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Figure 1: Given a single flash picture as input, our learned gradient descent algorithm solves for SVBRDF maps that closely reproduce the
input, while generalizing well to new view and light configurations. We demonstrate the effectiveness of our approach by comparing its
output to ground-truth synthetic data (top) and to relit real images produced by state-of-the-art methods [ZK22] (bottom). Note how our
method recovers intricate geometric details in the normal map, inpaints small saturated highlights with plausible material properties, and
propagates roughness information away from the highlight.

Abstract

Recovering spatially-varying materials from a single photograph of a surface is inherently ill-posed, making the direct applica-
tion of a gradient descent on the reflectance parameters prone to poor minima. Recent methods leverage deep learning either by
directly regressing reflectance parameters using feed-forward neural networks or by learning a latent space of SVBRDFs using
encoder-decoder or generative adversarial networks followed by a gradient-based optimization in latent space. The former is
fast but does not account for the likelihood of the prediction, i.e., how well the resulting reflectance explains the input image.
The latter provides a strong prior on the space of spatially-varying materials, but this prior can hinder the reconstruction of
images that are too different from the training data. Our method combines the strengths of both approaches. We optimize re-
flectance parameters to best reconstruct the input image using a recurrent neural network, which iteratively predicts how to
update the reflectance parameters given the gradient of the reconstruction likelihood. By combining a learned prior with a like-
lihood measure, our approach provides a maximum a posteriori estimate of the SVBRDF. Our evaluation shows that this learned
gradient-descent method achieves state-of-the-art performance for SVBRDF estimation on synthetic and real images.[ AThis is
the author’s version of the work. It is posted here for your personal use. Not for redistribution. The original paper appeared
in Computer Graphics Forum, Volume 42(2024), Number 2.]
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1. Introduction

Real-world objects have a rich visual appearance due to
spatially-varying material properties, which can be represented by
Spatially-Varying Bidirectional Reflectance Distribution Functions
(SVBRDFs). This paper presents a lightweight method to capture
the appearance of real surfaces with only a single photo.

Since few measurements are insufficient to ensure a unique in-
terpretation of the many reflectance parameters, recent research
leveraged deep learning to automatically build priors based on
the distribution of plausible SVBRDFs. A first family of methods
trains feed-forward neural networks to predict spatially-varying re-
flectance parameters from as little as a single flash picture of a
flat surface [LDPT17; YLD*18; LSC18; DAD*18; VPS21; ZK21;
GLT*21]. While fast, such neural networks mostly rely on data-
driven priors to make their prediction. During use, they never eval-
uate the actual quality of their output with respect to the input im-
age.

A second family of methods achieves higher accuracy by us-
ing differentiable rendering for online optimization, where the es-
timated SVBRDF is rendered under the same viewing and lighting
conditions as for capture, Gradient descent is used to minimize the
difference between the rendering and the input image. Yet, relying
solely on differentiable rendering to optimize reflectance parame-
ters is prone to bad minima, which is why several groups of au-
thors proposed to perform the optimization in a lower-dimensional
latent space learned from a dataset of representative SVBRDFs
[GLD*19; GSH*20]. Nevertheless, gradient descent typically re-
quires many iterations to converge and latent-space regularization
can limit the quality of the estimation when the input differs too
much from the images used to build the latent space.

Recent work proposed to combine these two strategies by train-
ing a neural network on a large dataset of SVBRDFs, and then fine-
tuning the network weights at test time such that its prediction best
reproduces the input image [FR22; ZK22]. A key challenge with
this new strategy is to prevent the fine-tuning phase to forget the
priors learned during the training phase.

Our algorithm combines the speed of neural network predic-
tion with the accuracy of test-time optimization. It is inspired by
learned gradient descent [ADG*16; PW17], which replaces the an-
alytic gradient update rule of standard optimization by a recurrent
neural network. This network is trained to predict the best updates
given the current state of the estimation and the gradient of the cost
function to be minimized. Importantly, the neural network weights
are not updated at test-time, avoiding the risk of forgetting its pri-
ors. In our context, the cost function captures the likelihood of the
SVBRDF to reproduce the input image when rendered under the
same light and view, while the neural network learns a prior over
the distribution of SVBRDFs. By combining likelihood and prior
information, our method effectively solves for a maximum a poste-
riori estimate of the SVBRDF. While trained on a synthetic dataset
of SVBRDFs, our method generalizes well to real data, outper-
forming both feed-forward and optimization-based prior work, as
demonstrated on a large set of photographs.

