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Figure 1: Our method enables interactive physically-based rendering (PBR) with 3D GANs under arbitrary illumination conditions in the
form of environment maps and unconstrained camera navigation, including 360◦ rotations. We achieve this with three main contributions:
a method to estimate poses of a dataset of car images, a generative pipeline for PBR, and an improved generative network architecture and
training solution. We only require a dataset of images of the desired object class (cars in our case) and a dataset of environment maps for
training. Our method learns a disentangled representation of shading, enabling relighting with high-frequency reflections on shiny car bodies.

Abstract

Recent work has demonstrated that Generative Adversarial Networks (GANs) can be trained to generate 3D content from
2D image collections, by synthesizing features for neural radiance field rendering. However, most such solutions generate
radiance, with lighting entangled with materials. This results in unrealistic appearance, since lighting cannot be changed and
view-dependent effects such as reflections do not move correctly with the viewpoint. In addition, many methods have difficulty
for full, 360◦ rotations, since they are often designed for mainly front-facing scenes such as faces. We introduce a new 3D
GAN framework that addresses these shortcomings, allowing multi-view coherent 360◦ viewing and at the same time relighting
for objects with shiny reflections, which we exemplify using a car dataset. The success of our solution stems from three main
contributions. First, we estimate initial camera poses for a dataset of car images, and then learn to refine the distribution of
camera parameters while training the GAN. Second, we propose an efficient Image-Based Lighting model, that we use in a 3D
GAN to generate disentangled reflectance, as opposed to the radiance synthesized in most previous work. The material is used
for physically-based rendering with a dataset of environment maps. Third, we improve the 3D GAN architecture compared to
previous work and design a careful training strategy that allows effective disentanglement. Our model is the first that generate
a variety of 3D cars that are multi-view consistent and that can be relit interactively with any environment map.

1. Introduction

Recent 3D Generative Adversarial Networks
(GANs) [CLC∗22, GLWT21, XLSL22] have achieved im-

pressive results in synthesizing 3D objects using neural volumetric
representations. An appealing property is that such models
can be trained using only unstructured 2D image collections
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[HMR19, CMK∗21, SLNG20]. Most existing solutions however
are restricted to simplistic shading, such as the NeRF-style
[MST∗20] emission-absorption model that simply reproduces
observed radiance. This can lead to implausible appearance (e.g.,
no or incoherent view-dependent effects) and provides little or no
disentanglement of materials, lighting and geometry. Our method
focuses on cars, since they exhibit intricate and high-frequency
view-dependent appearance and are most often viewed from
arbitrary directions, contrary to mainly front-facing datasets such
as faces often used in previous work. In this case, achieving
multi-view consistency is harder because of view-dependent
effects. Such consistency also requires estimation of poses for
the training image dataset, which is challenging in our use case.
In this paper, we address these challenges by presenting a novel
methodology to train a 3D GAN that allows physically-based
shading and (re-)lighting, while improving multi-view coherence
compared to previous work for 360◦ interactive rendering.

With 3D generative models maturing, there is an increasing in-
terest in transitioning towards physically-based models. For many
use cases, it is not enough that a rendering of a generated sam-
ple merely looks plausible, but instead, appearance should be
driven by physical principles of light transport. However, exist-
ing 3D GANs use the NeRF model, that computes a simple view-
dependent radiance field. Lighting is thus entangled with mate-
rials and view-dependent effects are often “faked” using semi-
transparent volumetric density etc. These limitations have moti-
vated recent work, that attempts to introduce physically-based gen-
erators [DWW23, PXL∗21, RYCT23], but they only consider low-
frequency illumination and/or shading. Such methods are insuffi-
ciently expressive and/or general for the complex lighting and shad-
ing of shiny objects such as cars.

In our solution, we introduce a physically-based generator that
produces a reflectance field [BXS∗20] with a microfacet BRDF il-
luminated by an environment map, disentangling lighting from ma-
terials. Such a model has the potential to lead to powerful tools for
3D content creation and controllable data generation under arbi-
trary illumination for downstream tasks. The first major challenge
is training such a representation, due to material–illumination am-
biguities: a car that has no reflections could be a shiny under low
frequency lighting or diffuse under high frequency lighting. One
key observation is that, in addition to an established dataset of car
images [YLCLT15] which we augment with foreground masks, a
second dataset of high-dynamic-range (HDR) environment maps
[HGAL19] can be used to help disentangle light transport when
generating reflectance and performing lighting on the fly. This aux-
iliary dataset is independent of the main dataset and hence does not
impose additional restrictions. Our design results in high-quality
and view-coherent samples that can be relit and composited with
arbitrary environment maps.

A second major challenge in learning 3D GAN models from 2D
data is the obvious mismatch between dimensions. The key to suc-
cessful training is that the discriminator only gets access to pro-
jections of the generated 3D scene [HMR19]. For optimal mod-
eling of 3D shapes, the virtual cameras used for the projection
should match the distribution of real cameras used to create the
training dataset [BPD18]. Failing to match camera distributions re-

sults in distorted shapes (e.g., flat noses in faces), which may not
be important when the shape is viewed from a limited range of
angles (e.g., mostly from the front). However, for full 360◦ view-
ing, shape distortions become visually obvious and negatively ef-
fect training, making a faithful match of camera distributions in-
dispensable. Camera distributions have been modeled using sim-
ple analytic priors [CMK∗21, SLNG20], learned jointly with the
generator [NG21a], or estimated from the training data [CLC∗22];
these are however insufficient to achieve our goal of multi-view
consistency with realistic lighting.

To obtain the precise camera distributions required for high-
quality 360◦ viewing, we propose a novel hybrid strategy that takes
into account both extrinsic and intrinsic camera parameters: We
first propose a pipeline to estimate rough camera poses from the
training images, based on computer vision tools, providing a first
approximation to the distribution. These estimates are inherently
ambiguous, e.g., a shorter object–camera distance can be compen-
sated by a larger field of view, etc. Therefore, in a second step, we
refine the camera pose estimates using a dedicated neural module
that is jointly trained with the rest of the generator. We show that
our strategy boosts both sample quality and disentanglement.

Evaluating the quality of 3D generative models is very challeng-
ing; there is no reliable methodology to obtain a quantitative eval-
uation of how well a solution respects multi-view consistency and
relighting [BF22] that is the main goal of our work. We thus in-
troduce a new methodology for evaluation using ground-truth syn-
thetic data and GAN inversion.

