the magnitude of perturbation, and
that models that are equipped with a few hyper-parameters are
easier to optimize than the ones exposing many independent pa-
rameters. Please refer to supplemental materials for details about
the composition of the benchmark and optimization results.

In terms of performance, 62% of shapes required less than 10s to
fit the target, 29% required less than 100s, and only a small percent-
age (9%) of complex shapes required more than 1 minute but less
than 20. Typical examples of these three categories are shown in
Fig. 7. Table 1 details the running time for representative shapes
shown in the paper. The Goldfeather algorithm and edge calculation
times mostly depend on the number of triangles composing the
shape, while the optimization time is affected by both the number
of triangles and the number of optimizable parameters. Note that
our implementation of both the Goldfeather algorithm and edge cal-
culation is not optimized; these steps could be more efficient. Please
refer to the supplementary for a detailed discussion of scalability.

y
200

1504

Frequency

1001 185/ 62%

50

Time (s)
0 4 r >

T T
0 10 ~ 100 ~ 1000

Fig. 7. Running time overview and typical cases. Among all 300 testing
cases, the majority of the shapes (62%) can be optimized within 10s, while
complex shapes like the bike can take up to 1000s for the optimization.
Typical examples for each category are shown.

4.2 Ablation Study

We first demonstrate the importance of anti-aliasing intersection
edges to obtain accurate gradients. We then evaluate the impact
of different types of interior signals that we use as targets for the
optimization.
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Table 1. Running time breakdown for one iteration. For each shape,
we indicate the number of triangles and number of optimizable parameters,
along with the time spent on Goldfeather algorithm, intersection edge
detection, and optimization (in seconds).

#Iri. #Para. Goldf. EdgeC. Opt. Total

Fig. 1, Bike 2980 17 0.167 0.072  0.106 0.345
Fig. 8, RaceCar 4336 22 0.163 0.150  0.244 0.557
Fig. 8, Moon 128 3 0.019 0.014  0.028 0.061
Fig. 8, Nut 88 16 0.022 0.012  0.026 0.060

Importance of intersection edges. Fig. 10 illustrates the importance
of intersection edges for CSG optimization in two didactic exam-
ples where only the intersection edges provide information about
the primitive parameter to be optimized. If no anti-aliasing is ap-
plied along these edges, the optimization does not progress. Fig. 8
illustrates more complex and realistic shapes that require correct
gradients along intersections to be properly optimized. Furthermore,
Fig. 9 provides a visual comparison between our gradient map, the
gradient map obtained without anti-aliasing intersection edges, and
a reference gradient map obtained with finite differences. This com-
parison highlights the inaccuracy of gradients along intersections if
anti-aliasing is not properly applied.

Interior signals matter. The success of the optimization is also
influenced by the signal of the target image. As shown in Fig. 11,
interpolated vertex normals provide a richer internal signal than
solid colors for curved surfaces, allowing the optimization to con-
verge even when intersection edges are not properly anti-aliased.
Nevertheless, vertex normals do not suffice to drive the optimization
for piecewise flat surfaces, where large portions of the shape share
the same orientation.

4.3 Comparison

We have compared our method against two SOTA approaches for
CSG model optimization.

SDF-based optimization - UCSGNet [Kania et al. 2020]. Please refer
to the supplemental material for the detailed configuration and anal-
ysis. Briefly, this experiment reveals that SDF-based optimization is
three orders of magnitude slower than our algorithm (see Fig. 12 for
typical cases), and fails to converge in several cases. Computational
cost is due to the need to sample the SDF densely in 3D space, which
exhibits cubic complexity compared to the quadratic complexity of
our rendering-based approach.

Derivative-free optimization - CMA-ES [Hansen et al. 2003]. An
alternative way of optimizing CSG shapes is utilizing derivative-free
methods [Deliot et al. 2024; Fischer and Ritschel 2023a,b; Hansen
et al. 2003], and we have compared with CMA-ES [Hansen et al.
2003]. For simple shapes with few parameters, CMA-ES can con-
verge to the target state successfully, while it is hard to fit complex
shapes with parameters of different and unknown scales. Please
refer to the supplementary for a visual comparison and detailed
analysis.
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Fig. 8. Visual Results. Examples of shapes from our benchmark that require proper treatment of intersection edges to be optimized. Without our anti-aliasing,
the optimization remains stuck in its initial state due to the discontinuities introduced by the difference operator. In each example, the source shape, resultant
shape, and one of the target images rendered with per-primitive colors are shown. Black arrows indicate the desired change between the source and the target.
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<0 (b) w/ anti-aliasing (c) w/o anti-alising

(a) Finite diff.
Fig. 9. Gradient visualization. We used finite differences to compute
ground-truth image gradients for the translation ¢ of the subtracted sphere
(a). Our anti-aliasing produces similar gradients along the intersection edges

(b). Without anti-aliasing, the gradient information is incorrect (c).

