
Pacific Graphics 2024
R. Chen, T. Ritschel, and E. Whiting
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 7

FastFlow: GPU Acceleration of Flow and Depression Routing for
Landscape Simulation

Aryamaan Jain1 , Bernhard Kerbl2 , James Gain3 , Brandon Finley4 , Guillaume Cordonnier1

1Inria, Université Côte d’Azur, France, 2TU Wien, Austria, 3University of Cape Town, South Africa, 4University of Lausanne, Switzerland

Abstract
Terrain analysis plays an important role in computer graphics, hydrology and geomorphology. In particular, analyzing the path
of material flow over a terrain with consideration of local depressions is a precursor to many further tasks in erosion, river
formation, and plant ecosystem simulation. For example, fluvial erosion simulation used in terrain modeling computes water
discharge to repeatedly locate erosion channels for soil removal and transport. Despite its significance, traditional methods
face performance constraints, limiting their broader applicability.
In this paper, we propose a novel GPU flow routing algorithm that computes the water discharge in O(logn) iterations for a
terrain with n vertices (assuming n processors). We also provide a depression routing algorithm to route the water out of local
minima formed by depressions in the terrain, which converges in O(log2 n) iterations. Our implementation of these algorithms
leads to a 5× speedup for flow routing and 34× to 52× speedup for depression routing compared to previous work on a 10242

terrain, enabling interactive control of terrain simulation.

CCS Concepts
• Computing methodologies → Shape modeling; Massively parallel algorithms;

1. Introduction

Natural landscapes have been a source of fascination for genera-
tions of artists and scientists. As a consequence, the effective dig-
ital representation of terrain and surface features is crucial in sev-
eral domains. In computer graphics, realistic landscapes provide a
backdrop for films and games. In earth and environmental sciences,
it supports investigations of the natural forces that shape our planet.
In geographic information systems (GIS), it serves as the backbone
of digital twin technologies that, in turn, support various forms of
decision-making based on geospatial analysis.

In such applications, the inclusion of material (such as wa-
ter [CBC∗16] or sediment [YBG∗19]) flow is ubiquitous and its
impact cannot be ignored. Water affects surface appearance directly
through above-ground accumulation in rivers and lakes, and indi-
rectly through below-ground infiltration and the consequent sup-
ply of water to plants through osmosis. Over geological timescales,
fluvial erosion driven by water flow sculpts mountains and valleys.
Furthermore, water transforming through evaporation and conden-
sation between the land surface and atmosphere drives weather and
climate. Consequently, modeling the flow of material is a critical
task in many applications involving terrain (Figure 1). (We will re-
fer, without loss of generality, to the specific instance of water flow
in the remainder of the paper, as our techniques extend trivially to
other materials.)

Instead of treating water explicitly (for instance by solving the

1

2
3

45

Figure 1: Our GPU flow and depression routing algorithms can
be applied to accelerate multiple aspects of landscape simulation,
including 1) fluvial erosion, 2) rivers, 3) lakes, 4) ecosystems, and
5) sediment deposition.

Shallow Water Equations [Ben07]), researchers in computer graph-
ics [CBC∗16], hydrology [GM97] and geomorphology [BW13]
have proposed methods for computing water discharge (the volu-
metric flow rate of water). This is based on the observation that
discharge is the upstream integral of precipitation. Typically, a sin-
gle simulated blanket of rain is applied and runoff is then progres-
sively accumulated from higher elevations downwards to minima
along the bounding edges of the terrain. This is complicated due

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

https://orcid.org/0000-0002-4521-2416
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0000-0002-1699-9619
https://orcid.org/0009-0004-9466-7857
https://orcid.org/0000-0003-0124-0180

2 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

to the presence of local minima (or depressions) in the terrain inte-
rior, which trap the flow. This necessitates a global computation of
routing through chains of depressions toward the outflow boundary.

For clarity, we define flow routing as the computation of the dis-
charge – or any other material flux – over the terrain, and depression
routing as the computation of the water flow path out of depres-
sions.

While previous work has addressed both flow and depression
routing, with optimal solutions for the CPU [CBB19], and a sepa-
rate focus on distributed computing [Bar16], existing solutions for
the GPU [Bar19, SPF∗23] are inefficient for flow routing and typi-
cally do not consider depression routing at all.