In summary, our main contributions are:

• A volumetric field renderer that produces a reflectance represen-
tation, suitable for an Image-Based Lighting model that, com-
bined with a style-based generator enables, for the first time,
synthesis of realistic relightable assets with consistent and high-
quality specular view-dependent effects.

• A method to directly estimate the distribution of full camera
models for a dataset of images of single-class objects (cars in
our case), including jointly learning the distribution of camera
intrinsics and extrinsics during training.

• An improved generator architecture and training solution that is
central in allowing the network to disentangle lighting from re-
flectance and to allow relighting, together with a novel evaluation
methodology for multi-view consistency and relighting.

Taken together, these elements constitute the first method
that can generate full 360◦ images of cars with free cam-
era movement, allowing multi-view consistent renderings with
view-dependent effects such as high-frequency reflections, all
at interactive rates (Fig. 1). Code and pretrained models
available at https://repo-sam.inria.fr/fungraph/
lighting-3d-generative-cars

2. Related Work

In this section, we give an overview of techniques that use re-
lightable neural fields (Sec. 2.1), before discussing 3D-aware gen-
erative image models (Sec. 2.2). We then review how these methods
handle camera distributions (Sec. 2.3), and discuss the state of the
art in relightable generative models (Sec. 2.4).
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2.1. Neural Fields for Relighting

Neural fields [XTS∗22] are coordinate-based neural networks used
to represent visual-computing primitives, frequently involving
Multi-Layer Perceptrons (MLPs). The appearance of 3D scenes can
be represented using a Neural Radiance Field (NeRF) [MST∗20],
which maps a position and a view direction to volumetric density
and color. Images are obtained using volume rendering with
an emission-absorption model. While powerful for novel-view
synthesis, this approach makes it difficult to perform editing such
as relighting or material editing. As a remedy, reparameterizations
can help to better handle view-dependent effects [VHM∗21],
or the radiance transfer function can be learned [LTL∗22].
However, the most popular approaches for enabling editing are
based on a decomposition of the scene into reflectance and
illumination in conjunction with a more sophisticated rendering
model [BBJ∗21, BJB∗21, BEK∗22, ZLW∗21, WSLG23, MHS∗22],
which can include visibility [ZSD∗21, SDZ∗21] and indi-
rect lighting [JLX∗23]. The environment-map-based models
inspired our generator design, which utilizes a reflectance
field [BGP∗21, BXS∗20].

2.2. 3D Generative Models

Given a large collection of images, Generative Adversarial
Networks (GANs) [GPAM∗14] learn to capture the un-
derlying data distribution and allow the generation of new
images by jointly training a generator and a discriminator.
The initial solutions naturally involved 2D image pipelines,
where style-based architectures have evolved to become dom-
inant [KLA19, KLA∗20, KAH∗20, KAL∗21]. Their well-
behaved latent spaces furthermore allow high-quality image edit-
ing [AQW20, HHLP20, CBPS20, GPM∗22, PWS∗21, KPACO21],
including dedicated approaches to change poses [TEB∗20, LD21].
However, 3D-coherent editing with 2D generators is challenging.

As a remedy, 3D generative models internally employ a 3D rep-
resentation, which is turned into images using differentiable render-
ing. This gives considerable control over the generated image con-
tent without requiring explicit supervision with 3D data [HMR19].
Most commonly, NeRF-like representations are used for their ap-
pealing properties during training [SLNG20, CMK∗21, DYXT22],
but other representations have also been considered [GSW∗22].
Rendering an image and, consequently, training the model is very
costly when using a volumetric representation and does not scale
well to higher image resolutions. Therefore, many attempts have
been made towards scalable generator architectures and train-
ing procedures [STWW22, GLWT21, CLC∗22, ZXNT21]. No-
tably, EG3D [CLC∗22] uses a triplane representation that de-
couples feature generation from ray marching, paired with a
lightweight MLP for efficient volume rendering. Images are ren-
dered at low resolution and then upsampled by a super-resolution
network. Our approach is inspired by EG3D, as it allows scalable
and high-quality sample generation, but we significantly extend the
architecture with a physically-based lighting and shading model as
well as careful modeling of the camera distribution.

Injecting inductive biases into a 3D generative model aids the
disentanglement of semantic attributes and enables more fine-
grained control over the generated images [ZZZ∗18, TBRP∗22].

An instance of this approach is compositionality in the form of the
explicit separation of foreground and background in object-centric
scenes [NG21b, XLSL22]. We develop this powerful idea further
by separately generating our object of interest (the car) and using
an HDR 360◦ environment map for high-quality physically-based
lighting.

An orthogonal line of recent research focuses on 3D genera-
tion using diffusion models [PJBM22, LGT∗23, WLW∗23]. While
showing great promise, these approaches are currently in an early
stage and, different from our GAN-based approach, do not allow
interactive sampling of the latent space, limiting their flexibility.

2.3. Camera Distributions in Generative Models

3D generative adversarial models build on a lossy stochastic pro-
jection [BPD18] to learn a distribution of 3D scenes from 2D image
observations. During training, each generated 3D scene is differen-
tiably rendered from a camera to produce an image that is passed
to the discriminator. For this to work, the distribution of camera
parameters needs to be closely matched to the camera distribution
that gave rise to the training dataset.

This camera distribution can be modeled in an ad-hoc fash-
ion, e.g., by assuming that the camera extrinsics follow a simple
distribution, while the intrinsics are heuristically determined and
fixed [SLNG20, CMK∗21, ZZZ∗18]. A more faithful distribution
of camera extrinsics can be obtained by analyzing the poses of the
depicted objects in the training data using computer vision tech-
niques [CLC∗22]. However, not considering the camera intrinsics
frequently leads to distortions of proportions. This is a particularly
important issue when considering 360° views, which tend to reveal
global disproportions quickly. As a remedy, the distribution of all
camera parameters can be jointly learned during training [NG21a].
We show that this approach leads to sub-par results compared to
our hybrid strategy of estimating camera extrinsics from the train-
ing data, and learning the intrinsics as well as refined extrinsics
jointly with the generator. PanoHead [AXS∗23] employs a similar
strategy for 360◦ view synthesis, but only considers camera extrin-
sics. 3DGP [SSX∗23] considers field of view and look-at point for
diverse in-the-wild datasets, but is restricted to frontal views. Our
design allows us to resolve ambiguities that give rise to geomet-
ric distortions in the generated 3D scenes, including the Vertigo ef-
fect (Fig. 3), which has been shown to play a crucial role for precise
camera control in generative models [LD21].