4.4 Applications

Our method can be applied to various inverse-rendering scenarios,
we now introduce two representative examples.

Direct 3D editing. Editing a CAD model via its parameters can be
a tedious, trial-and-error process, which has motivated numerous
approaches for direct editing of the resulting shape [Cascaval et al.
2022; Gonzalez et al. 2023; Michel and Boubekeur 2021]. Fig. 13 illus-
trates how our approach can serve such a direct editing workflow.
Given a CSG model with default parameters, the user can export the
corresponding mesh, edit it in a 3D modeling software, and provide
the edited mesh as the target for our optimization to find the CSG
parameters that best reproduce that edit. In this example, the edit

Correct Gradient Incorrect Gradient

N P

Intersection(C1, C2) Source Target Result

LA A J

Difference(C1, C2) Source Target Result

= t
s
\

Fig. 10. Ablation study: impact of intersection edges. Without our de-
tection of intersection edges, the gradient information along intersections
does not offer valuable information for optimization. In these two examples,
the optimization remains stuck at its initial state because only the intersec-
tion edges indicate that the box should enlarge (top) or translate (bottom).
Our full method, which includes intersection edges, succeeds in both cases.

consists of refining and deforming the mesh in Blender, and two ren-
derings of the result are used as the target for optimization, which
takes 100 seconds to converge. Please refer to the supplemental
video for the optimization process.
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Correct Gradient Incorrect Gradient
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1

Initial Target Result
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Difference(C1, S1)

Fig. 11. Ablation study: impact of interior signal. When primitives are
rendered with solid colors, only silhouette and intersection edges provide
signal to the optimization. If the intersection edges are not anti-aliased, the
optimization fails (top). Rendering the primitives with interpolated vertex
normals provides a richer visual signal within the spherical part, allowing
the optimization to converge despite incorrect gradients at intersections
(bottom). However, such interior signal only varies continuously for smooth
primitives like the sphere, but is of no help for discontinuous primitives like
the cube. Our full method, which applies anti-aliasing on intersection edges,
succeeds with either solid colors or normals in that example.

Theirs

Time: 1941.5s vs. 94.9s
Scp:0.012 vs. 0.015

Time: 1343.5s vs. 49.4s
Scp: 0.015 vs. 0.019

Fig. 12. Comparison with the SDF-based differentiable CSG model
from UCSG-Net [Kania et al. 2020]. The running time and Scp (theirs vs.
ours) are shown for the first three examples, while their resulting shape for
the last example is shown for comparison. Spefically, both methods were
successful in the first three examples, achieving a similarly low Chamfer
distance but at a very different computational cost. Since the difference
between the resulting shapes is small, we only show the GT shapes. Our
method succeeds for the last shape, but UCSG-Net fails to create a square
hole in the center of the cylinder.

Image-based editing. Our differentiable rendering approach also
allows image-based editing of CSG models, where a rendering of
the shape is loaded in an image editing interface to create a target
for our optimization. Fig. 14 demonstrates this workflow in two
examples. In the first example, given a chair with four splats in the
back, the user edits a rendering to erase two of the splats and draw
a larger one instead. The second example shows an iterative edit,

where the user displaces a hole using image cutting and painting.

The edit is performed in two steps to ensure that the holes overlap in
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Fig. 13. 3D editing. The 3D mesh produced by a CSG model is exported to
Blender for editing. In this example, we refined the mesh and deformed it to
close the eyes and raise the arms. We then render normals of the edited mesh
from two views to form the targets of our optimization, which successfully
adjusts the size of the eyes and rotation of the arms to reproduce the edit.

the source and target images. Without any overlap, the optimization
couldn’t progress.
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Fig. 14. Image-based editing. Given a rendered color image of a 3D shape,
direct editing on images can be mapped back to the 3D shape through our
image-based differentiable optimization. Note that our optimization utilizes
only a single image to perform these edits.

