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Figure 1: Our method receives as input an initial terrain (t = 0y , left), a map of the tectonic uplift, and a time t. Thanks to the analytical
solutions of the stream power law, our method outputs the eroded terrain at time t, without the need of a costly simulation. Therefore, a user
can easily explore the time continuum, from the early erosion of the input terrain (t = 200ky, center left) to the steady state equilibrium
between uplift and erosion (t = 1.6My, right).

Abstract

Terrain generation methods have long been divided between procedural and physically-based. Procedural methods build upon
the fast evaluation of a mathematical function but suffer from a lack of geological consistency, while physically-based simula-
tion enforces this consistency at the cost of thousands of iterations unraveling the history of the landscape. In particular, the
simulation of the competition between tectonic uplift and fluvial erosion expressed by the stream power law raised recent inter-
est in computer graphics as this allows the generation and control of consistent large-scale mountain ranges, albeit at the cost
of a lengthy simulation. In this paper, we explore the analytical solutions of the stream power law and propose a method that is
both physically-based and procedural, allowing fast and consistent large-scale terrain generation. In our approach, time is no
longer the stopping criterion of an iterative process but acts as the parameter of a mathematical function, a slider that controls
the aging of the input terrain from a subtle erosion to the complete replacement by a fully formed mountain range. While analyt-
ical solutions have been proposed by the geomorphology community for the 1D case, extending them to a 2D heightmap proves
challenging. We propose an efficient implementation of the analytical solutions with a multigrid accelerated iterative process
and solutions to incorporate landslides and hillslope processes – two erosion factors that complement the stream power law.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

Terrains are ubiquitous in a large variety of graphics applications,
whether they form the background of virtual worlds or the stage
of many storytelling artworks. Mountains, in particular, stand out
from their monumental presence and the diversity of their features.

It is therefore unsurprising that research in computer graphics
has investigated the problem of generating and authoring mountain-
ous landscapes [GGP∗19]. Nevertheless, while several approaches
work well for small to medium-scale terrains (the scale of the river

to the valley) [EMP∗02,BTHB06,GMM15], for larger scales up to
the scale of the mountain range they lack geological consistency
which is prevailing in large mountain structures. Consistency is
achieved by approaches based on physical simulations [CCB∗17]
which are preeminent in this case. However, physical simulations
require the integration of the geological history of landscapes, lead-
ing in turn to long simulation time or numerous iterations before
reaching a suitable result.

Our work comes from the observation that there exist analytical
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solutions to the mathematical equation that expresses the forma-
tion of large-scale landscapes resulting from the competition be-
tween tectonic uplift and fluvial incision. Thanks to an efficient
implementation of these analytical solutions, we obtain a terrain
modeling tool that shares the benefits of a physical simulation, but
without the cost of thousands of time-stepping iterations. Instead,
the temporal component of the simulation becomes another param-
eter provided to the user, that controls the real-world duration of
the erosion process.

The stream power law is commonly used in geomorphol-
ogy [WT99, BW13] and now in computer graphics [CBC∗16,
SPF∗23] to model large-scale river erosion. Combined with uplift
- the tectonically-driven rate of elevation change of the mountain -
this results in a Partial Differential Equation (PDE) that describes
the formation of the mountain ranges over geological time. Early
studies in Earth sciences suggest that this equation admits analyt-
ical solutions [RTP13, Ste21] that readily provide a landscape at
a time t (Figure 1), without requiring the lengthy iterations of a
time-stepping scheme. However, these solutions use several sim-
plifying assumptions, for instance, that the terrain is initially flat.
We propose a new derivation and fast numerical implementation of
these solutions for the more general case, which enables us to reach
a larger range of applications, from the instantaneous generation
of large-scale mountain ranges to the controllable aging of a user-
provided terrain. Inspired by the implicit time-stepping scheme for
the stream power law [BW13, CBC∗16], our algorithm uses an or-
dering of the terrain grid cells, starting at the domain boundaries,
and following the river network upstream. This strategy comes with
a caveat illustrative of the challenges of porting the 1D solution
to the 2D setting: elevations are computed based on an order that
depends on the hydrology network, but the hydrology network it-
self depends on the elevations. Previous work [Ste21] developed
a fixed-point algorithm that iterates over the successive computa-
tion of the river network and then the elevations. Yet, this algo-
rithm converges slowly, requiring too many iterations to be applied
in an interactive editing context and assumes flat initial topogra-
phy. We therefore propose two solutions: one inspired by multigrid
approaches to accelerate the convergence, and another that allows
small deviations from the analytical solutions and uses optimiza-
tion to enforce the smoothness of the terrain surface. This added
freedom - without sacrificing the geological consistency - provides
more flexibility and allows user control. Finally, we observe that
the solutions to the stream power law yield a singularity that re-
sults in infinitely large slopes close to the ridges - where geologists
suggest that other erosion processes dominate [LD03]. Therefore,
we explore solutions to include approximations of other processes
such as hillslope and thermal erosion. We demonstrate the appli-
cability of our method through a variety of results, that show the
versatility of the analytical solutions that are able to quickly gener-
ate large-scale mountains (Figure 1, right), as well as providing a
fast physically-based erosion tool (Figure 1, center left).

To summarize, we claim the following technical contributions:
1) We extend the derivations of analytical solutions for the stream
power law and propose an efficient implementation that covers
a range of applications from the postprocess erosion of a user-
provided terrain to the generation of terrains ex nihilo. 2) We ac-
celerate the convergence between elevations and the river network,

with an accurate approachn inspired by multigrid and a more per-
missive one via optimization which allows for more control over
the hydrology network. 3) We incorporate other processes such as
hillslope erosion and landslides (thermal erosion).

2. Previous Work

Terrain generation methods are generally classified among three
main categories: example-based (or data-based), procedural, and
physically-based [GGP∗19]. Our new analytical model - inspired
by previous work in Earth sciences - is, in essence, a physically-
based procedural method.

Data-driven - or example-based - methods assemble terrains
from patches or statistics extracted from the topography of real
examples, typically captured by satellites. Initially inspired by
texture synthesis [ZSTR07, GMM15] and extended to machine-
learning [GDG∗17], these methods are fast, controllable, and pro-
vide an unmatched realism at a small scale.

However, data-driven methods are unable to ensure geological
consistency. While this is not noticeable on a small scale, inconsis-
tencies at a larger scale can have a critical impact for instance on
the river network, where some streams can end abruptly. Scott et
al. [SD21] demonstrated the negative visual impact of these incon-
sistencies and proposed a correction by carving a realistic river net-
work as a post-process. While this approach fixes the river network,
several inconsistencies in the distribution of valleys and elevation
remain and reduce the realism at a large scale.

Procedural generation [EMP∗02] builds terrains from a combi-
nation of mathematical functions, especially multi-frequency noise
that mimics the self-similarity of nature across scales [MVN68].
This mathematical foundation leads to methods that are extremely
fast, parallel, and unbounded in size. These approaches are usually
hard to control, although this issue has been recently alleviated, ei-
ther by local editing tools such as noise brushes [dCB09], global
interpolation around diffusion curves [HGA∗10], or in the gradi-
ent domain [GPM∗22]. It is, however, still difficult to ensure the
realism and consistency of the results. One solution is to build the
terrain around a procedural river network [GGG∗13] which ensures
hydrological consistency. Thanks to our analytical solution of the
physical equations, our model ensures consistency of the hydrology
network and the topography, and introduces a temporal parameter.