2. Background and Related Work

We focus our discussion on recent deep learning methods for
lightweight SVBRDF capture, and refer to surveys for a compre-
hensive overview of the vast domain of appearance acquisition
[WLL*09; GGG*16; Don19]. We first introduce general concepts
on which our approach relies, before diving into recent methods,
which combine deep-learning and gradient-based optimization to
recover SVBRDF parameters from one or a few flash images of a
planar surface.

Appearance capture as an inverse problem. Formally, the image
I of a surface depends on its reflectance properties R, as well as the
viewing conditions V and lighting conditions L under which the
surface is captured:

I=f(R,L,V)+n, M
where f is the image formation model and n is measurement noise.

Appearance capture aims at inverting the image formation to re-
cover R from observations I, typically under known viewing and
lighting conditions:

A

R= arg min l:reconstruct (Lf (R»Lv V)) ) (2)
R

where Lreconstruct 1S a cost function measuring the difference be-
tween the observations and renderings of the estimated reflectance.
Assuming that Lreconstruct 18 differentiable, gradient descent can be
employed for the minimization:

aﬁreconstruct (Iu f (R7 L7 V))

oR '
R=R,

Ry1=Ri—v 3

where 7; is the step size at iteration ¢.

To make this inverse problem well-posed, early work relied on
dedicated gantries to capture many images of the target surface
under different light and view configurations [MWL*99; Mat03;
LKG*03; WGK14]. Despite progress in hardware setups and opti-
mization algorithms [AWL13; KCW*18; ALL20], precise acqui-
sition of spatially-varying materials remains a costly and time-
consuming process. Moreover, gradient-based optimization often
requires a large number of iterations and is subject to bad local
minima, especially using few measurements.

Lightweight capture methods trade accuracy for simplicity to en-
able SVBRDF capture with as few as a single photograph of a sur-
face — typically planar. Such methods compensate for the measure-
ment scarcity by making various assumptions on the materials to
be acquired, such as the existence of a low-dimensional basis of
BRDFs [DWT*10; RWS*11; HSL*17; ZCD*16], or the presence
of repetitive or stochastic patterns [AWL*15; WSM11].

Feed-forward SVBRDF prediction. Recent work shifted from
hand-crafted assumptions towards priors learned from large
datasets of (synthetic) SVBRDFs. A first family of methods cast
SVBRDF acquisition as a regression task, for which they train
a feed-forward neural network ge to directly predict reflectance
properties from an input image [DAD*18; LDPT17; YLD*18;
LSC18; GLT*21; ZK21]. Denoting {R, I} a large set of SVBRDFs
and their renderings, training the neural network with supervised
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learning amounts to solving for parameters ®, minimizing a loss
function Lyefiectance, Which compares the predicted SVBRDFs with
the ground truth:

® = argmin Z L eflectance (803 (i>R) . 4
¢ {RD

Further developments of such methods include the use of a ren-
dering 10ss Lyendering (f (gm (i) 7{L,V}) f (R, {L,V})) to evalu-
ate whether the predicted SVBRDF has the same appearance as
the ground truth under varying viewing and lighting conditions
[DAD*18], or an adversarial loss L,4y (gw (i) ,{f{}) to evaluate
whether the predicted SVBRDF resembles the ones in the dataset
[GLT*21], or Lygy (f (g0 (I),L,V),{I}) to evaluate whether the
re-rendered image resembles synthetic and real images [VPS21;
ZK21; ZWX*20].

Latent-space optimization. While feed-forward neural networks
are fast to evaluate, the SVBRDF parameters they produce are en-
tirely defined by the SVBRDF dataset {R} they are trained on,
not by how well these parameters reproduce the input image I at
test time. In other words, feed-forward networks only provide an
approximate solution to the inverse problem formulated in Equa-
tion 2, and the severity of this approximation tends to increase for
input images that deviate from the distribution of the training im-
ages {i} This discrepancy has motivated the development of test-
time optimization methods that use gradient descent (Equation 3)
to refine neural-network predictions to better fit the input images.
Since SVBRDF recovery from few input images is ill-posed, sev-
eral papers propose to regularize the problem by performing gra-
dient descent in a low-dimensional SVBRDF latent space, instead
of the original high-dimensional parameter space of R [GLD*19;
GSH*20]:

0Lrecon Lf(d L,V
iy =y St M/ ELLV) )

=1,

where a network dy decodes the latent code z into an SVBRDFE.
Learning the latent space from a large dataset of SVBRDFs {R} en-
sures that the optimization produces plausible solutions. However,
the optimization might struggle to find a latent code, which repro-
duces the input image well if it differs too much from the training
data. Further, the many iterations required by gradient-based opti-
mizations induce a significant overhead compared to direct predic-
tion.