4.5 Discussions

Impact of CSG parameterization. As discussed in Section 4.1, CSG
models are easier to optimize if their editable parameters are ab-
stracted into a few hyper-parameters (see Succ for H-Params and



D-Params). Moreover, since the way to abstract hyper-parameters
depends on expertise and design purposes, there exists different
hyper-parameter abstraction schemes. Fig. 15 presents an interest-
ing example. As can be seen, the splats of the chair back can be
co-parameterized or parameterized independently of the top rail.
Thus, given the same target shape, the chair with shared parameters
can reach the target successfully, while the other one fails to retain
the top rail.

Source Shape Result Shape

Param.A
# back height
bh=10;
# scale
s=1;
union{
cubel(bhs,...)
cube2(bhs,...)

)

Target Shape

Param.B
# mid/top height
mh=10; th=10;
# mid/top scale
ms=1; ts=1;
union{
cubel(th,ts)
cube2(mh,ms)

mh=5.5
th=8.9
ms=1
ts=0

.

Fig. 15. Parameterization variation. Given the same target shape, co-
parameterization of different components eases optimization as the top rail
is constrained to remain attached to the splats (top), while independent
parameterization yields a broken shape where the top rail disappears instead
of moving to its target position (bottom).

Failure cases. Our differentiable optimization has two typical fail-
ure cases as shown in Fig. 16.

e Vanishing primitives. It may happen that some of the primi-
tive parameters (e.g., the radius) are updated to be zero, lead-
ing to the vanishing of specific primitives. However, since
our method relies on visible pixels to obtain gradients, once
a primitive disappears, there is no chance to bring that prim-
itive back to the optimization (Fig. 16(a)). To address this
problem, a potential solution is to insert a regularizer into the
optimization to ensure that parameter values remain above
zero. However, the ability to make primitives vanish can be
a desired feature, such as when the initial shape contains
redundant primitives.

o Distant target shape. When the target shape is far from the
source shape, the optimization may fail, as shown in Fig.
16(b). In such cases, a step-by-step iterative optimization is a
possible solution to gradually reach the target shape.

5 CONCLUSION AND FUTURE WORK

We have presented DiffCSG to differentiably render CSG models. We
enable this by building upon the classical Goldfeather rasterization
algorithm that displays the results of boolean operations on primi-
tives without explicitly computing the resultant mesh. Specifically,

DiffCSG: Differentiable CSG via Rasterization « 9

Source Target Result
’ '
'@ .t

Fig. 16. Failure cases. (a) In this example, the middle part is produced
by subtracting a cylinder from another one. During the optimization, the
subtracted cylinder gets a larger radius than the other one, making the
entire part vanish. When a primitive vanishes, it does not produce any pixel,
and as such does not produce any gradient to reappear. (b) The source nut
shape is too far from the target. Despite optimization, the resulting shape
only partially reproduces the target.

we demonstrate how to identify potential primitive intersections
under specified boolean operations, and explicitly rasterize the in-
tersection edges to propagate gradients back to the parameters of
the input CSG program. Our method effectively marries meshing-
free CSG rasterization and differentiable polygonal rasterization.
The method is simple and easy to integrate into existing inverse
rendering setups. We demonstrate the effectiveness and flexibility
of our method on a newly introduced CSG optimization benchmark,
as well as through image-based CAD editing applications.

Limitations and Future Work.

(1) Structure Optimization for CSG Programs: Currently, our method

cannot change the structure of the input CAD program. In

the future, we would like to investigate program structure
modifications (i.e., changing primitive types and modifying
boolean operations). One possible direction is to combine our

DiffCSG for continuous parameter changes with an RL-based

search to optimize over discrete program changes.

Effect of Initialization: While our main contribution is avoid-

ing explicit meshing of CSG programs, and hence capturing

gradients from possible intersection edges, DiffCSG can still
end up in a local minima based on the starting state of the

CSG program. Using a hypernetwork to provide an initializa-

tion for any CGS programs is a natural option to explore to

address this issue.

(3) Regularizations: Our current implementation does not support
any regularization as our contribution is to enable gradient
flow, in the context of invisible edges arising from CSG opera-
tions, that is missed by existing differentiable mesh renderers.
A natural next step would be to regularize the underlying pro-
grams by either using shape priors or restricting the shapes
to stay in a latent space of (pretrained) CAD programs [Jones
et al. 2023]. This can additionally allow us to perform both
structure changes based on moving in the CAD program la-
tent space as well as continuous parameter refinement using

DiffCSG.

@

~
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