Physically-based methods were inspired by the geological knowl-
edge that landscapes are shaped by the combination of various
processes [WT99, WHBY22]: climate which modulates the rates
of erosion, and tectonics which controls the uplift rate (the rate
of vertical growth of the mountain). In computer graphics, re-
searchers initially modeled the most visible factor: erosion, which
was first used as a post-process over a procedural or user-modeled
terrain [MKM89]. This method was refined with data structures
and algorithms for strength-varying layers of rocks [RPP93,BF01],
and by improving the water model with Shallow Water equa-
tions [Ben07], Smoothed Particles Hydrodynamics [KBKv09] and
GPU implementations [VBHS11].

Methods that simulate hydraulic erosion handle the water dy-
namics explicitly, which, in theory, increases the physical accuracy
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of the erosion but introduces numerical constraints that limit them
to a smaller spatiotemporal extent. To compensate, the results are
scaled up, which therefore reduces the overall plausibility. In con-
trast, fluvial erosion methods implement models developed in ge-
omorphology, for instance, the stream power law [WT99]. These
laws abstract water physics under simpler proxies, e.g., the drainage
area that represents water flux (or discharge), which yields simu-
lations that can efficiently cover much larger time spans. There-
fore, fluvial erosion allows a tight coupling with the growth of
the mountain under tectonic uplift [CBC∗16] to model the forma-
tion of large-scale mountain ranges. Uplift was also proposed as a
guide for the user to shape the landscape [CCB∗17, SPF∗23]. We
build our analytical model upon the laws introduced by fluvial ero-
sion methods, but our mathematical treatment removes the need for
costly iterations inherent to simulations.

Earth sciences commonly use simulations to understand the for-
mation of mountains. The variety of models adapted to many use
cases is immense [CDM14] and out of the scope of the paper.
Therefore, we will focus on the family of methods shared with
computer graphics that build upon the stream power law [HK83,
WT99]. Several implementations were proposed: fast implemen-
tations of implicit solutions [BW13], enhancement of a numerical
model with analytical solution near the ridges [GWHB14], or the
inclusion of sediment deposition.

Early analytical solutions were introduced, first on models that
simplify the treatment of the water discharge [Luk72, Luk74] and
introduce the method of characteristics for erosion equations. This
idea was later extended to the stream power law [RTP13] that sim-
plifies the problem thanks to a translation to dimensionless vari-
ables. Eventually, Steer [Ste21] proposed a solution to the 2D prob-
lem and tested it with several scenarios, to study in particular the
response of the landscape to temporal variations in the uplift, which
is an important question in geomorphology. However, some ques-
tions were left open and we to answer them in this work, such as
the case where the initial terrain is not flat, which allows us to erode
existing terrains. Furthermore, their method used an iterative algo-
rithm to enforce the convergence of the analytical solution, which
we accelerate with an approach inspired by multigrid.

3. Background and overview

Geomorphology explains mountain formation as the competition
between mountain growth and fluvial erosion. In this section, we
will explain the underlying equations, show the challenges behind
analytical solutions, and provide a high-level overview of our algo-
rithms and data structures.

3.1. Landscape dynamics in geology

Mountain formation is generally associated with tectonic plate con-
vergence, mantle dynamics, and/or volcanic activity. In the context
of tectonic convergence, the eventual collision of the plates leads
to a thickening of the crust accommodated by visco-elasto-plastic
deformation, brittle rupture (faults), and folding of the rock lay-
ers [Avo03, GCG∗09]. The thickening leads to a vertical upward
motion of rocks towards the surface, referred to as rock uplift,

which competes with erosion and can lead to a progressive increase
in the surface altitude, called surface uplift [EM90]. Rates of rock
uplift and erosion vary in space and time and achieve values up to
a few millimeters per year in some mountain ranges.

The uplift is counteracted by erosion, which impacts the slopes
of the mountain and therefore its maximal elevation. Erosion comes
from many factors: water, glaciers, landslides, wind, and even an-
thropic or biological impact. Many models in geomorphology con-
sider only erosion by water, also called fluvial erosion. Indeed, the
fluvial network is considered the backbone of landscapes, and flu-
vial incision dictates the rate of landscape erosion [Whi04]. While
simple to model, fluvial erosion explains the main topographical
characteristics of most mountain ranges and has been the domi-
nant erosion factor over many geological periods - with the notable
exception of the last million years, where the Quaternary saw an
important increase in glacial erosion that leaves specific marks in
high altitude [PMD01, ENPL09, SHV∗12].

A first common modeling approximation is to consider surface
evolution as a detachment-limited process (as opposed to transport-
limited) where the evolution of surface elevation z is directly related
to the competition between rock uplift and erosion rate, and not to
the capacity of the rivers to transport or deposit sediments [How94].
In this setting, erosion is generally described using the stream
power incision model [HK83, How94, WT99, Lag14], where ero-
sion rate is a power law of the surface slope ∥∇z∥, and drainage
area A that acts as a proxy for the river discharge. The drainage area
A(x) is defined at a position x as the area of the drainage basin - or
catchment - upstream of x. Coupled with the uplift u, the Stream
Power Law expresses the rate of change of surface elevation:

∂z
∂t

= u− k Am∥∇z∥n, (1)

where k, m and n are erosion coefficients. Throughout the paper,
we will use some of the common values: m = 0.4 and n = 1. The
choice of n = 1, also commonly used in geomorphology, makes the
equation linear and therefore simplifies the derivation of the ana-
lytical solutions. While this choice barely impacts the result as the
valley profiles are mostly directed by the ration m/n, we acknowl-
edge that the actual values of m and n remain an open question in
geomorphology [Lag14].

Eqn. 1 is a linear hyperbolic Partial Differential Equation (PDE),
which can be interpreted as an advection of the initial terrain
z0 = z(t = 0) along the rivers, at a velocity k Am. This equation
admits analytical solutions in 1D that can be computed thanks to
the method of characteristics [Luk74, RTP13], and used to model
2D heightmaps [Ste21].

3.2. Challenges and algorithm

Throughout our implementation, we use a regular grid as our data
structure – a standard for terrains that eases the multigrid-inspired
technique that we introduce below. This grid initially stores the
user-specified uplift u, initial elevation z0, and boundary mask b:
each cell where b is True will force its altitude to remain constant:
z = z0. At least one cell should be specified as a boundary to ensure
that the erosion problem is well-posed. The grid is progressively
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Figure 2: From a user-provided initial terrain z0, uplift map u, and target time t (left) our method outputs the eroded terrain at time t.
Contrary to simulation-based approaches, our algorithm does not rely on a time-stepping scheme but uses the analytical solutions of the
stream power law. To compute these solutions, we rely on a multi-grid accelerated process that iterates over both the computation of the river
networks and the computation of the elevations predicted by 1D analytical solutions embedded in these rivers (center left). Optionally, the
user can choose to interrupt this iteration before convergence, for example, to preserve the initial river network, and in this case, we propose
an optimization-based approach to smooth the remaining discontinuities (center right).

augmented with all the intermediate values needed by our imple-
mentation, including the drainage area A. Our output is a regular
grid containing the final elevation z.