Network fine-tuning. Several authors proposed to fine-tune a
feed-forward network g at test time such that its prediction bet-
ter reproduces the input [DDB20; ZK22; FR22], which amounts
to performing gradient descent on the neural-network parameters
rather than on the reflectance parameters or latent code:

(b = arg min Lrecnnslruct (Lf (g(o (I) 7L7 V)) . (6)
(0]

This strategy enables adjusting the prediction to the input, while
still benefiting from the priors learned by the network during pre-
training on a large dataset. Fischer and Ritschel [FR22] build on
the concept of meta-learning to optimize the initialization of the
network parameters and the gradient descent step sizes such that
fine tuning converges quickly to good solutions. However, test-time
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fine-tuning runs the risk of forgetting the learned priors since it up-
dates the weights by minimizing only the reconstruction error. A
critical difference of our approach is to perform test-time optimiza-
tion on the SVBRDF maps themselves, not on network weights,
which ensures that the learned priors encoded by our recurrent neu-
ral network are preserved.

Similarly to meta-learning, Zhou and Kalantari [ZK22] propose
to include fine-tuning steps during pre-training of the network, an
algorithm they call look-ahead training. Yet, their approach also
includes a secondary network that is trained to predict reflectance
maps, which serves as a data-driven prior during test-time fine-
tuning. Nevertheless, this prior is combined with the reconstruction
error as a linear combination (Eq.7 in their paper) and is only used
for the first iteration of the optimization (Sec.4.4 in their paper). In
contrast, we provide the gradient of Lreconstruct to a recurrent net-
work that learns to best combine this test-time information with its
priors to iteratively improve the prediction.

Importantly, while [FR22] and [ZK22] rely on hand-tuned step
sizes for the gradient descent optimization, our method predicts the
magnitude of the steps and yields results of similar quality in much
fewer steps, making it 10x faster than [ZK22] (Table 2).

3. Appearance capture with learned gradient descent
3.1. Problem formulation

Our approach combines the respective strengths of optimization-
based and regression-based methods. We cast appearance capture
as the minimization problem of Equation 2, using a single flash
image I as observation of the planar surface to acquire. Yet, we
replace the brittle and costly analytic gradient descent of Equation 3
by a learned gradient descent [ADG*16; PW17], where we train a
recurrent neural network /g to predict how to progressively update
an estimate R; of the SVBRDF:

aEreconstruCt (17 f (R7 L7 V))
JoR

Rt+l = Rt — he 7Rt . (7)

R=R,

This formulation corresponds to a maximum a posteriori estima-
tion, where the cost function Lreconstruct 18 proportional to the like-
lihood of the solution with respect to the input, while the neural
network hg captures a prior on the distribution of SVBRDFs. In-
tuitively, the likelihood term encourages fidelity to the input, while
the prior helps resolving ambiguities and prevents overfitting. This
formulation has several advantages over existing work:

o In the absence of a prior, standard gradient descent (Equation 3)
corresponds to maximum likelihood estimation, which is ill-
posed when only a single input image is available. While net-
work fine-tuning makes the problem better posed by initializing
the optimization with a data-driven prediction, it runs the risk
of forgetting the prior learned by the network if too many op-
timization steps are performed. In contrast, by combining the
neural-network prior with test-time gradients of Lreconstruct, our
approach converges to a good solution in only a few steps. In
addition, our approach does not require specifying a step size ¥,
as the magnitude of the update is implicitly predicted by hg.
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Figure 2: Overview of our approach. The input image I is first fed to an existing feed-forward neural network g¢ to predict an initialization
Ry of the SVBRDF maps (a). This prediction is then iteratively refined by our recurrent neural network /g (b). At each iteration, the current

estimate Ry is compared to the input using a differentiable renderer. The gradient of this reconstruction loss,