2.4. Relightable Generative Models

Obtaining control over lighting in generative models is an emerging
research field. Since the latent space of a trained generative model
encodes all image properties including lighting, an informed ma-
nipulation of latent codes can be used to coarsely relight the gen-
erated images [HHLP20, AZMW21, BF22]. This is in contrast to
our approach that injects physical light transport into the model to
obtain precise control over lighting.

In the 3D setting, ShadeGAN [PXL∗21] employs a simple Lam-
bertian shading model and directional lighting. We show that this
design does not reproduce well the intricate high-frequency view-
dependent effects of our setting. Volux-GAN [TFM∗22] extends
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the lighting to arbitrary environment maps, but requires pseudo
ground truth for supervision, which in turn needs to be obtained
from costly light stage data [POEL∗21]. Similar to our approach,
MesoGAN [DNR∗23] uses generative reflectance fields, but only
considers 3D texture shells and requires synthetic training data.

HeadNeRF [HPX∗22] proposes a parametric head model with
coarse control over the illumination. Similar to Volux-GAN, they
require a dataset with controlled lighting conditions. The recent
FaceLit method [RYCT23] enables relighting of human faces in
a Spherical Harmonics (SH) representation. However, it requires
knowledge of the lighting conditions (low-frequency SH coeffi-
cients) for each image in the training set, which we cannot esti-
mate for our dataset. NeRFFaceLighting [JCFG23] distills a pre-
trained EG3D into shading and albedo components using also a
SH lighting representation. Most similar to our method is Lumi-
GAN [DWW23], which uses environment maps for shading but, in
contrast to our work, focuses on visibility and diffuse illumination.

3. Overview

In this work, we develop a relightable generative model of cars,
which employs advanced physically-based shading under arbitrary
distant illumination in the form of environment maps. Importantly,
our model is trained from only in-the-wild image collections of cars
and a readily available dataset of environment maps, significantly
lowering the data requirements for successful training.

First, we deal with the challenge of estimating the distribution
of camera parameters used for projecting the generated 3D sam-
ples to 2D images (Sec. 4). This is important to obtain correct 3D
car shapes that can be viewed from arbitrary directions. Our solu-
tion consists of a hybrid strategy that first estimates the distribution
from the training data corpus, which is subsequently refined during
training.

Second, we devise a novel 3D generator architecture that en-
ables physically-based lighting and shading (Sec. 5), by building
a reflectance field generator in conjunction with a fixed-function
shading module. Concretely, during training, we sample: 1) an esti-
mated camera from the training data and a latent zcam used to adjust
the camera parameters with a neural module, 2) a latent zobj to gen-
erate a 3D representation of a car and 3) an environment map E
from an independent dataset. The complete model F can thus be
expressed as

I = F(zobj,zcam,E) (1)

where I is the resulting image with physically-based lighting. Our
trained generator can be used to synthesize 3D car samples that can
be lit by any environment map. At inference time we do not apply
the adjustment to the camera.

4. Estimating the Distribution of Camera Parameters

Reasonable pose information is critical in high-quality 3D gener-
ation, providing better quality when the images in the dataset are
enhanced with camera pose information [CLC∗22]. This informa-
tion is used in two ways: 1) a distribution of poses is used to choose
a pose for the generator and 2) a pose is provided together with each
dataset image to the discriminator as an additional cue.

In previous work, pose estimation techniques have been devel-
oped for datasets of objects with well-defined landmarks (eyes,
mouth, nose for faces, cats etc.). These datasets also typically have
a limited range of camera motion, since the objects are most often
viewed from the front [LD21]. Also, previous methods ignore in-
trinsics typically setting them to some fixed value; we show that for
the case of dataset with full rotations, this is insufficient.

We present a two-stage method for estimating the distribution
of camera parameters. We first find the poses of car images com-
bining a pre-trained pose estimator and traditional computer vision
tools (Sec. 4.1), and then we learn intrinsic and extrinsic camera
residuals during the GAN training phase (Sec. 4.2).

world 
coordinate 
system

camera
coordinate 
system

pi

ui

R, T

(a) (b)

Figure 2: (a) Illustration of the PnP procedure used to recover
poses for cars. (b) Example of the projection of the bounding box
using the estimated pose.

4.1. Estimating Camera Extrinsics

The first step of our approach is to estimate the extrinsic parameters
of each image in the dataset that is used by the GAN. We first in-
vestigated the quality of the best existing estimators. Most such so-
lutions only provide a subset of the camera parameters we require.
Specifically, the recent EgoNet [LYLC21] method is pre-trained on
autonomous driving data and estimates camera rotations only. The
autonomous driving data [GLSU13] is quite different from the car
images we handle, and this domain gap reduces the accuracy of the
pose estimator networks.

To estimate extrinsic parameters, we start with the output of
EgoNet and estimate the camera-to-world transformation matrix
for each image in the dataset using computer vision techniques.
Even though EgoNet only estimates rotations, it outputs intermedi-
ate 2D key-points corresponding to the projection of the 3D bound-
ing box of the car. We leverage these points to build a pose es-
timator based on Perspective-n-Point (PnP) [HZ03], an optimiza-
tion procedure that solves for the full world-to-camera matrix given
camera intrinsics and a set of 3D points and their 2D projections.

We create a fixed-size canonical bounding box centered at the
world origin as a proxy for the 3D bounding box of the car. Ideally,
the projection of the 3D points pi of the canonical box should match
the detected 2D key-points. The 3D points pi in world coordinates
and their corresponding 2D points in image plane coordinates ui
are related by a change of basis (world-to-camera) and a projection
given by the camera intrinsics matrix K with focal length f and
offset (cx,cy) (Fig. 2a). To apply PnP, we fix the intrinsics matrix
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Figure 3: Vertigo effect. Left: The camera has a narrow FOV and is
located far away from the car. Right: The camera has a wide FOV
and is located close to the car. Notice how the car has the same pro-
jected size in both cases. We model the corresponding ambiguities
in the distribution of cameras to yield distortion-free 3D shapes that
look plausible from any viewpoint.

by setting the principal point at the center of the image plane (cx =
cy = 0.5), and the focal length f corresponding to a field of view
of 50◦ degrees as a first approximation. For this intrinsics matrix,
the PnP solver finds the world-to-camera matrix that minimizes the
reprojection error, and we then invert it to obtain the camera-to-
world matrix, with rotation R and translation T. An example of the
projected 3D points of the bounding box is shown in Fig. 2b.