In this paper, we present a GPU algorithm to solve both flow
and depression routing within the same framework. In the former
case, we express flow routing as an accumulation (or scan) across a
tree. We use a rake-compress algorithm [SAF05], which combines
pointer jumping and tree pruning, to perform this accumulation ef-
ficiently. In the latter case, we cast depression routing as an in-
stance of searching for a minimum spanning tree and are thus able
to adapt Boruvka’s algorithm [Bor26, VHPN09]. Our algorithms
for flow and depression routing over a terrain with n nodes com-
plete, respectively, in O(logn) and O(log2 n) iterations, assuming
n processors. Furthermore, we provide optimized implementations
of our algorithms in PyTorch and TensorFlow with custom CUDA
kernels, which are well-suited for integration into existing terrain
modeling pipelines.

We demonstrate its practicality through three example applica-
tions: river generation, terrain erosion, and ecosystem simulation.
These use cases illustrate that with minimal modification, our al-
gorithms are applicable to terrain modeling, geospatial analysis,
and simulation models in computer graphics, geomorphology, and
ecology. In particular, we show how to adapt our GPU algorithm
to an implicit time-stepping scheme for erosion simulation using
the Stream Power Law. This reduces the number of required time
steps and significantly enhances interactivity. We also present a new
strategy to account for sediment deposition.

Finally, we benchmark our solution against CPU and distributed
computing variants, as well as previous GPU solutions. Our GPU
implementation for flow routing provides a 5× speed up on a
1024× 1024 resolution terrain over competing GPU implementa-
tions, while depression routing gains 34× to 52× speedup com-
pared to parallel CPU approaches, depending on the variant of our
algorithm. This improvement in performance enables applications
in natural phenomena including river and lake modeling, terrain
erosion, and sediment deposition, to cross the threshold and achieve
interactive response times, especially when flow and depression
routing need to be recomputed over many iterations.

To summarize, our contributions are: 1) an efficient parallel al-
gorithm for flow and depression routing, 2) an accompanying im-
plementation on the GPU, and 3) demonstrations of its suitability
for typical application areas.

2. Related Work

While the task of computing water flow over a terrain is a mainstay
of hydrology and geomorphology, it is also directly applied in com-

puter graphics to the modeling of natural phenomena, in particular
the generation of terrains and placement of vegetation.

Terrain Simulation. Methods for generating terrain for use in
computer graphics can be broadly categorised [GGP∗19] into pro-
cedural (using algorithmic rules to mimic emergent properties),
example-based (learning structure from existing terrain data), and
simulation (mathematically emulating natural processes). Within
terrain simulation, fluvial erosion is recognized as a primary force
in shaping the topography of mountains. Early erosion methods in
computer graphics [MKM89] simulated water dynamics directly
using shallow water equations [Ben07] or smoothed particle hy-
drodynamics [KBKv09]. Unfortunately, water dynamics are very
short term and need to be applied many thousands of times to cap-
ture long-term erosion processes.

Instead, large-scale terrain erosion models [CBC∗16] take their
inspiration from geomorphology [BW13] and directly compute
total water discharge by accumulating precipitation from high
(mountain ridges) to low elevations (the sea). This flow accumu-
lation is communicated across large stretches of the terrain and
is thus less local and less amenable to parallelisation [VBHS11]
than direct water dynamics. However, this is more than offset by
the sheer number of iterations required for a dynamics solution
to reach steady-state. Schott et al. [SPF∗23] provide an approxi-
mate variant of discharge-based Stream Power erosion that propa-
gates discharge by a few cells on each time step. While this strat-
egy is trivially parallelizable, it requires a stable river network and
thus precludes outside terrain forces such as time-dependent tec-
tonics or sediment deposition. Furthermore, the underlying explicit
time-stepping scheme requires many timesteps, while our method
is amenable to an implicit scheme that overcomes this constraint.

Ecosystem Simulation. In ecosystem simulation, soil moisture is
one of the viability criteria for plant growth. Here, flow maps based
on monthly precipitation patterns [GLCC17] are used to supply
moisture inputs for plant growth. This has a particularly strong ef-
fect in riparian areas. The most commonly used per-cell moisture
proxy, the Topographic Wetness Index [RKKL21], is based on a
combination of slope and catchment area, with the latter derived
directly from flow routing. Unfortunately, ecosystem simulations
suffer from long run times on the order of hours and one of the
roadblocks is flow calculation, particularly if the simulation is run
at a weekly or daily time-step granularity.

Flow Routing. The problem of calculating water discharge over a
terrain is well-studied and has given rise to many competing algo-
rithms. Some methods are adapted to regular grid [GM97, OM84],
and others to triangulated irregular network (TIN) [Ban07]. In the
case of grids, the connections between cells can be either 4- or 8-
way, depending on whether or not the diagonals are included. While
our method is equally well-suited to TINs and 4- and 8-connectivity
grids, for implementation purposes we currently focus on optimiz-
ing for 4-connectivity grids.