ML?‘“’“, is fed to hg along with

R;. The recurrent network predicts an update AR; of the SVBRDEF, which is added to R; to form the estimate R, for the next iteration. Our
algorithm performs 7 = 6 such iterations in practice. We train g and hg jointly to minimize the difference between renderings of the final
prediction Ry and renderings of the ground truth material maps under various view and light conditions. Note that the gradient and update

images were scaled for visualization purpose.

e In the absence of a test-time likelihood term, feed-forward net-
works rely mostly on priors learned from the training data dis-
tribution (Equation 6) to predict SVBRDFs in a single step. In
contrast, our network performs the simpler task of progressively
improving a running estimate of the SVBRDF given gradient in-
formation about its likelihood. In practice, this online optimiza-
tion scheme allows us to produce much more accurate results
than feed-forward methods.

e While latent-space optimization methods benefit from data-
driven priors, these priors are learned in a pre-process via
auto-encoders [GLD*19] or generative-adversarial networks
[GSH*20] trained on synthetic SVBRDFs. In contrast, our neu-
ral network learns priors by being trained specifically to per-
form maximum a posteriori estimation. As such, it accounts for
the availability of the test-time likelihood. Importantly, our opti-
mization happens in the original reflectance parameter space and
is, thus, not limited to a pre-defined latent space.

3.2. Implementation

Our method belongs to the family of learned gradient-descent al-
gorithms [ADG*16; PW17] that rely on recurrent neural networks
to implement update rules that automatically leverage the inherent
structure of the optimization problem at hand. While learned gra-
dient descent has been successfully used to solve inverse imaging
problems, such as novel-view synthesis [FBD*19] and MRI recon-
struction [LPS*19; PW19], we make specific adaptations to apply
this approach to single-image SVBRDF capture (see Fig. 2).

The core of our approach is a lightweight recurrent neural net-
work /g that takes as input the current estimate of the SVBRDF R
along with the gradient of the cost function Lreconstruct With respect
to Ry, which we obtain via automatic differentiation. The network
outputs an update AR;, which is summed with R; to produce R; .

In our implementation, we formulate Lreconstruct as the image dif-
ference between the input I and a rendering of R; under a view
and light setup that corresponds to a flash picture taken perpen-
dicularly to the surface at a fixed distance. We use the L, norm to
compute this difference, which corresponds to the log-likelihood
under a Gaussian distribution assumption.

We initialize the SVBRDF estimate Ry by processing the input
image I with the feed-forward network gu of Deschaintre et al.
[DAD*18]. While we experimented with the pre-trained weights
provided by the authors, we achieved better results by re-training
this initialization network jointly with our recurrent updating net-
work. We hypothesize that joint training enables the initialization
network to account for the subsequent optimization performed by
the recurrent network, similarly to the meta-learning and look-
ahead strategies recently proposed by [FR22] and [ZK22] in the
context of test-time network fine tuning.

Internally, hg is composed of three convolutional layers inter-
leaved with Gated Recurrent Units (GRUs) [CVG*14]. The first
two convolutional layers are activated with leaky ReLU functions
and output feature maps of 64 channels, while the third convolu-
tional layer is activated with a hyperbolic tangent to produce values
between -1 and 1, which represent the update of the 9 SVBRDF
channels, where 3 channels correspond to the diffuse albedo, 3
channels to the specular albedo, 2 channels to the normal, and 1
channel to the specular roughness. We used convolutional kernels
of size 5 x 5 for the first layer and 3 x 3 for the second and third
layer, resulting in 405,376 parameters in total for hg, much less
than the 159,741,922 parameters of the initialization network ge.
We voluntarily built on the classical UNet of Deschaintre et al. and
on a lightweight recurrent network to demonstrate that the boost
in performance achieved by our approach is due to methodological
rather than architectural novelty.
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An important hyper-parameter of our method is the number of it-
erations (or updates) T performed by the recurrent network. While
several iterations are necessary to improve the prediction, perform-
ing too many iterations can be expensive in terms of GPU memory
and time. Specifically, the GPU memory consumption of the recur-
rent network increases linearly with the number of time steps. Ev-
ery iteration adds a forward pass through the CNN layers and the
computation of the gradient of the reconstruction error. Therefore,
the training/testing time of the recurrent network also increases lin-
early with the number of time steps. We empirically found that
T = 6 iterations offer a good trade-of, as detailed in Section 4.1.