We apply this process to each image in the dataset of cars, pro-
viding approximate pose information for training. The discrimina-
tor is conditioned on the camera pose for both real and generated
images. To synthesize an image during training, we randomly sam-
ple a camera for the training dataset and apply a learned adjustment
described next.

4.2. Learning the Distribution of Camera Residuals

There is a well-understood ambiguity between the field of view
and camera distance (see Fig. 3). Moreover, these two values are
often correlated, which can encourage the generator to synthesize
distorted shapes of cars when using a fixed field of view.

For this reason, we learn a residual for the focal length, the prin-
cipal point, and the camera distance during GAN training. To do
so, we add a small camera adjustment network A(zcam,R,T) to
our pipeline that takes the estimated extrinsics R,T and a random
latent vector zcam as input and outputs residuals

∆ f ,∆cx,∆cy,∆d =A(zcam,R,T) (2)

For the intrinsics, these residuals are simply added to their re-
spective base parameters. The camera position T is updated by ap-
plying a ∆d shift along the T

||T|| direction. The camera adjustment
network handles the ambiguities in the intrinsics and prevents the
ambiguities from showing up as distortions in the generated shapes.

We implement the camera adjustment network as a one-layer
styled-convolution [KLA∗20] with a tanh activation that takes zcam
as input and is modulated by the camera extrinsics via a mapping
network. During training, we randomly sample a camera from the
distribution of estimated poses and apply this network to obtain the
adjusted parameters (intrinsics and extrinsics), which we denote
c for simplicity. The images are then rendered using the adjusted
camera c.

Using this approach improves overall quality, reducing the effect
of distortions and allowing the network to generate more consis-
tent car shapes. Without this correction during training, cars with
the same poses would be generated centered at a slightly different
position, scale, and suffer from the vertigo effect. (see Sec. 7.5).

5. Physically-Based Lighting for 3D GANs

Our goal is a generative model capable of: 1) realistic rendering
and 2) interactive performance. The main requirement for realis-
tic rendering is to properly model reflections and in particular, the
Fresnel effect that is pronounced in the shiny car paint materials
and to shade with the overall environment lighting. Also, efficient
rendering is essential for user interaction and most importantly to
render the millions of images required to train the model. We first
present our shading model (Sec. 5.1), that requires the generation
of a base color (Sec. 5.2) and efficient computation of normal maps
(Sec 5.3). With these elements we can then perform efficient image-
based lighting (Sec. 5.4). An overview of our architecture is given
in Fig. 4.

5.1. Shading Model

Consider the rendering equation for a scene without emissive sur-
faces:

Lo(x,ωo) =
∫
Ω

Li(x,ωi) f (x,ωo,ωi)cosθωi dωi (3)

where Lo(x,ωo) is the outgoing radiance at point x in direction ωo,
Ω is the hemisphere of directions around x and Li is the incoming
radiance at x taken in direction ωi. The material is described by its
Bidirectional Reflectance Distribution Function (BRDF) f , and the
incoming light is modulated by the cosine of the angle θωi between
the incoming light direction and the normal.

We use a simple Lambertian model for the diffuse,
and a microfacet-based BRDF for the specular compo-
nent [CT82, WMLT07]:

f (x,ωi,ωo) =
ρd
π︸︷︷︸

diffuse

+
F(ωi,n)G(ωi,ωo,n)D(n,α)

4cosθωi cosθωo︸ ︷︷ ︸
specular

(4)

where ρd is the diffuse albedo, n the surface’s normal, and α

the roughness (set to 0.2 throughout). We parametrize the diffuse
and specular terms of Eq. 4 with a simplified version of Disney’s
model [Bur12] {

ρd = (1−m)b
F0 = (1−m)Fdiel

0 +mb
(5)

where F0 is the specular reflectance at normal incidence, b is the
base color, m is the metallic parameter which we set to m = 0.7
(ranging from 0 for dielectrics to 1 for metals), and Fdiel

0 = 0.04
is a typical approximation for the specular reflectance at normal
incidence for dielectrics [Kar13].

To use this shading model during training, we need to generate
the base color b and efficiently compute normals so we can evaluate
the values of cosθωi and cosθωo in the equations above.
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zcam

Adjustment 
Network

Figure 4: Our method is divided into two main steps. First, we sample a random vector zobj ∈ R512 and generate a volumetric representation
of triplane features. During training, we also sample a camera from the estimated poses of the training data, and apply our camera adjustment
A with latent zcam ∈ R512. At inference, the camera is set by the user and the adjustment is not applied. To render from a specific camera
viewpoint, we cast a ray for each pixel and sample positions along the ray to compute their corresponding triplane features, which are decoded
into base color and density using a lightweight decoder MLP (Sec. 5.2). The base color and density are volume-rendered using Eq. 6. We also
compute the surface normals by backpropagating the density through the decoder w.r.t to the position of the sample (Sec. 5.3). Second, we
sample an environment map E from our dataset and shade our car representation using the efficient physically-based approximation (Sec. 5.4)
of a microfacet BRDF (Sec. 5.1). We render the images at 128×128 for efficiency (and memory constraints during training) and then apply
a super-resolution network to reach 256×256. Green denotes trainable neural networks and blue fixed functions.

5.2. Base Color Generator

We generate the base color b required by our shading model (Eq. 5)
using a triplane feature generator [CLC∗22] subsequently decoded
by a lightweight MLP (Sec. 6.3) into density and base color and
then volume-rendered.

To synthesize the base color during training, we use the adjusted
camera parameters c (intrinsics and extrinsics) for rendering. To
render a pixel, we cast a ray r(t) = o+ td from the camera’s origin
o with direction d. We then sample N points xi along the ray and
compute their triplane features Fi = Fixy +Fixz +Fiyz , which are de-
coded by a lightweight MLP into density σi and base color bi. Us-
ing volumetric rendering [MST∗20], we obtain the final base color

b(r) =
N

∑
i=1

biwi (6)

for the pixel, where wi = (1−e−σiδi)e−∑
i−1
j=1 σ jδ j , and δi = ti+1 − ti

is the spacing between samples.