A further distinction lies in how these techniques direct flow to
neighboring destination cells from a given source. The most com-
mon choice is Single Flow Direction (SFD), in which water always

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 3 of 13

Cell
Neighbors
Recipient
Donors c

(b) Terrain notations (a) Discharge

Stream tree
Basin
Outflow basin
Depression graph
Depression tree

(c) Graph abstractions

Figure 2: (a) The discharge qc corresponds to the integral of the precipitation p upstream of a cell c (Image courtesy of [CBC∗16]). (b)
Notation for the connectivity between terrain cells. (c) Two levels of graph abstraction. The stream trees cover the terrain grid and abstract
the connections from each node to its recipient. At a higher level, the depression graph connects basins, which are regions of the terrain
sharing a common local minimum. This depression graph is integral to the depression routing algorithm, which removes local minima: we
update the recipients guided by the depression tree rooted in an outflow basin, defined as the minimum spanning tree of the depression graph.

flows toward one of the lower neighbors of a given cell. The mech-
anism for selecting among lower cells matters in landscape sim-
ulation [TGSC24]. A stochastic selection leads to more natural-
looking results than, for instance, always selecting the neighbor
with the lowest elevation. In contrast, Multiple Flow Directions
(MFD) splits water across multiple destinations in function of the
difference in elevation [QBCP91, Coa20]. Our method handles all
SFD variants and is agnostic to the choice of the single destination.
However, achievingO(log(n)) complexity is enabled by a tree data
structure formed by SFD connections and this is not trivially ex-
tendable to the Directed Acyclic Graph (DAG) required by MDF.

There have been previous efforts to accelerate this problem by
exploiting parallelism, either on CPU [Bar17] or GPU [Bar19,
SPF∗23]. These approaches parallelize the propagation of flow
among independent flow paths but do not accelerate propagation
within the paths themselves, leading to O(l) iterations, where
l ≈
√

n is the length of the longest channel and n the number of
cells. In contrast, our approach requires O(log(n)) iterations.

Depression Routing. Crucially, previous GPU algorithms do not
account for depressions or local minima in the topography, which
are prevalent in terrains that have not been subject to depression re-
moval [WQZ19]. In nature, rather than breaking the flow path, such
depressions progressively fill and eventually overflow. Depression
routing, therefore, aims to find paths out of all depressions, such
that water can flow from any point on the terrain to a boundary.

Barnes et al. [BLM14] proposed the use of a priority queue
in progressively flooding from the boundary to the interior, fill-
ing depressions in the process, leading to a O(n log(n)) algo-
rithm. Subsequent work reduced dependence on the priority queue
data structure [ZSF16, WZF18] and investigated CPU paralleliza-
tion [DLM11, Bar16, ZLFS17, BCW20]. Ultimately, the priority
queue was dispensed with altogether by exploiting the observa-
tion that depression routing is an instance of a Minimum Span-
ning Tree search, which can be found in linear time on a planar
graph [CBB19]. We build on this idea and adapt it to the GPU.

3. Overview

Our stated aim is to efficiently calculate the direction and volume
of water flow over an input terrain with due consideration of lo-
cal depressions. We choose to represent the terrain as a 2D regular

grid of elevations z, often referred to as a Digital Elevation Model
(DEM). This is an implementation decision and adaptation of our
algorithms to other heightfield structures, such as Triangular Irreg-
ular Networks [Ban07], is straightforward. Note, however, that z is
a unique mapping h(x,y) = z over the x,y plane and so we do not
support true 3D terrains with caves and overhangs [GGP∗19].

There are three layers of terrain input to our algorithms. The first
is the elevation grid. We refer to each element of the grid as a ter-
rain cell c, with n being the total number of cells. We prefer to use
the term "cell" as opposed to the more familiar "vertex" or "node"
in this context because we want to make clear that this represents a
rectangular area on the terrain surrounding the sample. The neigh-
bors of c, denoted by Nc, are the 4 cells directly adjacent to c in
the x and y directions (Figure 2 (b)). The second input layer is the
amount of water (or any loose material) initially deposited on the
terrain and subject to flow. This can be interpreted as rainfall or
precipitation and is denoted as pc. The final layer is a user-defined
boolean mask bc 7→ {0,1} indicating the presence (1) or absence
(0) of outflow cells. These serve as boundary conditions and act to
trap water flow. Typically, outflow cells would line the edges of the
grid, but there are cases, such as groundwater sinks, estuaries, and
sea shores where they would be placed within the domain.

We output two maps: one for the per-cell discharge, and another
for per-cell recipients corrected by depression routing to yield un-
interrupted water paths.

Given these preliminaries, we now provide an overview of the
flow and depression routing algorithms.