3.3. Data and training

Similarly to prior work [DAD*18; GLD*19; GSH*20; GLT*21;
7ZK21; ZK22], we adopt a Cook-Torrance SVBRDF model [CT82]
with the GGX distribution [WMLTO07], which is parameterized by
four material maps, corresponding to the diffuse/specular albedo,
specular roughness, and surface normal. We visualize all inputs and
results in gamma space, except normals and roughness, which we
keep in linear space.

We train the initialization network ge and our recurrent update
network hg jointly on the dataset of [DAD*18], which contains
99,533 synthetic SVBRDFs {R}. We render the images {I} of
these SVBRDFs under view V and light L that emulate a camera
positioned perpendicularly and at a fixed distance to the planar sur-
face, with a co-located flash of fixed intensity. We adjusted these
parameters by hand to best reproduce the appearance of the ren-
derings provided by [DAD*18]. We assume that the test-time input
images are captured under similar view and light conditions, and
thus use the same parameters to compute the gradient of Lreconstruct
fed to hg. We train our method to minimize the rendering loss pro-
posed by [DAD*18], which compares renderings of the material
maps Ry predicted at the last iteration of our recurrent network
with renderings of the ground-truth maps R, under 9 random light-
ing and viewing conditions {L, V}. Following [DAD*18], we use
the L1 norm and compare the logarithmic values of the renderings:

Erendering(RTaR) = Z }lng(RT,L,V) —logf (RaLaV) ‘ .
{L.v}
3

We used the Adam optimizer with a learning rate set to 0.00002,
betas set to (0.9, 0.999), and the weight decay set to 0. We trained
our method until convergence (80 epochs with a batch size of 4),
which took three weeks on an NVIDIA A40 GPU. Once trained,
our method infers SVBRDF maps from an image in around 0.1
seconds on the same NVIDIA A40 GPU.

4. Ablation studies

We conducted several ablation studies to assess the impact of the
number of iterations performed by our recurrent network, as well
as the benefit of providing gradient information to this network at
test time. Similarly to [ZK22], we performed all studies on a set
of 61 synthetic SVBRDF, 22 being provided by [DAD*19] and 39
by [GSH*20]. Importantly, none of these SVBRDFs were used to
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generate the training data. We created synthetic flash inputs for this
test set by rendering each SVBRDF under the same light and view
conditions as the ones used for training our method.

We evaluate the quality of the prediction by comparing re-
renderings of the SVBRDFs to ground truth in terms of root mean
squared error (RMSE) and learned perceptual image patch similar-
ity (LPIPS) [ZIE*18], averaged over 20 random light and view con-
figurations that differ from the colocated flash configuration used to
render the input.

4.1. Number of iterations

We first evaluate the performance of our recurrent network related
to the number of iterations 7. We trained different models with
T =2 to T = 10. Fig. 3(top left) plots the RMSE and LPIPS
achieved by these models on the test set. This experiment reveals
that while the RMSE saturates after 6 iterations, LPIPS increases
slightly when more iterations are performed, even though it remains
lower than the LPIPS achieved by previous methods (see Table 2).
We thus fix the total number of iterations to 6, which offers a good
trade-off between accuracy and complexity of the model. Fig. 3(top
right) plots the evolution of the RMSE and LPIPS of the test set
over the iterations of the model trained for 6 iterations, showing
that quality improves as the optimization progresses. In practice,
the magnitude of improvement varies between materials. Fig. 4
shows two typical SVBRDFs where the initial prediction is either
too shiny, or not enough, and gets corrected by subsequent itera-
tions. Finally, Fig. 3(bottom) plots the evolution of the same metric
when we let the model trained on 6 iterations run for more itera-
tions. While the error remains stable for up to 24 iterations, it does
not decrease significantly, and it eventually increases if too many
iterations are performed.
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Figure 3: Impact of the number of iterations performed by the re-
current network. Upper left: comparison between models trained
with an increasing total number of iterations. Upper right: evolu-
tion of the accuracy achieved by a model trained for a total of 6
iterations. Lower middle: evolution of the accuracy in further infer-
ence steps with the same model trained for a total of 6 iterations
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Figure 4: Starting with the initial prediction (left), the recurrent net-
work refines the result (middle), bringing it closer to GT (right). In
these examples, the refinement mostly affects the intensity, spread
and sharpness of the highlights to make the material more (top
rows) or less (bottom rows) shiny.