Analytical solutions were exposed in the geoscience litera-
ture [Luk74, RTP13, Ste21] but with some restrictions: either these
solutions are in 1D [Luk74, RTP13] and the proposed algorithms
are not straightforward to extend to 2D, or the solutions are in
2D [Ste21] but are restricted to a simplified case where the ini-
tial elevation z0 as well as the bounds z(b) are assumed to be zero,
and the uplift is constant in space. In Section 4, we detail our first
contribution which is the derivation and implementation of the an-
alytical solutions in the general case, compatible with a 2D setting.

We follow [Ste21] and order the computation along the river net-
work. This network consists of a set of trees that covers the ter-
rain and represents the progressive merging of high-altitude small
streams down to the larger rivers. We obtain the 2D analytical so-
lution by solving the 1D problem on each upstream path embed-
ded in the tree structures. Similarly to the previous implicit time
stepping schemes for the Stream Power Law [BW13,CBC∗16], we
separate the computation into two parts: first we accumulate the
drainage area by following the river directions from the high ele-
vations (ridges) of the terrain to the bounds, then we evaluate the
analytical solution upstream from the bounds to the ridges.

This strategy leads to a second issue that hinders the optimal
complexity of our algorithm on a stream tree: the elevations ob-
tained from the implicit solution depend on the ordering of the
nodes in the river network, which itself depends on the elevations.
In practice, this leads to the formation of discontinuities at the
boundaries of drainage basins. A solution is to use a fixed point al-
gorithm: start with the initial elevation z0, compute the correspond-
ing drainage A0, and then iterate over a progressively improving
sequence of elevations zi and Ai, that eventually converge to the
desired solution z. A straightforward implementation of this algo-
rithm converges [Ste21] but requires at worst a number of iterations
proportional to the length of the longest river in the terrain. In Sec-
tion 5, we propose two solutions to reduce the number of iterations
(Figure 2):

• We observe that the convergence speed is limited by the fact that
basin boundaries can only move by one cell per iteration, and

therefore introduce a method inspired by multigrid to move the
bounds across different scales.

• We propose an alternative strategy that does not require any
change in the drainage, but instead uses an optimization to find a
terrain as close as possible to the analytical solution but without
discontinuities.

We show how we can combine these two approaches to allow the
user to specify the desired accuracy of the final terrain in a con-
tinuum between the geologically accurate solutions provided by
multigrid and a result that preserves the hydrological features of
the input terrain, enforced by our optimization.

Our last challenge lies in the fact that the solutions to the Stream
Power Law lead to singularities close to the ridges: the amount of
water decreases when we approach the higher parts of the moun-
tain, which are therefore less impacted by erosion and eventually
degenerate into infinitely steep slopes. In practice, fluvial erosion
is negligible or even not applicable in these locations, in which
other erosion processes dominate. In Section 6, we propose some
geomorphological-inspired modeling strategies to mitigate this is-
sue, by adding terms that mimic other erosion factors, such as land-
slides (or thermal erosion) [MKM89], or hillslope erosion [BS97].

4. Analytical solutions of the stream power law

Analytical solutions of the stream power law describe elevations of
an eroded terrain at a given time t, without requiring the many iter-
ations of a time-stepping scheme. Existing 1D analytical solutions
in Earth sciences [RTP13] simplify the derivation thanks to dimen-
sionless variables, which complicates their algorithmic treatment.
We instead describe how to derive the solutions with the natural
variables and how to infer an efficient algorithm to evaluate them.

4.1. The method of characteristics for the stream power law

Eqn. 1, with n = 1, can be rewritten as:

∂z
∂t

= u− k Am ∇z
∥∇z∥ ·∇z, (2)

which falls in the category of hyperbolic partial differential equa-
tions and can be solved by the method of characteristics [RTP13,
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Ste21]. This method consists of finding a family of space-time
curves, called characteristic curves, along which the equation be-
comes an Ordinary Differential Equation [ZT86].

Our first observation is that the spatial component of the char-
acteristic curve follows the direction of the topographic gradient
∇z

∥∇z∥ . Intuitively, this means that the elevation at any point x in the
terrain will only depend on elevations downstream of x, by follow-
ing the path of steepest gradients. We call this path a river path as
this is the trajectory naturally followed by the water, and parame-
terize it by s, the distance between the bound (s = 0) and any point
on the path (Figure 3, left).

River path

Distance 

Bound  = 0

Distance 

Time Characteristic curves

, 1

, 1

, 2

Figure 3: We compute the analytical solutions along a river path
(left), parameterized by the distance s to the bounds. We add the
time component τ to define the set of characteristic curves (right),
each of them associated with a given position x and time t where
we want to evaluate the elevation. Here, the curve passing through
(x, t1) intersects the horizontal axis at D(x, t1), in which case the el-
evation z0 is advected from D(x, t1) (Eqn. 8). The curve associated
with (x, t2) intersects the vertical axis, suggesting that the system
already achieved steady-state (Eqn. 9).

Along this path, Eqn. 2 simplifies as:

∂z
∂t

= u(s)−a(s)
∂z
∂s

, (3)

where a(s) = k A(s)m. Note that we assume that A does not depend
on time – we observed that, after some time, the drainage A stabi-
lizes in the main river channels. A solution of Eqn. 3 was proposed
in Earth sciences [Ste21] with the assumption that u is constant in
space and varies in time, which is important for geomorphologists
who study the erosional response to tectonic perturbations. We pre-
fer an orthogonal approach where the uplift varies in space but not
in time, as we expect the uplift to be easier to control for the user
as a function of space alone [SPF∗23].

We use the following assumptions at the bound:
u(s = 0) = 0
z(s = 0, t) = z0(0)
z(s, t = 0) = z0(s),

(4)

The constraint that the uplift vanishes at the boundary ensures the
well-posedness of the problem, as otherwise the mountains would
keep growing indefinitely.

The method of characteristic relates space s and time τ on a set
of characteristic curves with the equation:

dτ

ds
=

1
a(s)

. (5)

As we seek the elevation at time t and position x, we only con-
sider the curve that includes the point x, t. For this curve, the space-
time relationship is expressed by τx,t(s) defined such as τx,t(x) = t,
which gives after integration:

τx,t(s) = t −
∫ x

s

1
a(s′)

ds′. (6)

Note that τx,t(s) parameterizes time, and therefore should remain
positive. The function τx,t being strictly increasing, we define a
point Dx,t by τx,t(Dx,t) = 0, such that the characteristic curve is
only defined when s ≥ Dx,t . This is illustrated in the right of Fig-
ure 3 by the curve associated with (x, t1). The other curve – going
through (x, t2) – shows a case where τx,t(Dx,t) = 0 does not have a
solution, and for which we set Dx,t = 0.