3.1. Flow routing

Rain falling on a landscape flows downstream and progressively
accumulates into streams and rivers. The volume of water flowing
through a river cross-section per unit of time is called the discharge.
Equivalently, the discharge is the upstream integral of the precipita-
tion map. Flow routing involves the computation of this discharge
for each cell of the terrain grid.

The direction of the water flow is discretized on the basis of a
per-cell recipient, rc, which is chosen among the neighboring cells
of the terrain and obeys the condition zc > zrc . This allows sev-
eral mechanisms for the choice of neighbour. While the different
choices have their place and are compatible with our algorithm, we

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

4 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

prefer a random selection, with a probability based on the elevation
difference between the source and potential recipient [TGSC24].

Let us consider the cells of a terrain as nodes in a graph, and in-
terpret the connection between a cell and its recipient as a directed
edge. The strict monotonically decreasing elevation of recipients
guarantees that the graph does not contain any cycles. Since each
cell has a single recipient (equivalently, a single edge leaves each
node), this graph represents a set of trees (an algorithmic forest).

We use the term stream tree for each connected subgraph, since it
represents a set of water channels. This allows flow routing to be re-
cast as an accumulation (or scan). For a given stream tree, the scan
proceeds from its leaves (ridges of the terrain) to a single root (an
outflow cell). We propose employing rake and compress [SAF05]
algorithms to perform this task in parallel (Section 4).

We handle the user-defined outflow mask by excluding recipient
edges for its cells so that they become root nodes in the stream
forest. However, other cells may also lack recipients if none of their
neighbours meet the zc > zrc condition, i.e., local minima and flat
areas. In reality, instead of interrupting flow, these areas would fill
and overflow. This necessitates a solution for depression routing.

3.2. Depression routing

We are now in a position to define what a depression means in our
context. As a preliminary, we use the term basin for the set of ter-
rain cells that share the same stream tree, effectively all belonging
to the same catchment area and channeling water to a single root
cell. If this root cell is an outflow, then the basin is classified as an
outflow basin, otherwise, it constitutes a depression (Figure 2 (c)).

Depression routing is the task of finding reasonable water paths
out of all depression basins. Unfortunately, this problem is non-
local and therefore not amenable to trivial parallelization. For in-
stance, an obvious first thought would be to connect a depression
to an adjacent basin at the point of the lowest neighboring elevation,
but this may give rise to a chain of connections that form a cycle,
and therefore is unable to route the water toward outflow cells.

Two families of solutions have been proposed to tackle this issue.
One option is to progressively flood the terrain from the outflow
cells towards the interior, keeping track of cells to be processed
through a priority queue [BLM14]. While this enables a simple and
efficient single-threaded solution, it is not suited to parallelization
on the GPU, because it imposes a sequential order, with each pro-
cessed cell potentially changing the subsequent state of the queue.
The other option is to build a depression graph by representing de-
pressions as nodes and their adjacency relationships as edges. There
are two subtleties. First, all outflow basins are grouped into a single
node marked as the start. Second, edges are weighted according to
the lowest altitude along their shared boundary. The path out of all
depressions is then given by the Minimum Spanning Tree (MST)
of the depression graph, which connects all depressions to the col-
lection of outflow basins.

In Section 5, we detail our GPU implementation of depression
routing and propose two strategies for correcting the flow path: ei-
ther creating a jump connection between a local minimum in the
current depression and a cell in the next basin or preserving the
continuity by inverting flow for a subset of cells in the depression.

4. Flow routing

As a reminder, flow routing involves computing the discharge qc
for a cell c resulting from the accumulation of precipitation p over
a stream tree. This tree is implicitly defined by the relationship be-
tween a cell c and its downstream recipient rc. We can also travel
upstream by defining a donor of c as a node d, such that rd = c. We
write the set of up to 4 donors of c as Dc. In practice, we store the
donors in an n× 4 matrix, with an accompanying list of the num-
ber of donors per cell. This matrix is derived by parsing the cells in
parallel. Each cell increases the donor count of its recipient r with
atomic operations and adds its position to the donors of r.

Water flows downstream from donor cells to recipients, and
therefore the flow routing problem consists of accumulating all of
the upstream precipitation:

qc = pc + ∑
d∈D(c)

qd . (1)

Note that this is a recursive definition so that the discharge at a cell
is the sum of the precipitation falling on the cell and the discharge
from all donor cells.