4.2. Test-time gradient information

Our architecture improves upon the one proposed by [DAD*18]
by complementing it with a recurrent network, and by providing
test-time gradient information to that recurrent network. We now
evaluate the impact of these two additional components. To do so,
we compare the pre-trained model g, by [DAD*18] to two versions
of our architecture.

The first version augments g with the recurrent network hg,
but only feeds this network with the intermediate prediction R; at
each iteration. The second and complete version feeds the recurrent
network with R; and the gradient %

Table 1 summarizes the experiment’s outcome. Complement-
ing the architecture of [DAD*18] with a recurrent network already
yields a significant increase in accuracy, which we attribute to the
additional capacity that each iteration provides. Providing test-time
gradient information to this recurrent network improves accuracy

Table 1: Ablation study to compare our complete method to the
baseline architecture by [DAD*18], which does not include the re-
current network /g, and to a version that includes the recurrent net-
work but no test-time gradient. RMSE and LPIPS of re-renderings
are averaged over 20 random light/view configurations.

RMSE LPIPS

without /g 0.083  0.223
without gradient | 0.069  0.119
Ours 0.057  0.107

further, reducing RMSE by 31% and LPIPS by 52% over the base-
line ge.

5. Results

We compare our approach to recent methods for lightweight
SVBRDF capture, either based on feed-forward networks
[DAD*18; ZK21; GLT*21] or on test-time optimization [GLD*19;
GSH*20; ZK22]. We used the code and pre-trained weights pro-
vided by the authors of each method, except for [GLT*21] for
which we sent our testing data to the authors, who kindly agreed
to run their method and send back their results. We ran all methods
on a single input image, even for methods that can process multiple
images. We provide additional results, including animations under
moving lights, as supplemental materials.

5.1. Comparison on synthetic images

We first focus on the synthetic test set (see Section 4). For all meth-
ods, we report the RMSE on the individual SVBRDF maps, as well
as the RMSE and LPIPS errors on re-renderings averaged over 20
random light and view configurations. We use the same 20 config-
urations to compare all methods on a given SVBRDFE. We generate
these configurations by sampling the light and view positions uni-
formly over a quad of the same size as the surface patch, parallel to
and above the surface. This ensures that the images always contain
a highlight.

Table 2 summarizes the results achieved by each method’. When
looking at individual maps, our method achieves the best result
for diffuse albedo and normals, the second best result for spec-
ular albedo (outperformed by [ZK21]), and the third best result

T The numbers we report were computed by running all methods on our test
set, which is composed of 61 synthetic materials provided by [DAD*19]
and [GSH*20]. The difference between these numbers and the ones re-
ported by Zhou and Kalantari [ZK22] might be due to the fact that their test
set (which is not available) only contains 52 of our 61 materials, and that the
viewing and lighting conditions we used to render the dataset might differ
from the ones used by [ZK22] (which are unknown to us). Also, we ob-
served that the synthetic inputs and roughness maps provided in [ZK22] are
visually different from ours, which suggests that they treated the roughness
maps from [GSH*20] as linear while we treated them as gamma-corrected
to agree with the ones from [DAD*19]. Nevertheless, the RMSE and LPIPS
values reported in Table 1 of [ZK22] remain suboptimal to ours on re-
renderings.

© 2024 The Authors.
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Table 2: Quantitative comparison on synthetic SVBRDFs. Des18, Guo21 and Zhou?21 are fast feed-forward methods, while Gao19, Guo20
and Zhou?2?2 are slower due to test-time optimization. Our approach achieves state-of-the-art quality while being an order of magnitude faster
than the fastest optimization method. All timings were measured on an NVIDIA GeForce GTX 1080Ti GPU.

RMSE LPIPS
Diffuse Specular Rough Normal Render Render Speed/sec

Method | mean std mean std mean std mean std mean std mean std

Des18 | 0.056 0.066 0.144 0.106 0.350 0313 0.064 0.032 0.083 0.048 | 0.223 0.129 0.07

Guo2l | 0.094 0.115 0.119 0.128 0.185 0.158 0.071 0.039 0.095 0.054 | 0.214 0.090 NA
Zhou2l | 0.086 0.039 0.089 0.077 0.193 0.196 0.067 0.034 0.112 0.039 | 0.150 0.073 0.02

Gaol9 | 0.070 0.040 0.119 0.087 0296 0.279 0.073 0.035 0.084 0.035 | 0.139 0.076 42.70