Then, along the characteristic curve, Eqn. 3 is rewritten as:

dz
ds

=
u(s)
a(s)

, (7)

which we integrate on the domain of definition of the curve s ≥
Dx,t , to obtain the formula for the elevation:

z(x, t) = z0 (Dx,t)+

∫ x

Dx,t

u(s)
a(s)

ds. (8)

Note that for large t or small x, D(x, t) can be negative, in which
case the boundary assumptions (Eqn. 4) gives the solution:

z(x, t) = z0 (0)+

∫ x

0

u(s)
a(s)

ds. (9)

If this happens for all cells in the terrain, this solution corresponds
to the steady state of the stream power law.

Compared to previous simulation-based methods that required
iterating over time, this solution directly expresses the elevation of
the terrain from the uplift and drainage area. This is why we follow
geology literature [Ste21] to call this an analytical solution (with
respect to time), even if we need to resort to a numerical evaluation
of the integral over space.

4.2. Recursive algorithm for the 1D analytical solutions

Solutions based on dimensionless variables in 1D [RTP13] evalu-
ates the solution at dimensionless positions, with a non-trivial map-
ping to real positions. Instead, we first propose a numerical evalu-
ation of the analytical solutions (Eqn. 8) on the 1D case, at the real
positions along the river path. We will explain in Section 4.3 how
we use this solution to model 2D heightmaps. For now, we assume
that all the values (z0, u, a) are known and stored in a 1D array. We
denote by δx the spacing between cells of the array.

Our goal is to compute all the elevations in the array, essentially
fixing t and varying x. A naive implementation of Eqn. 8 is ineffi-
cient: for each position x, we would need to parse the array from
Dx,t to x to compute the integral, resulting in a quadratic complex-
ity. Instead, we observe that significant portions of the computa-
tion is similar among neighboring cells of the array, which means
that the computation of the elevation at a position x can use data
already computed at the previous position x−δx. This observation
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suggests an iterative algorithm, which parses the array and progres-
sively computes the elevations in a single iteration.

We introduce the function T (x,y):

T (x,y) =
∫ y

x

1
a(s′)

ds′, (10)

which gives the time required for the elevation to be advected from
position x to y. The first step of our algorithm is to compute Dx,t ,
defined implicitly by τx,t(Dx,t) = 0, or

T (Dx,t ,x) = t. (11)

Eqn. 11 is not well defined for small x or large t, which are
cases where the information would need to be advected from be-
yond the boundaries of the domain. To detect this situation, we set
T (0,0) = 0 and parse the array from the bound, progressively eval-
uating T (0,x) = T (0,x−δx)+δx/a(x) until we find the first x0 for
which T (0,x0) > t. We set Dx,t = 0 for x < x0, and, assuming that
1/a is locally constant near x = 0:

Dx0,t ≈ a(0)T (0,Dx0,t) = a(0)(T (0,x0)− t). (12)

Then, we propose a recursive formulation to compute Dx,t else-
where. For a given cell position x > x0, we assume that we know
Dx−δx,t . Writing Eqn. 11 for both x−δx and x results in:∫ x

x−δx

1
a(s′)

ds′ =
∫ Dx,t

Dx−δx ,t

1
a(s′)

ds′. (13)

We approximate the left-hand side of Eqn. 13 as δx/a(x). Starting
from Dx−δx,t , we progressively parse the array until we find the
highest xi such that T (Dx−δx,t ,xi) < δx/a(x), which allows us to
split the integral and rewrite Eqn. 13 as:

δx/a(x) = T (Dx−δx,t ,xi)+T (xi,Dx,t), (14)

and, again using a locally constant approximation of 1/a, we ob-
tain:

Dx,t = xi +a(xi)

(
δx

a(x)
−T (Dx−δx,t ,xi)

)
. (15)

Note that for each x, we parse a portion of the array to find xi and
compute Dx,t . However, the sum of the size of all portions seen dur-
ing the whole execution of the algorithm does not exceed 2N, with
N being the size of the array, which leads to linear time complexity.

With Dx,t computed, the first term of Eqn. 8, z0(Dx,t) comes nat-
urally from the linear interpolation of the value of z0 at the two cell
points enclosing the position D(x, t).

Next, we compute the second term of Eqn. 8. We rewrite Eqn. 8
as:

z(x, t) = z0(Dx,t)+S(Dx,t ,x) (16)

Where S(x,y) represents the difference of elevation between posi-
tions x and y and results from the balance uplift and erosion:

S(x,y) =
∫ y

x

u(s′)
a(s′)

ds′. (17)

We use the notation S(x) as a shorthand for S(Dx,t ,x), and propose
another recursive formulation to compute S(x) from S(x−δx). The

boundary condition gives the initialization: S(0) = 0, and, by de-
composition of the integral,

S(x) = S(x−δx)+S(x−δx,x)−S(Dx−δx,t ,Dx,t). (18)

We have S(x−δx,x)≈ δxu(x)/a(x), and compute S(D(x, t),D(x+
δx, t)) parsing the array between D(x− δx, t) and D(x, t), progres-
sively accumulating δxu/a. Note that D(x−δx, t) and D(x, t) do not
necessarily coincide with cell boundaries, and therefore the evalu-
ation of the integral close to these end-points needs to be scaled by
the distance between them and the closest cell boundary.

Here again, the sum of the sizes of the sub-arrays that we parse at
each subsequent step of the recursion is smaller than 2N, resulting
overall in a linear time algorithm.

In summary, our algorithm consists of the following steps:

1. Iterate through the array and accumulate T (0,x) to find x0, de-
duce Dx0,t from Eqn. 12.

2. Iterate through the array to progressively compute Dx,t with
Eqn. 15.

3. Iterate through the array to progressively compute Sx with
Eqn. 18.

4. Compute the final elevation with z(x, t) = z0(Dx,t)+S(x), where
z0(Dx,t) is obtained by linear interpolation.

4.3. Extension to the 2D terrain domain

We now show that our algorithm for the 1D solution of the analyt-
ical equation readily extends to the 2D solution by changing our
computation domain from a line to a tree covering the terrain sur-
face. We explained on Section 4.1 that the analytical solutions are
computed along a 1D river path, that follows the steepest path on
the terrain. In practice, rivers merges into an algorithmic tree struc-
ture, that we call a river tree, and we call the set of all river trees the
river network or hydrology network. On a river tree, each node has
a single downstream neighbor, on which we can apply directly the
recursive formulations from Section 4.1. In practice, this requires
ordering the computation so that it follows the nodes of the tree,
which is suggested by the literature on implicit solutions to the
stream power law [BW13, CBC∗16] or previous attempts toward
analytical solutions in the geology literature [Ste21].

The ordering is (weakly) defined by assigning to each cell c of
the terrain a receiver cr, which is one of the four direct neighbors to
the cell, and whose elevation is strictly lower than the cell. In our
case, we choose the receiver randomly, with a probability propor-
tional to the difference in elevation between the cell and its lower
neighbors. We prefer a random sampling over the deterministic
choice of the lowest neighbor [BW13, CBC∗16] that was designed
for irregular grids and yields the formation of uniform axis-aligned
valleys on regular grids. (Figure 8). Furthermore, the noise induced
by the randomization results in more naturally diverse patterns. To
ensure the deterministic behavior of our algorithm, we precompute
and store the random variable used by each cell to sample the re-
ceiver.