Algorithm 1: Flow Routing: downstream accumulation
Input : Terrain cells T with initial discharge

(precipitation) q = p and their donors
Output: Updated accumulated discharge

1 for i← 1 to log2(|T |) do
2 foreach cell c ∈ T in parallel do
3 foreach donor d of cell c do
4 if d is a leaf then
5 qc← qc +qd
6 remove edge d→ c
7 end
8 else if d has a single donor then
9 qc← qc +qd

10 donor of c← donor of d
11 end
12 end
13 if all donors are removed then
14 tag c as leaf
15 end
16 end
17 end

With the exception of some cells marked by the outflow mask,
stream trees cover all of the terrain, which makes the design of an
efficient parallel solution to Equation 1 non-trivial.

Fortunately, this problem can be cast as an instance of Parallel
Tree Accumulation, which aims to compute the cumulative sum of
quantities in tree nodes, from leaf to root. This can be achieved
with straightforward pointer jumping, but this may result in aO(n)
span due to the required atomic operations. An alternative is to use
an Euler tour [SAF05] along the tree edges combined with pointer
jumping, which reduces the span to O(logn), since the number of
edges is less than the number of nodes. However, this method typ-
ically requires 2 log2 n iterations, as each edge is traversed twice.

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 5 of 13

Initial discharge
(precipitation) 2

1

1014

9

20

6

11 5

17

3

1

10

29

20

6

11 5

33

3

1

7249

20

6

11 5

33

75

73

9249

20

6

11 5

33

49

20

6

11 5

33

29

29 29 29

92

95

93

Final dischargeIteration 1 Iteration 2 Iteration 3

Figure 3: A few iterations of a parallel rake-compress solution to flow routing. On each iteration, leaf nodes (in green) are pruned and
recipients of cells with a single donor (in blue) are rerouted.

A still more efficient approach is rake-compress, which combines
pointer jumping with leaf pruning to achieve a span of O(logn).
This method typically needs only log2 n iterations, making it faster
in practice than the Euler tour. Sevilgen et al. [SAF05] provide a
starting point in the form of a general rake-compress solution to
graph accumulation problems for distributed architectures. This re-
lies on the observation that leaves constitute half the nodes in a
balanced binary tree. So, if we iteratively transfer accumulated dis-
charge from a leaf to its recipient and then prune the leaf and do
this in parallel across all leaves, we only need to iterate log2 n times
where n is the number of nodes in the terrain.

In general, river trees might be neither binary nor balanced. In
the worst case, where a river tree is composed entirely of single
donors, the iterations degrade to O(n). To compensate, we use
pointer jumping by re-routing the edges of cells whose donor it-
self has a single donor (parent). Effectively, the parent (donor)
is skipped and an edge is formed directly from the grandparent
(donor of the donor). Thereby, worst-case performance is restored
to log2(n) parallel iterations.

As shown in Algorithm 1, with an accompanying example in
Figure 3, on each iteration and for each terrain cell c, we parse each
donor d in parallel, with up to 4 donors in our implementation. If
d is a leaf, we add its discharge to c and remove it from the donor
matrix. Alternatively, if d has only a single donor, we again add its
discharge to c but in this case reconfigure the donor matrix so that c
instead points at the donor of d. Distinguishing between these cases
requires a single lookup in the donor count list, e.g., leaves have
a donor count of zero. Straightforward extensions of Algorithm 1
can be used for other flow accumulation functions, including those
involving maxima or weighted sums of upstream values.

Note that some care must be taken in the implementation of Al-
gorithm 1, which exhibits potential read-after-write (RAW) hazards
when updating the discharge and recipients. An immediate solution
is to write the updated q and r to temporary arrays and copy them
back at the end of each iteration. Unfortunately, this forces the un-
necessary transfer on each iteration of a large number of cells that
are unmodified. Instead, we propose a per-cell ping pong scheme.
We first allocate sufficient space to hold the state of two full ter-
rains, TA and TB. We then introduce an additional source buffer
with one 8-bit integer per cell, initialized to 0. The sign of the in-
teger at cell c in the source indicates whether data should be read
from TA and written to TB, or vice-versa. When cells are updated,

the sign is flipped. To avoid RAW hazards within the same itera-
tion, the remaining bytes of each source entry store the iteration at
which c was last updated: a thread will check the source to negate
the read sign if the stored iteration is the current one. At the end of
each iteration, the latest state of each cell is either in TA or TB, as
indicated by source. Hence, a final merge step is required before re-
turning the result as a single tensor. Incorporating this optimization
leads to a 14× speed up on a 1024×1024 terrain.

5. Depression routing

To match the expected natural behaviour, water needs to be routed
out of local depressions. Our strategy is to create new donor-
recipient connections and reroute others to ensure an uninterrupted,
minimum-cost path from any node to one of the designated out-
flows. In this context, we define the minimum cost to be the small-
est increase in altitude needed to move water out of a depression.