Guo20 | 0.064 0.042 0.101 0.090 0.325 0.275 0.077 0.041 0.072 0.034 | 0.167 0.078 261.50
Zhou22 | 0.081 0.086 0.142 0.115 0.209 0.170 0.066 0.034 0.094 0.049 | 0.186 0.102 4.30

Ours 0.051 0.035 0.101 0.096 0.199 0.230 0.061 0.033 0.057 0.032 | 0.107 0.070 0.20

Input Diffuse Specular Rough Normal Renderings Input Diffuse Renderings

Specular Rough Normal

Zh0u22 Zh0u21 Guo2l  Guo20 Gaol9 Desl8

Ours

GT

Figure 5: Visual comparison against other methods on synthetic images. Note how our method recovers more falthful normal maps, as well
as roughness and specular information away from the highlight. All images except roughness and normal maps are shown in gamma space

for visualization.

for roughness (outperformed by [GLT*21] and [ZK21]). Impor-
tantly, our method achieves the best results on re-renderings, both
in terms of RMSE and LPIPS. Note also that our method is an or-
der of magnitude slower than feedforward approaches [DAD*18;
ZK21; GLT*21], but an order faster than fine-tuning [ZK22] and
two to three orders faster than latent-space optimization [GLD*19;
GSH*20].

Fig. 5 provides a visual comparison on two representative
SVBRDFs. Overall, our approach based on learned gradient de-
scent recovers finer details in the normal maps, including away

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

from the highlight, and better reproduces the colors and contrast
of the input.

5.2. Comparison on real images

We further examined a test set of 109 real scenes gathered by
[ZK22], composed of 33 scenes by [GSH*20] and 76 by [ZK22].
Each scene has been captured under 9 calibrated view/light con-
ditions, allowing us to use the central condition as input and the
8 other images as ground truth to compare re-renderings of the
predicted SVBRDFs. To compute the test-time gradient for our
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Table 3: Quantitative comparison on real images, where one im-
age serves as input and 8 other images are compared against re-
renderings of the predicted SVBRDF.

Guo20 Zhou22
Method | RMSE LPIPS | RMSE LPIPS
Desl18 0.140  0.391 0.102 0.316
Gaol9 0.158 0.361 0.110  0.290
Guo20 0.153 0.316 0.113 0.256
Guo21 0.161 0.391 0.103 0.303
Zhou2l | 0.154  0.314 0.132 0.266
Zhou22 | 0.133 0.286 0.093 0.216
Ours 0.122  0.276 0.084 0.211

method, we set the light intensity to be the same as during train-
ing and we assume that the camera, as well as the co-located light,
are oriented perpendicularly the surface, even if this only approxi-
mately holds in practice.

Since the data and metrics are the same as the ones used by
[ZK22] for their evaluation, we report their numbers in Table 3,
along with our results, all of which were obtained by providing a
single image as input to the different methods. Our method achieves
the best results in terms of both RMSE and LPIPS, demonstrating
its ability to generalize to real images despite being trained on syn-
thetic data.

Fig. 8 provides a visual comparison to the most recent method
by [ZK22] on six images including wood, ceramic, stone, canvas,
and plaster. Our method is especially good at recovering details in
the normal map, and at propagating roughness information away
from the highlight. Comparisons on more images can be found in
the supplementary materials.

We provide as supplemental materials a comparison with others
on 93 flash photographs from [DAD*18], [GLT*21], [ZK22], as
well as images we captured ourselves with a hand-held consumer-
level camera. For a fair comparison, all optimization-based meth-
ods were executed with their default light and view parameters as
input. The initialization for [GLD*19] was obtained by running
[DAD*18]. Fig. 9 illustrates some of these results. We show a re-
rendering of the SVBRDF under the same lighting conditions as
the input, as well as a re-rendering under novel lighting. Compared
to others, our approach better reproduces the input (details in the
normal map, color and contrast, extent of the highlight) and gener-
alizes well to novel light with little residual of the highlight in the
individual maps.