This ordering results in a set of river trees whose roots corre-
spond to the bounds of the terrain and whose leaves correspond
to the ridges. The inset figure below shows the river network for
a 32× 32 terrain, different colors corresponding to different trees.
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We parse this tree in two directions: first,
we accumulate the area of the cells δx2

from the leaves to the root to compute
the drainage area A. Here, a topological
sort on the tree guarantees the correctness
of the computation of A from the invari-
ant that any cell is evaluated after all up-
stream cells [BW13, CBC∗16, Ste21].

Then, we parse the tree in the other direction, from the root
(bound) to the leaves, to evaluate the analytical solution. The 1D re-
cursive algorithm (Section 4.2) translates directly to that case: each
cell at position x has a single receiver that plays the role of the cell
at x− δx in the recursive formula (Eqns. 15, 18). The main issue,
which distinguishes us from previous work, is that our algorithm
relies on operations located at the advection location D(x, t), down-
stream of the evaluated cell. We tackle this issue by using another
ordering for this step: with a depth-first search, we can record the
sequence of cells between the bound and the current cell, and use
this sequence to evaluate the integrals involving D(x, t) in Eqns. 15
and 18.

Strategies based on ordering share a common pitfall when lo-
cal minima are present on the terrain – and analytical solutions
in particular are not well defined for that case. Following previ-
ous work [BW13, CBC∗16], we rely on a depression carving al-
gorithm [SD21] to reroute some of the cells as if breaches were
carved in the terrain to allow for the water to flow out of all local
minimum.

The choice of a single receiver results
in an incorrect evaluation of the slope of
the terrain (as ∥∇z∥ requires the spatial
derivative from both the x and y direc-
tions). We compensate for this approxi-
mation by introducing a correction term:
for a cell at position x with a receiver
at position xr, we change a(x) to a(x) =
kAm δx∥∇z∥

z(x)−z(xr)
. Note that we still evalu-

ate the spatial derivatives of ∥∇z∥ down-
stream, as the difference between the cell
elevation and the lowest elevation in the
x and y directions, respectively. The inset
figure shows the difference between not
using (top) and using (bottom) the slope
correction, with highlights on the isolines of a terrain constructed
by enforcing a constant slope upward a boundary circle. The cor-
rection removes the directional artifacts and yields the expected
concentric isolines.

Note that we need an existing terrain to compute both the order-
ing and the aforementioned correction term, which yields an inter-
dependency between the ordering and the analytical solution: the
analytical solution requires an ordering to provide the elevation at
time t, but the ordering requires the same elevations. We will dis-
cuss strategies to combine ordering and analytical solutions in the
next section.

5. Combining river network and elevations

The 2D analytical solutions presented in the previous section de-
pend on an ordering of the river network, which itself depends on
the elevation predicted by the analytical solutions. This problem
leads to significant artifacts in the result if we follow a simple strat-
egy such as using the ordering of the terrain z0: large discontinuities
can occur in the analytical solutions, mainly at the boundaries be-
tween drainage basins which correspond to leaves of the river trees,
leaving unrealistic large cliffs in the landscape (Figure 4, left).

5.1. Fixed-point algorithm

To solve this interdependency, [Ste21] suggested using a fixed point
algorithm, that starts with z0, computes the ordering (and correc-
tion), evaluates the analytical solutions, and iterates until the eleva-
tion converges. However, this corrects the ordering slowly because
only the leaves of the trees can change their connectivity at each
iteration, leading to an upper bound for the number of iterations
corresponding to the number of nodes of the longest river.

We observed that this algorithm converges for the steady state
case (large t), but could sometimes oscillate, especially for small
t, small uplift, and large discontinuities in the initial topography.
We address this issue with an exponential moving average (at each
iteration, we average the topography predicted by the steady state
with the elevations resulting from the previous iteration.)

The large number of iterations required limits the applicability
of analytical solutions to interactive applications and hinders their
benefits compared to a full simulation. Therefore, we propose two
strategies: one inspired by the theory of multigrid - which still per-
forms this iterative process but with fewer iterations at different
scales, and the second using an optimization to reduce the discon-
tinuities provoked by a mismatch between the ordering and the el-
evations.

5.2. Accelerating the convergence via multigrid

Multigrid is commonly used to solve elliptic PDEs with a coarse-
to-fine approach, first on a coarse approximation of the problem,
which is then progressively upsampled toward the final resolution.
This strategy accelerates the propagation of low-frequency infor-
mation, which is similar to our needs and motivates the design of a
multi-scale algorithm to accelerate the convergence.

We use a mipmapping type of downsam-
pling operator where the elevation is av-
eraged between 2× 2 neighboring nodes,
which we apply to the initial terrain t0,
the uplift u, and the boundary condition
b, down to a user-specified minimal reso-
lution. We then compute a few iterations
where we subsequently order the nodes
and compute analytical solutions, similarly
to Section 5.1. We upsample the resulting
elevation with bilinear interpolation to reit-
erate this process on the next scale. A sim-
ple upsampling tends to produce a regu-
lar spacing of the rivers that follows the
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blocks of the lower resolutions (inset, top), with sharp turns. We
prevent these artifacts by adding some jittering (inset, bottom) dur-
ing the upsampling process, where a uniform random offset in
[−0.25,0.25]2 is added to the locations of the nodes before inter-
polation.

After experimenting with several cycles from the multigrid lit-
erature, we observed that an up/down-sample strategy inspired by
the simplest V-cycle gives the best trade-off between speed and ac-
curacy. In practice, we mostly use around 4− 5 levels and 5− 6
iterations, which are enough to remove the most noticeable arti-
facts. If artifacts remain, they are generally solved by adding more
iterations, but we prefer using the optimization algorithm presented
next as a postprocess as it reduces the need for tuning hyperparam-
eters.

5.3. Optimization-based altitude correction

Our multigrid algorithm efficiently updates the river network to re-
move the discontinuities but is not applicable in all situations. For
instance, a user might want to preserve the original drainage or use
a procedurally generated river network [GGG∗13, GBG∗19]. For
these cases, we assume that the river network is given and fixed,
and we find the minimal correction to the analytical solution that re-
moves the discontinuities. Figure 4 shows the discontinuities seen
after applying the analytical solutions directly to the initial river
network (left), and how the discontinuities were removed by our
optimization method (right).

Without - With optimization

Figure 4: Discontinuities observed after the computation of the an-
alytical solution on the initial river network (left), corrected with
optimization (right).

Let us define a non-connected neighbor cn of a cell c as one of
its 4 direct neighbors such as c is not a receiver of cn and cn is
not a receiver of c. We denote by NCN(c) the set of non-connected
neighbors of a cell c. We detect a discontinuity when the elevation
difference between a cell c and a non-connected neighbor at posi-
tion cn ∈ NCN(c) is larger than the elevation difference between
the cell and its receiver (cr):

z(c)− z(cn)> z(c)− z(cr) (19)

Reducing the discontinuity requires raising cn, lowering c, or some
combination of both, and then propagating these changes down-
stream and upstream. Along a single river, multiple such situations
may occur and they might also lead to conflicting changes. There-
fore, we developed an optimization algorithm that is more prone to
balance these different constraints, rather than a deterministic algo-
rithm based on a parsing of the river network.