Broadly speaking, this involves connecting depression basins
with outflow basins through saddle points and then re-orienting a
path of edges within each depression to flow uphill and link to the
corresponding outlet. The challenge lies in preventing the forma-
tion of cycles as this will lead to highly unnatural flow behavior.
Once all stream trees have been corrected, we only need to run
flow routing once to calculate discharge volumes.

Basin

Neighboring basin Outlet

Saddle

Figure 4: A saddle between basins: With respect to a source basin
(in light red) and its neighbor (light green), the saddle and outlet
together form the lowest elevation bridge.

Depression routing consists of building a depression graph, in
which the depression and outflow basins represent nodes, and edges
are formed by the adjacent cells between different basins. It is likely
that there will be multiple potential candidates between any two
basin nodes formed by cells paired along their common border. We
choose the one with the lowest maximum altitude and call this the
saddle (see Figure 4). The saddle altitude is the weight assigned to

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

6 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

the new edge in the depression graph. From a physical perspective,
choosing the path with the lowest altitude ensures that the potential
energy cost of water routed out of the basin is kept to a minimum.

Following Cordonnier et al. [CBB19], the minimum cost route
out of depressions can now be cast as a minimum spanning
tree problem. Among the several MST algorithms (e.g., Prim’s,
Kruskal’s), Boruvka’s [Bor26] is perhaps the most amenable to
parallelization [VHPN09]. Boruvka’s Algorithm constructs a min-
imum spanning tree by iteratively identifying and merging the
minimum-weight edges of each component in parallel until only
one component remains. We note that the optimal theoretical com-
plexity for parallel MST algorithms is O(logn) [CHL01], but
the specific algorithmic improvements needed to achieve this are
not portable to the GPU, as they involve complex branching and
scheduling operations. Therefore, we build our algorithm upon the
more usual O(log2 n) variant.

Outflow basin Basin

Dep. graph edge Dep. tree edge Initial recipients

Depression carving

Depression jumping

(a) Iterations of depression routing (b) Re-routing recipients

Figure 5: (a) Two iterations of depression routing. The grey basin
on the left does not have an outgoing edge, likely because it would
have created a loop with a basin of a higher id. In the next iteration,
basins are recolored based on their new local minima, and only one
edge remains. (b) From the initial configuration of the recipients
(top), we apply either depression carving, which reverses the path
of water until it reaches the outlet, or depression jumping, which
directly connects the local minimum with the outlet.

Boruvka’s algorithm consists of greedily forming sub-trees by
treating each as a single collapsed node. It begins by treating all
nodes in the initial graph as separate sub-trees. Then, each of these
is grown by incorporating the incident edge of minimal weight (and
its attached sub-tree). The two sub-trees are joined, their shared
edge is collapsed, and the algorithm repeats until a single tree re-
sults. The parallel variant of Boruvka’s algorithm [VHPN09] ap-
plies edge selection in parallel and replaces the edge collapse with
a structure that maintains the connected components of the tree un-
der construction. This requires at most log2(V) iterations, where
V is the number of vertices in the graph (depressions in our case)
(Figure 5 (a)). Each of these iterations parses the structure for con-
nected components, adding an extra log2(V) iterations at worst, and
resulting in an overall complexity of O(log2(V)).

While we could build an explicit depression graph, compute a
minimum spanning tree, and parse the tree to update recipients,
such a construction would be costly as it involves the detection of
pairs of adjacent depressions. Furthermore, while Boruvka’s algo-
rithm outputs an undirected tree, we require directed edges to orient
water towards outflow basins. Instead, we introduce a hybrid struc-
ture where terrain data is used in conjunction with the depression

Algorithm 2: Propagation of basin identifiers
Input : Terrain cells T , non-outflow local minima L
Output: Per-cell basin identifiers bid

1 for i← 0 to |L|−1 in parallel do
2 bid of L[i]← i
3 end
4 for i← 1 to log2(|T |) do
5 foreach cell c ∈ T in parallel do
6 bid of c← bid of recipient of c
7 recipient of c← recipient of recipient of c
8 end
9 end

graph to progressively detect the path of water and update recipi-
ents. The algorithm proceeds through the stages of basin identifica-
tion, saddle edge selection, and donor-recipient re-routing.

Basin identification. Our algorithm begins by segmenting out
each stream tree and associating with its cells a unique basin identi-
fier (hereafter referred to as a basin-id, or bid in the pseudo-code of
Algorithm 2). To this end, we assign to each non-outflow local min-
ima a unique identifier – leaving a common outflow identifier for
all outflow basins – and use pointer jumping to copy this identifier
in parallel to all upstream nodes of its stream tree (Algorithm 2).