5.3. Efficient Normal Computation

The normal at any point x can the computed by taking the derivative
of the density with respect to the position using automatic differen-
tiation [BBJ∗21, BJB∗21, PXL∗21]

n(x) =− ∇xσ(x)
||∇xσ(x)|| (7)

However, doing this for all the samples on the viewing ray
used during rendering (often hundreds per pixel [MST∗20]) is pro-
hibitively expensive in terms of memory footprint. An alternative
and more efficient approach to estimate the normal for the surfaces
intersected by a ray r(t) = o+ td, is to compute the expected termi-
nation point xe, i.e., the point corresponding to the object’s surface,

directly from the weights wi used for volume rendering (Eq. 6)

xe = r

(
N

∑
i=1

witi

)
(8)

and then take the derivative of the density with respect to
xe [BJB∗21]. However, we observed that using only xe for the es-
timation produced noisy results in practice. To address this, we
robustly estimate the normal vector by sampling a few points Ne
along the ray that fall into a small neighborhood [−δ,0] in front
of xe, with δ = 0.05 and Ne = 10 samples (we found this choice
to be robust; halving/doubling δ did not affect quality). We then
combine the normal estimation of each point using the volume ren-
dering equation, similar to ShadeGAN [PXL∗21]:

n(xe) =
1
Z

Ne

∑
j=1

w j
−∇xσ(x j)

||∇xσ(x j)||
(9)

where Z is a normalization constant to ensure unit norm. The main
difference between our approach and ShadeGAN is that we only
use points near the expected termination instead of all the samples
from volumetric rendering. After obtaining the normal map, we ap-
ply an edge-preserving bilateral filter guided by the base color im-
age to reduce blocky artifacts.

5.4. Efficient Image-Based Lighting

Given the base color and normal maps, we shade this representation
using image-based lighting leveraging the split sum approxima-
tion [Kar13]. This method consists of splitting Eq. 3 into two terms,
incident light and BRDF, and storing them in precomputed tables
for an efficient fetch at runtime. This approximation results in two
precomputations: one for the diffuse term and one for the spec-
ular term. The diffuse contribution provides an exact formulation
of the convolution between the incoming light and the Lambertian
term, which can be precomputed and stored in a single cubemap.
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The incident light of the specular term is encoded in a pyramid of
mipmapped environment maps, whose depth is parameterized by
the roughness α. The BRDF approximation in the specular term
consists of a lookup table parameterized by the roughness α and
the cosine of the normal and viewing direction cosθωo .

We follow the implementation of the Filament Engine [GA23]
for our precomputation and shading. After shading, we compos-
ite with a black background, based on a mask recovered from the
density. Finally, the image is tone-mapped [RSSF02] and converted
into sRGB space [Sto96]. For the final visualization, we compos-
ite our rendering with the environment map used for shading, which
we map to a hemisphere to avoid the impression that the car is float-
ing in the air. We also add a ground shadow based on the signed
distance function of a rounded rectangle using the world space co-
ordinates to improve perceived realism.

6. Data, Generator, and Training Loss

The pose and mask estimation along with our efficient shading
model are two key elements that allow our method to generate re-
lightable cars viewable in 360◦. Generating both the environment
map and the foreground object with two generators is much more
challenging. Different from faces, the appearance of cars is dom-
inated by reflections, and as a result, the environment map needs
to be high resolution and much more detailed to create a realistic
final image. In our experiments, we found that this task is too hard
for the environment map generator, which gives the discriminator
an unfair advantage leading to unstable training. To overcome this
issue we choose to estimate foreground masks to remove any back-
ground pixels and use an auxiliary dataset of environment maps for
shading.

In this section, we first explain how we preprocess the car dataset
to create the masks (Sec. 6.1). We then give details about the
dataset of environment maps which we use to learn variable light-
ing (Sec. 6.2). Finally, we explain how we modified the generator
to allow for more robustness (Sec. 6.3 and Sec. 6.4) and describe
the loss and regularization we use for training (Sec.6.5).

6.1. Car Dataset Preprocessing

We train our model on the CompCars dataset [YLCLT15]. For each
training image, we estimate the pose as described in Sec. 4.1.

Since we want our generated images to contain only the fore-
ground car we also need to estimate a mask for each image. We
achieve this using a text-based detection network [LZR∗23] to ob-
tain precise bounding boxes, followed by the state-of-the-art Seg-
ment Anything Model (SAM) [KMR∗23].

Finally, we pad the images to be square, and resize them to the
target resolution of 256 × 256. We also horizontally mirror each
image and its pose to augment the dataset [CLC∗22].

6.2. Environment Maps

As we mentioned, we cannot estimate or learn the distribution
of environment maps during training, but we still need to ex-
plicitly provide the illumination conditions to our shading model

to create the final image. The environment maps have a signif-
icant impact on the generated cars through the specular and dif-
fuse shading so they need to be detailed and exhibit a wide range
of variation. We have found that using an independent environ-
ment dataset provided high-quality results while maintaining sta-
ble training. Specifically, we use environment maps from the Laval
Outdoor dataset [HGAL19] and freely available online resources
(PolyHaven, iHDR) to shade the cars during training. Finally, we
adjust the brightness of the environment maps to better match the
lighting conditions of the real images.

6.3. Triplane Reparametrization for the Generator

We observed that the original triplane architecture from
EG3D [CLC∗22] struggled in our more challenging case of 360◦

car images. As with EG3D, we start from a random latent vector
zobj ∈ R512 and use a StyleGAN2 generator G to synthesize a grid
of triplane features that define the 3D layout of the object. We ob-
served that the typical approach of synthesizing N×N×96 feature
maps and directly taking the three N ×N × 32 feature planes (xy,
xz, and yz) from it failed to effectively disentangle the triplanes in
our 360◦ setup.

To address this, we propose a simple yet effective reparameteri-
zation of the triplanes inspired by neural texture warps. We use G
to generate N ×N × 32 feature grid and then explicitly map three
regions of the grid to each plane by simply transforming world co-
ordinates xyz to reparametrized grid coordinates. Concretely, we
map the bottom half of the grid to the side plane (yz), the top left
to the horizontal plane (xz), and the top right to the vertical plane
(xy) (see Fig. 14). Since now each plane occupies only a portion
of the triplane image, we increase its resolution from 256 to 512
to compensate for that. This reparameterization results in more in-
terpretable features and smoother surfaces (notably on the sides)
because the decoder does not have to disambiguate between the
superimposed parts of the car.