A key insight of our algorithm is that we work on the space of
elevation differences dc = z(c)− z(cr), which has two advantages.
First, it simplifies the treatment of the non-negativity of the slope:
to preserve the river network, we force dc ≥ 0. Second, the eleva-
tion is reconstructed by accumulating the elevation differences, this
propagates the influence of each constraint along the entirety of the
tree at each step of gradient descent, while an approach based on
the elevations would only propagate the information by one cell at
each step.

In this setting, the set of elevation differences dc (or d in vec-
tor form) is the optimization variable. During the optimization, we
recompute the elevation zc from d by accumulating di for i down-
stream of c, down to the elevation zb of a boundary node b. We use
the analytical solutions to compute a target elevation difference d̃c.

We build our objective function around two terms. The river term
retains the elevation differences given by the analytical solution:

Lr(d) = ∑
c

(dc − d̃c)
2

2
(20)

The discontinuity term reduces the elevation difference between a
cell c and a lower non-connected neighbor cn so that lc stays above
the receiver of c:

Ld(d) = ∑
c

∑
cn∈NCN(c)

max(zc − zcn − d̃c,0)2

2
(21)

We obtain d by solving the following optimization problem

min λrLr(d)+λdLd(d)
subject to dc ≥ 0,

(22)

where λr = 1/3 and λd = 2/3 weigh the two components of the
objective.

We remap z to [0,1] and use gradient descent to solve Eqn. 22.
The sequential nature of the computation of zc from d is not readily
compatible with existing automatic differentiation solver, therefore
we show in Appendix A how we accumulate the gradients with re-
spect to d throughout the river network. To prevent exploding gra-
dients, we weigh each gradient of the discontinuity term ∂Ld/∂dc
by the number of nodes Nc upstream of c - which can be computed
from the drainage area as Nc = Ac/δ

2
x . We use the step size for the

gradient descent lr = 0.01, which we modulate locally to enforce
the inequality dc ≥ 0.

6. Other erosion factors

The stream power law presents a singularity when the drainage area
reaches zeros: when time increases, the solution converges to in-
finitely steep ridges. This is documented by geologists [LD03], who
suggest that the stream power is not applicable in these locations, or
at least dominated by other processes. We explore two possible pre-
dominant processes: hillslope erosion and landslides, and propose
approximations to easily integrate them into our algorithm.

6.1. Hillslope erosion

Hillslope processes encompass the weathering of the mountain
slopes and the diffusion that results from the creep flow of the
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eroded material. It is often simplified as a linear diffusion of the
terrain elevation [BS97, SPF∗23, CJP∗23]:

∂z
∂t

= kh∆z, (23)

Where kh is the hillslope erosion coefficient.

An analytical solution including the hillslope erosion would re-
quire joining the stream power law (Eqn. 1) with Eqn. 23 which
results in an advection-diffusion equation. Solving this equation
needs a global 2D treatment, preventing our decomposition to a
set of 1D solutions on the stream tree, and the complexity of the
derivations and implementation of the solutions even in the 1D case
challenges their usability in a terrain modeling framework.

Instead, we propose another modeling choice for the hillslope
erosion, which is simpler to incorporate into our analytical solu-
tions. We observe that, while a solution in the transient case seems
out of reach, it is possible to propose a model that has the same
behavior as the diffusion equation at steady-state.

Let us consider the 1D steady-state equilibrium between the hill-
slope and the uplift:

u+ kh
∂

2z
∂s2 = 0, (24)

We integrate from s to the ridge r, where the slope vanishes; and
use Hack’s law [Hac57] to associate the distance to the ridge with
the drainage A: r− s = CA(s)h, where C is a constant in the range
[1.4−2], and the exponent is usually set to h = 0.6:

∂z
∂s

=
C u

kh A(s)−h . (25)

Finally, we observe that Eqn. 3 converges to Eqn. 25 at steady state
and close to the ridge with a simple modification to the term a:

a(s) = k A(s)m +
kh
C

A(s)−h. (26)

6.2. Thermal erosion

Thermal erosion is commonly used in computer graphics to model
the granular nature of mountains, which are particularly unstable
above a critical talus slope:

∂z
∂t

=−kt max
(

0,
∂z
∂s

− sc

)
, (27)

where sc = atan(30◦) is the critical slope. We modify Eqn. 3 to add
the contribution of the thermal erosion:

∂z
∂t

= u(s)−a(s)
∂z
∂s

+

{
kt sc if ∂z

∂s > sc,

0 else
(28)

with a new expression for a(s) (also including hillslope):

a(s) = kAm +
kh
C

A−h +

{
kt if ∂z

∂s > sc,

0 else
(29)

We implement the condition ∂z
∂s > sc within our algorithm. When

we compute Eqn. 18 to obtain the elevation at a position x, we first
assume that there is no thermal erosion. If the resulting slope is

above the critical angle, we change u and a to incorporate the ther-
mal erosion with Eqns. 28 and 29, and use the new values to re-
estimate the elevation z(x). Note that changing a also change Dx,t ,
which slightly change the algorithm summarized at the end of Sec-
tion 4.2: instead of computing first Dx,t for all x, then S(x) for all
and finally z(x), we interleave them to compute together Dx,t , S(x),
and z(x) from their values at x−δx.

7. Results

We prototyped our algorithm in Python with numpy (the code will
be released with the paper). Our algorithms require several tree
operations that are not trivially parallelizable, therefore we im-
proved the performance of Python loops with just-in-time com-
pilation provided by the package numba. We used an Intel Xeon
E5-2650 v4 CPU with 64 GB RAM to compute all the results and
timings reported in this section. We interfaced our code with Hou-
dini [Sid23] to showcase the use of our approach in an interac-
tive editing session (see the companion video) and we use Terra-
gen [Sof23] to produce the final renderings. The parameter values
used throughout our experiments are the ones shown in Table 1 and
the uplift is constant, unless otherwise mentioned. The code, Hou-
dini file, and heightfields are available at https://gitlab.
inria.fr/landscapes/analytical-terrains.

Parameter Symbol Value
Uplift u 10−3 my−1

Fluvial erosion k 2 ·10−5 m1−2m y−1

Precipitation p 1 my−1

Drainage exponent m 0.4
Hack’s law constant C 1.5 m1−2h

Hack’s law exponent h 0.6
Hillslope erosion kh 0.1 m2 y−1

Thermal erosion kt 10−3 my−1

Critical slope sc 0.57

Table 1: Parameters used throughout our experiments.

7.1. Validation and comparison

Analytical solutions and simulation. The purpose of our algo-
rithm based on analytical solutions is to quickly generate terrains
that are similar to the results of a simulation of the stream power
law. In Figure 5, we compare between our method (with multigrid,
top left), a simulation [CBC∗16] (top right), and previous work in
geology [Ste21] (Fixed point iteration, bottom left). The compar-
ison is performed at steady-state (t = 4.6My) as the last method
does not handle initial topography and, also, in order to limit the
integration error of the simulation. In this example, we use a con-
stant uplift modulated by a subtle noise on a 512×512 terrain with
δx= 50m. In the simulation, we use 460 iterations with dt = 10000,
which we found to be the maximal time-step that did not produce
visible artifacts. The fixed-point algorithm required 43 iterations to
converge.