Saddle edge selection. We use the per-cell basin annotation to iso-
late cells lying along the border with neighboring basins. To do so,
we tag as a border cell, any cell in the current basin with at least one
adjacent cell belonging to another basin. Ultimately, one of these
border cells is chosen as a saddle edge in the depression graph. We
do not need to construct these edges explicitly as Boruvka’s algo-
rithm only requires the edge with the lowest weight.

For each border cell, this weight is set as the lowest elevation that
will permit an overflow from it into an adjacent basin. Specifically,
this is the maximum of the border cell’s altitude and the lowest
altitude among its neighboring cells. Then we choose the border
cell with minimum weight per basin.

Although we could compute the minimum altitude using a vari-
ant of rake-compress in O(logn), we found it more efficient to in-
stead compute it in a single step with atomic operations. We also
store the saddle, which is the source cell in the current basin with
minimum weight, and the outlet, which is its lowest neighbouring
cell across the basin border (see Figure 4).

Close-coupled loops can occur when two basins have saddle
edges pointing at each other. We resolve this by simply deleting
the edge with the higher saddle basin-id. We also apply a simi-
lar strategy to choose among saddles of identical elevation, which
could lead to larger cycles. This is prevented by selecting saddles
in lexicographic order (elevation concatenated with the basin-id of
the outlet). This algorithm is summarized in Algorithm 3.

Re-routing recipients. Ordinarily, the next step in Boruvka’s al-
gorithm would be to collapse the newly incorporated edges. Due to

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 7 of 13

Algorithm 3: Finding saddles and outlets
Input : Terrain cells T with elevation z, set of depression

basins D
Output: Per-depression saddle and outlet

// Compute border cells and store the border altitude in z′

1 foreach cell c ∈ T in parallel do
2 if bidc ̸= bidn of any 4-neighbour n of c (n ∈Nc) then
3 tag c as a border cell
4 znb←min(zn for n ∈Nc such that bidc ̸= bidn)

5 z′c← max(zc,znb)
6 end
7 end

// Saddles and outlets (with atomic lexicographic argmin)
8 foreach basin d ∈ D in parallel do
9 saddle of d← argmin((z′c,bidn) for each border cell c

and n ∈Nc such that bidc = d and bidn ̸= d)
10 outlet of d← argmin(zn for each neighbor n of the

saddle such that bidn ̸= d)
11 end

// Remove cycles
12 foreach basin d ∈ D in parallel do
13 d′← basin of outlet of d
14 if bid of outlet of d′ = bid of saddle of d then
15 if bid of outlet of d < bid of saddle of d then
16 Delete the saddle and outlet of d
17 end
18 end
19 end

our two-layer structure, with an implicit depression graph and ex-
plicit flow routing, this needs to be interpreted differently. Instead,
we merge stream trees by adding and re-routing recipient links, us-
ing one of two strategies (Figure 5 (b)).

The first strategy, depression jumping, involves adding a recipi-
ent link directly from the depression’s local minima to the newly es-
tablished outlet cell. This is straightforward and efficient but leads
to a jump discontinuity in the flow path, which, depending on the
application, may be undesirable.

The second strategy, depression carving [Rie98], mimics the
course of water channeling down from the saddle. We first compute
the flow path that connects a saddle and outlet to the associated lo-
cal minimum and then reverse the direction of all recipient links. In
this way, we allow water to flow upstream from the local minimum
to the outlet. The pseudo-code for these two strategies is presented
in Algorithm 4.

A single iteration of basin identification, saddle edge selection,
and re-routing of recipients ends up being insufficient. It will not
necessarily connect all depressions to the set of outflow basins.
However, on any given iteration this process removes at least half of
the remaining depressions, meaning that a total of log(L) iterations
are required, where L is the number of local minima (Algorithm 5).

Algorithm 4: Re-routing flow paths
Input : Terrain cells T , set of depression basins D
Output: Updated recipients

1 if Depression jumping variant then
2 foreach depression d ∈ D in parallel do
3 l← local minimum of d
4 recipient of l← outlet of d
5 end
6 else

// Depression Carving Variant
7 tag← False for all cells
8 foreach depression d ∈ D in parallel do
9 tag[saddle of d]← True

10 end
// recipient is local to next two loops

11 for i← 1 to log2(|T |) do
12 foreach cell c ∈ T in parallel do
13 if tag[c] then
14 tag[recipient of c]← True
15 recipient of c← recipient of recipient of c
16 end
17 end
18 end
19 foreach cell c ∈ T in parallel do
20 if tag[recipient of c] and c is not a local minimum

then
21 recipient of recipient of c← c
22 end
23 end
24 foreach depression d ∈ D in parallel do
25 recipient of saddle of d← outlet of d
26 end
27 end