6.4. Superresolution Network

Similar to previous work [CLC∗22, GLWT21, AXS∗23], we use a
super-resolution network due to performance constraints in mem-
ory and speed. We base our architecture on StyleNeRF’s upsam-
pling blocks [GLWT21], which include pixel-shuffle for faster con-
volutions [SCH∗16] and low-pass filtering before increasing the
resolution of the layer to better address aliasing.

6.5. Regularization and Training Loss

To successfully train our generator to produce base color (rather
than radiance) we apply several regularizations. The problem we
solve is more complex than that of the standard 3D GAN genera-
tors, since we need to find the base color that, given the environ-
ment map and our shading model, will result in rendered cars that
are realistic.

Density Regularization. Following EG3D, we penalize local
variations on the density with an ℓ1 loss

Lden =
1
N

N

∑
i=1

||σ(xi)−σ(xi +δxi)||1 (10)
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where δxi is a small perturbation sampled from a Gaussian distri-
bution.

Base Color Regularization. We also penalize local variations
of base color with an ℓ1 loss between nearby points to encourage
smooth variations

Lbase =
1
N

N

∑
i=1

||b(xi)−b(xi +δxi)||1 (11)

Binary Density Regularization. Since we use surface-based
shading, we encourage our model to produce well-defined surfaces
without floaters. For this, we include a loss term to encourage bi-
nary density

Lbinary = ||σ̄−max(σ̄,σmin)||1 (12)

where σ̄ = 1
N ∑

N
i=1 σ(xi) is the average density, σmin = 0.125. This

loss activates when σ̄ falls below σmin to discourage degenerate
cases where the final image is being reconstructed mostly by the
decoder and superresolution module and not from actual geometry
generated by the triplanes.

We train our model using a non-saturating adversarial
loss [GPAM∗14] with R1 regularization [MGN18] with γ = 5. Our
overall training objective also includes the regularization terms:

LGAN +
γ

2
LR1 +λdenLden +λbaseLbase +λbinaryLbinary (13)

We set λden = 0.25, λbinary = 0.25 and λbase = 2.5. All network pa-
rameters, including the camera adjustment network from Sec. 4.2,
are trained jointly end-to-end. Unlike other methods that use a pro-
gressive training schedule that first generates radiance and then
transitions to reflectance for shading [BBJ∗21, BJB∗21, DWW23],
we can directly start training with the reflectance representation
thanks to our illumination prior. We initialize the training by di-
rectly generating the base color and shading with our environment
maps; we found this worked better, indicating that our method is
capable of directly generating intrinsic appearance.

For training, we first render the low-resolution images at 64×64
for 5400K images and then resume rendering them at 128× 128
until 9400K images. The total number of iterations corresponds to
40 hours of training on 8 A100 GPUs using a batch size of 32. We
did not observe noticeable improvements with longer training. We
also use ADA augmentations [KAH∗20] but limit its probability to
0.3 to avoid unstable behavior. For volume rendering, we use 64
samples for both the coarse and fine sampling [MST∗20].

7. Results and Evaluation

We first show results generated using different latent codes for the
GAN generator, with different views lit by several environment
maps (Fig. 5), the base color, and a grey shaded car to illustrate the
quality of the normals and the mask (lefthand side of the figure).
We also show extracted meshes (Fig. 6). Please also see the sup-
plemental video where the accurate motion of highlights is clearly
visible.

Moreover, the decoupling of the generation process into base
color synthesis and physically-based lighting enables our model to
perform material editing (Fig. 7).

We next provide an evaluation of our solution that allows multi-
view consistency and with consistent (re)lighting. Specifically, we
first discuss a baseline for pose estimation, demonstrating that pro-
viding good poses is necessary to obtain any reasonable results.
Evaluating the quality of our multi-view and lighting consistent
method is hard, especially using quantitative measures. We first
present a qualitative comparison, and then a quantitative evaluation
based on GAN inversion of synthetic data, that provides ground
truth to compute error metrics. We also present several ablations
that demonstrate the relative importance of each component of our
method.

7.1. Camera Estimation

Our pose estimation and refinement is essential to allow 360◦ ren-
dering of cars. To demonstrate this, we developed a best-effort
baseline, building on CAMPARI [NG21a], a method that jointly
estimates the camera distribution during GAN training. To do so,
we use their camera generator network that consists of an MLP
that maps a uniform prior camera distribution to predicted cameras
without conditioning the discriminator on the pose. We use this in-
stead of our precomputed poses in our setup and train end-to-end.

This approach did not give satisfactory results; the training failed
to generate consistent geometry and appearance of cars and is prone
to instabilities. We show examples of the best hand-picked results
in Fig. 8. We hypothesize that this is because in our method, we
estimate the pose for each image and then condition the discrim-
inator on the poses during training, whereas CAMPARI estimates
the distribution of cameras (not individual cameras). Estimating in-
dividual cameras enables discriminator conditioning, which guides
the generator toward generating cars in a canonical position.

7.2. Qualitative Comparisons

We qualitatively compare our approach with three state-
of-the-art 3D-aware generators: StyleNeRF [GLWT21],
PanoHead [AXS∗23] and EG3D [CLC∗22]. It is important
to note that in this comparison, we provide our poses from Sec. 4
to PanoHead and EG3D; we thus denote these PanoHead+ and
EG3D+ from now on to indicate that the results already include
one of our contributions. The qualitative comparison is shown in
Fig. 9 and in the supplemental video where we show 360◦ videos
for all methods. We also tried to train GIRAFFE HD [XLSL22] but
the method failed to produce usable results on our masked dataset.
For Table 1, we report the FID of the original publication. Despite
doing 360◦ rotations, GIRAFFE HD has noticeable distortions
when moving the camera (e.g. different plate positions and back
light shapes – please refer to their supplemental).

StyleNerf can perform 360◦ rotations for some latents but pro-
duces discontinuities in shape and appearance when moving the
camera. While EG3D+ appears to hallucinate highlights that can
sometimes change with viewpoint, these changes are inconsistent
with realistic motion of reflections since the method has no no-
tion of lighting. Such changes with viewpoint are often modeled
by changes in density, sometimes resulting in floaters (see first col-
umn of Fig. 9, where part of the car is masked by a floater). The
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Figure 5: We showcase different car instances (left to right) from different views (top to bottom) with different environment lighting. On
the top we show intrinsic images: the alpha mask, normals and base color for each car. Below we include the environment maps used for
shading.