The strength of analytical solutions is that they do not need to
explicitly model the intermediate time states of the terrain, but this
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Elevation (km)

Analytical (Multigrid)

Analytical (Fixed Point)

Simulation

Density

Figure 5: We compare our method at steady state (with multigrid,
top left) with a simulation [CBC∗16] (top right) and a fixed point
algorithm [Ste21] (bottom left). These three methods should pro-
duce similar results, which we highlight by comparing their hyp-
sometry (or the density plot of the elevations, bottom right).

Resolution Multigrid Fixed-Point Simulation Optim.
512 1.79 s 7.85 s 55.52 s 0.94 s

1024 8.18 s 70.89 s 556.42 s 4.10 s
2048 33.65 s 538.71 s 4799.44 s 16.61 s

Table 2: Time required to compute a terrain at various resolu-
tions, for our method with multigrid, the fixed point iteration, and
the simulation. We also show the total time required to correct the
discontinuities with our optimization algorithm in the worst case
(the elevations are adjusted to the initial river network.)

means that the river network at convergence is one of the many pos-
sible networks that agree with the stream power law. Therefore, it is
impossible to measure a one-to-one difference between all three ap-
proaches - note that this is a common issue on models involving the
steam power law, which strongly depend on initial conditions and
implementation choices. Instead, we rely on the hypsometry [Str52]
(distribution of elevations) to highlight the similarity between the
three results.

Table 2 shows the time required to reach these results for dif-
ferent resolutions. We keep the total extent of the terrain constant,
therefore decreasing δx from 50 to 25 and 12m. We observe that we
need to decrease the timestep proportionally to the cell size to pre-
vent artifacts in the simulation, therefore the number of iterations
increases in both the fixed point (43, 82, 156 iterations) and the sim-
ulation (230, 460, 980 iterations). In contrast, the multigrid meth-
ods only require the addition of one level of down/up-sampling,
which leads to a complexity almost linear to the number of cells.
We additionally show the performance of the optimization algo-
rithm, in the worst case, which is when we adjust the elevations to
the initial drainage (disabling the iterative approach). In practice,
we observed that the optimization cleans all visible discontinuities
after 50 iterations for all resolutions. Overall, we did not observe
significant changes in performance with other erosion parameters.

GPU simulations of the stream power law [SPF∗23] might in
some cases be faster than our method even though they require
many iterations. There are, however, caveats inherent to the GPU
architecture that prevent them from being used in all cases. First,
GPU simulations use an explicit time-stepping scheme, which
bounds the admissible time step and can yield a prohibitive num-
ber of iterations for small δx. Second, depressions in the to-
pography lead to local minima that interrupt the river network.
Similarly to other CPU algorithms, we use depression breach-
ing [CBC∗16, SD21] to enforce the continuity of the river across
the depressions. The absence of such an algorithm on GPU imple-
mentations is particularly visible in cases where we erode with-
out uplift – all the water is trapped within the depressions and the
erosion only occurs in the vicinity of the topographic gradients.

No depression carvingWe illustrate this problem in the
inset figure, where we use a sim-
ulation without depression fill-
ing to erode an escarpment for
500ky. While the result should
be similar to Figure 12 (right),
the erosion remained local to the
initial cliff and did not expand
toward wide canyons.

Hydrology-based and physically-based. Many procedural meth-
ods targeted the instant generation of terrains, often through the
use of noise functions [EMP∗02]. Closer to us, Génevaux et
al. [GGG∗13] proposed a procedural approach based on hydrol-
ogy. They generate a river network whose formation and elevation
is guided by a slope map. The elevation of areas between rivers is
computed using a second slope map. Since our method, similarly,
computes the elevations progressively in the order defined by the
river network, we alter the a(s) term of Eqn. 3 so as to enforce a
small slope for main rivers (∥∇z∥ = 0.06 if the drainage is above
2500m3y−1), and a stronger slope for the sides of the mountain
(∥∇z∥ = 0.6), corresponding to the two slope maps of [GGG∗13].
In Figure 6, we compare our method (right) with this hydrology-
based approach. While the latter convincingly arranges rivers and
surrounding mountains, our physically-based solutions yield more
diverse patterns at all scales, self-emerging from the combination
of uplift, stream power law, and hillslope [CMA∗16].

[Génevaux 13] Analytical

Figure 6: Comparison between a hydrology-based approach based
on [GGG∗13] (left) and our analytical solution (right). While
the hydrology-based approach preserves the river consistency, our
physically-based analytical solutions produce more diverse multi-
scale features.
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15 km 25 km5 kmUplift

Figure 7: Terrains at equilibrium between uplift and erosion, controlled by a user-painted uplift map (left). We show the impact of the local
variations of the uplift map at three different scales, for mountain width ranging from 5km, to 15km, and 25km.

7.2. Ablation study

Here, we explore our implementation choices and show the impact
of the erosion models we introduced in Section 6.

Choice of the receiver. In Section 4.3, we suggested choosing the
receiver randomly among the neighbors below each node. In Fig-
ure 8, we compare this strategy with the choice of the lowest neigh-
bor (minimum receiver). Choosing the lowest neighbor leads to the
formation of uniform axis-aligned slopes. In practice, this choice
constrains the rivers to follow a straight line, reducing the possi-
ble convergence of small streams. This is the reason for both the
axis-aligned appearance of the slopes and their steepness, as non-
merging streams reduce the drainage area locally and therefore the
erosion.

Minimum receiver Random receiver

Figure 8: By choosing a random receiver among the lower neigh-
bor of a node (right) compared to the lowest one (left), we avoid
the formation of uniform axis-aligned slopes.

Hillslope erosion stabilizes the slopes of the mountains and acts as
the main erosion process at low drainage where the stream power
law becomes negligible [LD03]. We show the impact of hillslope
in Figure 9, where we show the analytical solutions of the stream
power law only at δx = 50m (left), compared with our modified
formulation that includes the hillslope erosion (Section 6.1, right
of Figure 9). Without hillslope, we observe the emergence of unre-
alistically sharp ridges and peaks.

Thermal erosion is commonly used in computer graph-
ics [MKM89] to dampen the main cliffs that arise in procedurally
generated terrains. Strong cliffs also occur naturally, for instance, if
the outlet of a river is below an average plateau altitude. We synthe-
size this behavior on a mostly flat initial terrain - with some Perlin
noise to initiate the river profiles - where we significantly reduce
the altitude of one of the boundary nodes. We see cliffs appearing

Without - With hillslope

Figure 9: Close-up view on a ridge-line with hillslope disabled
(left) and enabled (right). Hillslope controls the slopes and prevents
the formation of sharp ridges and peaks.

in Figure 10 (left), but the stream power law does not let us control
the steepness of the cliff, only the speed at which they propagate
away from the low boundary node following the drainage patterns.
In contrast, adding thermal erosion as explained in Section 6.2 al-
lows us to adjust the critical angle, and hence the shape of the slopes
(Figure 10, right).