6. Limitations, extensions and future work

While we observed that learned gradient descent helps inpainting
saturated pixels (Fig. 1, Fig. 8 top row), the quality of the prediction
degrades for large highlights, where a lot of information is lack-
ing (Fig. 6, top). Similarly, while test-time optimization helps the
method generalize beyond its training set, it is challenged by input
images that are too far from the expected capture conditions. The
bottom part of Fig. 6 illustrates such as case, where the input image
is captured under a light source that is far from the expected collo-

Renderings

Input Diffuse Specular Rough Normal

GT Ours  Zhou22

Side

Central

GT

Figure 6: Limitations. Top: Our method struggles to inpaint satu-
rated pixels over large highlights; a limitation shared by existing
single-image methods. Bottom: Our method assumes a collocated
flash light, thus, prediction quality degrades when the material is
captured under a side light (bottom).

cated flash, yielding worse results than when collocated lighting is
used.

An exciting direction to address these limitations is to extend
our optimization framework beyond single-image capture. Specif-
ically, Equation 7 can be easily extended to compute Lreconstruct
over multiple input images {I}. As a first step in this direction, we
adapted our method to take 5 images as input, taken under varying
lighting and viewing conditions. Implementing this extension only
requires modifying the initialisation network g and the refinement
network /g to process 5 images and 5 sets of gradient maps, respec-
tively. While this extension increases the number of input channels
of the network from 2 x 9 to (N + 1) x 9 for N inputs, we kept the
subsequent dimensions fixed (64, 64 and 9 channels). We trained
this extended architecture with the same synthetic data as in Sec-
tion 3.3, except that we rendered each SVBRDF under 5 configu-
rations of light and view positions, which we selected at random
among 9 pre-defined configurations. We used the same test set of
SVBRDFs as in Section 4 to compare this extension (Ours-multi)
to our single-image model (Ours-single) and to the state-of-the-art
multi-image optimization Material GAN [GSH*20] (Guo20-multi).
Fig. 7 shows that our multi-image model outperforms [GSH*20] as
well as our single-image model. In particular, having access to mul-
tiple images with different highlights helps recover material maps
free of highlight residuals. Table 4 quantifies this improvement in
terms of RMSE and LPIPS. Note that our multi-image model is
only twice slower than the single-image model, while it is 600X
faster than the latent-space optimization of Material GAN.

While these preliminary results are promising, handling real-
world multi-image data would require training our method with
more diverse light and view configurations. Moreover, robustness

© 2024 The Authors.
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to approximate light and view calibration might be achieved by
treating the per-image light and view parameters (L,V) as addi-
tional unknowns to be optimized along with the material maps R.

Table 4: Quantitative comparison of our multi-image extension
(Ours-multi) against Material GAN [GSH*20] and our single-
image model (Ours-single) on synthetic images.

RMSE LPIPS Speed/
Method mean std mean std peedisec
Guo20-multi | 0.068 | 0.030 | 0.148 | 0.071 261.50

Ours-single 0.057 | 0.032 | 0.107 | 0.070 0.20
Ours-multi 0.042 | 0.029 | 0.074 | 0.082 0.40

Diffuse Specular Rough Normal Renderings

Ours-single  Guo20-multi

Ours-multi

GT

Ours-single  Guo20-multi

Ours-multi

GT

Figure 7: Visual comparison between Material GAN [GSH*20], our
single-image model and our multi-image model on synthetic im-
ages.

7. Conclusion

Gradient descent is at the core of many inverse rendering algo-
rithms, yet typically requires many steps and complementary reg-
ularization terms to converge to high-quality minima. We showed
how learned gradient descent is well adapted to appearance cap-
ture, where the inherent structure of the problem can be lever-
aged by a neural network to perform gradient descent in a few
high-quality steps. Intuitively, our recurrent neural network learns a

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

prior about material appearance, while the forward rendering model
gives a likelihood of reproducing the input. Feeding the network
with the gradient of this rendering model effectively enables our
method to solve for a maximum a posteriori estimate of the inverse
problem of single-image SVBRDF capture. We also showed that
the same formulation can be easily extended to a multi-image cap-
ture scenario. We strongly believe that a similar approach could
benefit related inverse problems for which strong priors can be
learned, such as facial and body capture, where feed-forward net-
works [KE18; SSSJ20] could be augmented with test-time opti-
mization.
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Figure 8: Visual comparison with [ZK22] on real images with ground truth relighting. Note the fine geometric details in the normal maps
and the propagation of spatially-varying roughness, which result in better reproduction of the ground truth appearance under novel lighting.
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Figure 9: Comparison with other methods on four real images. Our SVBRDFs reproduce well the input images when re-rendered under
the same lighting conditions, and produce plausible novel relighting thanks to detailed normal maps and propagation of diffuse albedo and
roughness within and away from the highlight respectively.
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