Figure 6: Extracted shapes from our model. Note that the bilateral
filterting is not applied here.

inconsistent rendering of reflections is clearly visible in the accom-
panying video. PanoHead+ avoids the floaters, but produces even
less physically accurate renderings of the reflective car-body ap-
pearance, essentially “baking” highlights into the 3D representa-
tion. This is clearly visible in the video. In contrast, our method
creates only the car density without any undesired floaters (Fig. 16)
and our physically-based shading module correctly synthesizes
view-dependent reflections. We argue that a proper model of light
transport, as in our method, is important for better perceived re-
alism of the 3D cars with respect to purely radiance-based ap-
proaches [AXS∗23].
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Figure 7: Our model enables material editing. Given a latent, we
modify the hue of the base color in HSV color space and, from top
to bottom, change the metallic parameter m ∈ {0.2,0.8}. We also
vary the roughness α ∈ {0.2,0.4,0.6,0.8} for a different car.

Figure 8: Examples of our best-effort baseline trained without our
pose estimation, building on CAMPARI [NG21a] instead.

7.3. Quantitative Evaluation

Evaluating the multi-view consistency of generative models is
a challenging task. Usual metrics such as FID [HRU∗17] and
KID [BSAG18] only focus on the similarity between the train-
ing and generated distributions in image space, without taking into
consideration the 3D capabilities and physical correctness of the
model. In addition, these metrics only measure distribution simi-
larity and not strict realism. Since we shade with an independent
set of environment maps because we do not have access to the il-
lumination conditions of the car dataset, our method produces out-
of-distribution images in terms of lighting, which hurts the scores
despite the generated images being realistic [BF22] (see Table 1).

We introduce an evaluation protocol based on GAN inversion
to quantify how successful our method is in generating multi-view
and lighting consistent 3D models using synthetic data which pro-
vides ground truth. We base our evaluation on PTI [RMBCO22], a
state-of-the-art approach for single-image inversion. Different from
PTI, whose aim is to faithfully invert an image for editing in latent
space, our goal is to assess the capability of the model to gener-
ate consistent content that matches a known reference. For this,
we use synthetic 3D models of realistic cars from which we can
produce images with known cameras, both for “training” inversion
and for separate unseen test views for evaluation. Concretely, we
project a set of M multi-view images {Ii}M

i=1 with cameras {ci}M
i=1
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Figure 9: Our method is multi-view consistent and produces real-
istic specular highlights when doing 360◦ camera rotations around
the car. Note how EG3D+ has floaters (leftmost image where the
top of the car is occluded), while PanoHead+ has “baked” high-
lights.

Table 1: To evaluate the distribution of generated images, we report
the FID and KID (×103) between the entire dataset and 50K gen-
erated images. The † value is taken from the original publication
(trained with backgrounds), where the FID is computed between
20K real and generated images.

FID ↓ KID ↓ 360◦ Relighting

GIRAFFE HD† 8.36 - ✗ ✗

StyleNeRF 4.67 1.66 ✗ ✗

EG3D+ 8.91 2.80 ✓ ✗

PanoHead+ 7.07 2.01 ✓ ✗

ShadeGAN 48.94 35.65 ✗ ✓

Ours 17.45 4.92 ✓ ✓

into latent space. In particular, we take a front, back and two side
views. Then, we compare Mtest generated images from unseen cam-
era viewpoints {ci}Mtest

i=1 with their corresponding reference {Ii}Mtest
i=1

obtained from the 3D model.

For inversion, we first optimize for a vector w∗ ∈ W in latent
space using Adam [KB14] with a learning rate of 0.1 and betas
(0.9,0.999) for 500 iterations:

w∗ = argmin
w∈W

1
M

M

∑
i=1

LLPIPS(Ii,F(w,ci))+Lℓ2(Ii,F(w,ci)) (14)

Second, we fine-tune the learnable parameters of our model F
while keeping w∗ constant, using Adam with a learning rate of
3× 10−4 and the same betas, for another 500 iterations. We also
remove two bands of 75 pixels on the top and the bottom of the

2024 Authors version of paper published in Computer Graphics Forum (Eurographics 2024).
© The Authors.



/ Physically-Based Lighting for 3D Generative Models of Cars 11 of 16

images to focus more on the car.

F∗ = argmin
F

1
M

M

∑
i=1

LLPIPS(Ii,F(w∗,ci))+Lℓ2(Ii,F(w∗,ci))

(15)
Once we have the pair (w∗,F∗), can we generate a new set of

images corresponding to unseen cameras {ci}Mtest
i=1 and compute er-

ror metrics with the reference views {Ii}Mtest
i=1 for those cameras. We

provide FLIP [ANAM∗20], a perceptually motivated image error
metric, as well as PSNR, SSIM, and LPIPS. Averaged results for
four cars with four test views each are summarized in Table 2 and
illustrated in Fig. 10.

As in the qualitative comparison, StyleNerf produces poor qual-
ity results. EG3D+ does not represent lighting well compared to
the ground truth. PanoHead+ is better but is still worse at faith-
fully reproducing highlights than our solution. Both EG3D+ and
PanoHead+ create a representation based on the four training views
and interpolate between them. We hypothesize that the more suc-
cessful results of PanoHead+ are due to the improvements com-
pared to EG3D+ for 360◦ viewing, which in turn allows higher
quality interpolation. Also, PanoHead+ inversion better captures
fine details of the front of the car. Recall however, that in contrast
to our solution (see Fig. 11), neither EG3D+ nor PanoHead+ allow
relighting after inversion.

Table 2: We compare the multi-view consistency of our method and
other state-of-the-art 3D GANs by inverting a set of 360◦ images
into latent space and then generating previously unseen test views.

FLIP ↓ PSNR ↑ SSIM ↑ LPIPS ↓

StyleNeRF 0.230 17.65 0.538 0.340
EG3D+ 0.177 20.11 0.696 0.166
PanoHead+ 0.143 21.97 0.789 0.101

Ours 0.125 23.10 0.780 0.132

7.4. Relighting

For most previous 3D GANs that have attempted relighting we
cannot provide a comparison, since some methods require con-
trolled lighting conditions [HPX∗22, TFM∗22] or knowledge of
lighting for each training images [RYCT23], while for Lumi-
GAN [DWW23] no code is available at the time of submission.