With thermalWithout -

Figure 10: Cliffs produced by the lowering of the river outlet are
not easily controllable with stream power law alone (left), while
thermal erosion introduces a critical slope that allows us to reshape
the steepest slopes.

7.3. Applicability of our method

We now illustrate the versatility of our method through several ap-
plications. Fig 1 shows a landscape initialized with Perlin noise
and eroded at different user-provided times to illustrate the range of
possible effects, from a short post-process that carves only the main
slopes (at t = 200ky) to the complete formation of a new mountain
range (t = 1.6My).
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Input 100 ky 200 ky 300 ky

Figure 11: From a user-sculpted terrain (top left), we apply our method as an erosion post-process at t = 100ky, 200ky and 300ky. We
notice that the erosion time affects both the depth and the shape of the erosional features.

User-made terrains can be authored through a combination of
procedural techniques, noise and modeling tools (i.e., extrusion,
smoothing). In Figure 11, we asked a user to produce a coarse ter-
rain (δx = 30m, top left) and use our method (without uplift) to
add erosion details. We observe the different patterns produced by
varying the erosion time (100ky, 200ky, and 300ky), and notice in
particular that both the incision depth and the shape of the eroded
cavities are affected – shorter time caves numerous small gullies,
which deepen and merge into fewer large valleys at a longer ero-
sion time.

Uplift emerges from tectonic activity and is responsible for the for-
mation of mountain ranges. It is therefore used as another tool to
control the generation of large-scale landscapes. In Figure 7, we
show that the different uplift-based controls developed in previ-
ous work [CCB∗17, SPF∗23] readily extend to our method. These
methods use various strategies to fill an uplift map, and provide
this map as input to a simulation of the stream power law. We use
a user-painted uplift map (Figure 7, left), which could alternatively
be generated by one of the aforementioned methods, and show how
the map controls the formation of the 4.6My old mountain at differ-
ent scales (from left to right a 5km, 15km, and 25km large moun-
tain). We notice in particular that variations in the uplift map mainly
dictate the trajectory of the main rivers at smaller scales, and also
influence the local ridge-line elevations for larger ranges.

Escarpments are steep slopes that separate flat areas of different
elevations. The sudden change in elevation yields a strong erosive
response, that illustrates the need for the advective component of
the analytical solutions. Indeed, a simpler solution that would only
model a progressive reduction of the slopes would only cause a lo-
cal smoothing of the cliffs, while the stream power law predicts
a retreat of the cliff along the drainage pattern at a speed that de-
pends on the river discharge [SS20]. We illustrate this behavior in

Figure 12, where we start from a procedurally generated cliff that
separates two areas with uniform elevation (left). Then we apply
our method without uplift and observe the cliff retreating after 200
and 500ky. Note that without uplift, without deposition, and with
flat boundary conditions, the retreating cliff leaves open a flat area
around the main rivers.

Canyon

Figure 13: Canyon generated by our method, at time t = 700ky.
Compared to Figure 12, a simple change in the boundary condi-
tions yields the characteristic V-shape incision by the canyon river.

Canyons, especially the well-known examples such as the Grand
Canyon, do not exhibit the large flat-bottomed areas between the
cliffs observed in Figure 12. The difference comes from the bound-
ary conditions: our results in Figure 12 assumed a flat boundary
condition, while a canyon is typically tributary to another river
downstream. To implement this, we assume a constant a = a(0)
to extend Dx,t negatively beyond the bound and we assume a con-
stant slope to deduce z0(Dx,t). We illustrate the impact of this new
boundary condition in Figure 13 where we set a single boundary

0 y 200 ky 500 ky

Figure 12: Evolution of a procedurally generated escarpment (left). After 200ky the cliff retreats slightly and a canyon starts forming around
the main river. After 500ky, the canyon widens, inheriting the flat bottom from the lower part of the escarpment, and starts branching.
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node to which we assign this small slope boundary condition. We
additionally set a source point on the other side of the terrain where
we impose a strong drainage area A to enforce the formation of a
main river connecting these two points. Erosion at time t = 700ky
shows a fully formed canyon with multiple tributary rivers branch-
ing out. Note that the new boundary condition resulted in the de-
sired V-shaped walls surrounding the main river.

7.4. Limitations

The main limitation of our work is that our algorithm does not en-
force the time-continuity of the results: in some cases and espe-
cially for very long geological times, changing the time can modify
the placement of the valleys. This is due to the fact that we predict a
possible river network together with the elevations, without consid-
ering the past evolution of this network. While this issue is already
documented in the fixed point case [Ste21], our multigrid imple-
mentation can sometimes degrade it, because a change in the river
network at a coarser scale can affect a large region of the terrain at
the finest scale.

Another limitation is inherent to analytical formulation, which
restricts the possible combination with other erosion laws. We pro-
posed new models for hillslope and thermal erosion which have a
critical impact when fluvial erosion is low but including other pro-
cesses, sediment deposition, or simply a non-linear dependency to
the slope in the stream power law (the exponent n ̸= 1) might prove
challenging.

8. Conclusion

We proposed a new method to quickly erode large-scale terrains.
Thanks to the analytical solution of the stream power law, we do
not have to rely anymore on numerous iterations inherent in simu-
lations. Instead, the time becomes another parameter that the user
can explore without any incidence on the computation time. We
proposed a derivation and implementation of these analytical solu-
tions adapted to computer graphics applications, allowing the user
to specify both an initial terrain to be eroded and an uplift map
to control the emergence of a mountain range and explore any
intermediate possibility. To the challenge of generating a terrain
physically consistent with its river network, we propose two solu-
tions that yield interactive performances: an accurate multigrid ac-
celeration, and an optimization-based approach that preserves the
initial river network. Eventually, we introduced new models for
hillslope and thermal erosion that are easily integrable in our im-
plementation. Our main limitation is the lack of time consistency
at large time t, which motivates future work on a more conser-
vative hydrology-based multigrid scheme, or alternative solutions
where analytical solutions would control the procedural generation
of river networks [GBG∗19].
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Appendix A: Gradient Derivation

We solve the minimization problem Eqn. 22 with a gradient descent
approach, which requires the computation of the derivatives of Lr
and Ld with respect to d.

The derivatives of the river term are immediate:

∂Lr

∂di
= di − d̃i. (30)

For the discontinuity term, we observe that each di contributes to
z j for all cells j that are upstream of i (i= j included) and for these
∂z j
∂di

= 1. The elevation z j appears in Ld as either zc or zcn , which
yields the following expression:

∂Ld
∂di

= ∑
j∈Upstream of i

∑
jn∈NCN( j)

max(z j − z jn − d̃ j,0)

−max(z jn − z j − d̃ jn ,0)

(31)

This can be computed recursively, similarly to drainage, by accu-
mulating the contributions of the donnors of a cell:

∂Ld
∂di

= ∑
j∈Donnors of i

∂Ld
∂d j

+ ∑
in∈NCN(i)

max(zi − zin − d̃i,0)

−max(zin − zi − d̃in ,0)
(32)
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