We thus compare the relighting capabilities of our model with
ShadeGAN [PXL∗21]. Since this method cannot handle 360◦ ro-
tations, we invert only a single image using the same method as
that described above, but following ShadeGAN’s inversion proce-
dure, we also optimize for the light direction. For a fair comparison,
given that ShadeGAN uses a Lambertian model, we use an environ-
ment map with a soft area light that approximates the appearance
ShadeGAN can handle. For the test views we horizontally shift the
environment by ±45◦ in the azimuth direction.

Results averaged over four test cars with two test images for
each, are summarized in Table 3 and illustrated in Fig. 12. We see
that our method achieves better quantitative results compared to the
ground truth, and that ShadeGAN has more difficulty with both the
intensity and placement of highlights. In Fig. 12 we also show the

Test view FLIP Test view FLIP
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Figure 10: We compare the multi-view consistency of our method
by inverting a set of multi-view images and then changing the cam-
era pose. Every second column provides the pixel-wise FLIP error
map, showing that our method is the only one capable of moving
reflections in a physically accurate way.

normals; as we can see the normals produced by ShadeGAN fail to
correctly approximate the shape of the car.

Following ShadeGAN’s default CelebA setup, we trained at a
resolution of 128, with cameras sampled from a Gaussian distribu-
tion. We did not obtain satisfactory results when sampling cameras
on a 360◦ or even a 180◦ range. We also observed unstable behav-
ior when increasing the resolution to 256. To compute comparable
metrics for our method, we downsample our renders to 128.

Table 3: We compare the relighting capabilities of our method and
ShadeGAN by doing single-view inversion and then changing the
illumination conditions.

FLIP ↓ PSNR ↑ SSIM ↑ LPIPS ↓

ShadeGAN 0.148 22.69 0.786 0.094
Ours 0.106 24.46 0.809 0.096

7.5. Ablations

Camera Adjustment Network. We show the importance of learn-
ing the distribution of camera intrinsics. With our joint optimiza-
tion of the camera adjustment network during GAN training, at in-
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Figure 11: Since we decuple base color generator and physically-
based shading, we can perform GAN inversion with a given illumi-
nation and then relit with a different environment map. Note how
the highlights move when using a different environment map.
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Figure 12: We compare the relighting capabilities of our method
with those of ShadeGAN by inverting a car in latent space and then
changing the illumination conditions, shown on the bottom right of
the ground truth image. Every second column provides the pixel-
wise FLIP error map. We also show the normals used for shading.

ference time the cars are effectively generated at a canonical posi-
tion (Fig. 13a), and on a similar scale, avoiding excessively large
shapes (Fig. 13b). Lastly, distortions produced by the vertigo effect
are prevented (Fig. 13c-d)

Triplane Reparametrization. We propose a reparametrization
of the triplanes to achieve a better disentanglement between them
in our 360◦ scenario, which avoids the superposition of individ-
ual planes (Fig. 14). This has practical impacts on the quality of
our renders; it produces smoother surfaces without bumps (which
appear when the front of the car is superimposed with the sides),
which are particularly important on the side of the cars.

Bilaterial Filtering of the Normals. Applying an edge-
preserving filter trades-off reduced artifacts for smoother (yet ac-
curate) normal maps. We show an example in Fig. 15, where we
disable the filtering at inference time.
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Figure 13: Our camera adjustment network encourages the gener-
ator to synthesize cars of similar scale in a canonical position and
prevents distortions (e.g vertigo effect) in the shape distribution.

Original Triplanes Reparametrized Triplanes

Figure 14: Our reparametrization of the triplanes effectively dis-
entangles the features of each plane (xy, xz, and yz). In contrast,
the original triplane features are a superposition of each plane.
Reparametrized triplanes produce less bumpy surfaces, which is
particularly noticeable on the sides of the car.

Binary Bensity Regularization. The binary density term pro-
vides a strong constraint on the generated geometry, especially at
the beginning of training. Without it, our model cannot be trained
properly. Most notably, our method creates only the car density
without any undesired floaters (Fig. 16).

No Physically-based Shading. To showcase the importance
of the physically-based shading model in the perceived real-
ism of the cars, we compare it with the Phong model used in
FaceLit [RYCT23] with our prefiltered environment maps. Our
shading create more realistic metallic appearance with shiny reflec-
tions (Fig. 17), particularly noticeable on the sides of the car.
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Image Filter w/o Filter

Figure 15: The bilateral filtering of the normals produces smooth
normals and removes undesired blocky artifacts.
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Figure 16: Our binary density regularization helps remove unde-
sired floaters around the car.

7.6. Limitations & Future Work

Explicitly modeling the shading process allows us to relight un-
der arbitrary illumination conditions, but it also produces out-of-
distribution images in terms of lighting, which results in larger FID
and KID scores [BF22].

The shading model itself has some limitations: it is tailored for
cars and lacks effects such as multi-layered reflections and sub-
surface scattering. Integrating more sophisticated shading models
will probably require fine-tuning of the training process. A fully
learned appearance model including roughness and metallic is a
promising future work.

Our base color estimation is not perfect: there are still some
residual shadows and highlights that remain (see Fig. 5, left). It
is possible that a more sophisticated lighting model, and some ad-
ditional priors will allow the estimation to be improved.

Also, similar to previous work [CLC∗22, AXS∗23], our method
exhibits artifacts in the form of flickering texture (albeit more no-
ticeable due to the high-frequency reflections) inherited from the
StyleGAN2 architecture [KLA∗20] used for the super-resolution
network. Some form of temporal regularization would be interest-
ing avenues for future work.

8. Conclusions

We introduced a novel relightable 3D generative model capable of
synthesizing high-resolution images with interactive rendering for
360◦ viewing. We specialized in cars to illustrate the difficult case
of significant high-frequency reflections on shiny car bodies.

Phong PBR (Ours)

Figure 17: Physically-based rendering produces more realistic cars,
with accurate metallic appearance.

Our method builds on three components: 1) pose estimation and
refinement for training images, 2) the decoupling of the generation
process into base color generation and 3) physically-based lighting
with environment maps, and a specialized generator network archi-
tecture and training approach. Our method allows interactive image
synthesis under arbitrary illumination conditions, which we illus-
trated with multiple examples of different cars and lighting condi-
tioned. We also proposed a quantitative evaluation strategy based
on synthetic data and GAN inversion, demonstrating the success of
our approach.

Each algorithmic components contributes significantly to its suc-
cess of our method, that is the first to allow a truly relightable 3D
GAN for shiny objects such as car bodies while being fully multi-
view consistent.
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