Algorithm 5: Depression Routing
Input : Terrain nodes T with depressions; non-outflow

local minima L
Output: Updated terrain graph with rerouted depressions

1 for i← 1 to log2(|L|) do
2 Construct basins D and annotate the cells (Algorithm 2)
3 Find min edges, saddles and outlets (Algorithm 3)
4 Reroute recipients (Algorithm 4)
5 end

Each iteration, in turn, requires log2(n) sub-iterations, where n is
the number of cells, yielding an O(log(L) log(n)) algorithm.

Implementation. As with flow routing, we prevent read-after-
write hazards while minimizing the extent of copying. For basin
identification, we store the basin-id only for the local minima and
not for all cells, and use the updated recipients at the end of Al-
gorithm 2 as a per-cell pointer to the downstream local minima,
which we interrogate to obtain the basin-id. This change relaxes the

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

8 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

need for any copy during basin identification, as read-after-write no
longer prevents the correct convergence of the algorithm. Further-
more, we observe that this operation is required only for the first
iteration. In subsequent iterations, we need only update the point-
ers to reflect the new connections out of the local minima, yielding
an overall complexity of O(log(n)+ log2(L)).

Another RAW hazard can occur in the depression carving variant
for re-routing flow paths. To prevent this, we use a localized ping-
pong strategy (similar to the one presented in Section 4), which is
simplified by using the tag variable as a condition for copying.

6. Application to landscape simulation

Here we show how we apply flow and depression routing to accel-
erate landscape simulation, with use cases in river and lake mod-
eling, terrain erosion, and ecosystem simulation. In particular, our
GPU algorithms together provide the discharge necessary for ero-
sion simulation. Furthermore, they enable a novel GPU-based so-
lution for implicit time-stepping of erosion using the Stream Power
Law, which we combine with a simulation of sediment deposition.

Algorithm 6: Extracting a depression-free water surface
Input : Terrain cells T with elevation z, small slope ϵ
Output: Elevation of the water surface w

1 w← copy of z
2 for i← 1 to log2(|T |) do
3 foreach cell c ∈ T in parallel do
4 w[c]←max(z[c],w[recipient of c]+2i−1ϵ)
5 recipient of c← recipient of recipient of c
6 end
7 end

River and lake modeling. To identify the surface of rivers and
lakes we begin by filling depressions in the terrain. This is some-
times referred to as pit removal and has value as an algorithm in its
own right. Our input is the terrain elevation grid, and a set of recip-
ients identified during depression routing to provide the flow path
with minimum energy cost. We call the water surface the elevations
obtained after filling the identified depressions. This surface should
obey two conditions: it should be as close as possible to the terrain,
and at the same time be monotonically non-decreasing along all
stream trees, which we intuitively expect since water flows down-
hill. To achieve this, in Algorithm 6 we introduce a variant of the
basin identification algorithm. We follow the water path of each
stream tree upwards from destination to sources, retaining as the
water surface the maximum elevation previously reached. For com-
pleteness, we optionally allow a small slope ϵ on the water surface
as this is sometimes required in hydrology applications. Note that
this variant is only possible with the depression carving strategy,
as it requires a continuous path. Next, cells with water discharge
above a specified threshold can be tagged as belonging to bodies
of water, as illustrated in Figure 9 where the water surface and its
discharge are highlighted.

Ecosystem simulation. The water routes derived through river and
lake modeling have direct application to ecosystem simulation. Wa-
ter, along with sunlight and warmth, is a key requirement for plant
growth, with different species having varied adaptation to water
availability. Modeling water discharge is therefore a crucial ele-
ment in ecosystem simulations. To demonstrate applicability, Fig-
ure 6 shows the outcome of an ecosystem simulation for a biome
in the Pyrenees mountains [PGG∗24] at the 50 year mark, with
water accumulation provided by our flow and depression routing.
For clarity, pioneer species with strong drought tolerance have been
removed and what remains are species, such as Sessile Oak and
European Beech, that require the greater moisture found in ripar-
ian areas. Most ecosystem simulations use a month as the timestep
granularity, due in part to the overhead of calculating water flow.
The acceleration provided here creates an opportunity for shorter,
weekly, or even daily, timesteps with non-uniform rainfall across
the landscape [PMG∗22] and hence greater simulation accuracy.

Figure 6: Ecosystem simulation with water provided by flow rout-
ing. Certain species (colored in shades of green, black, and purple)
favor river banks due to higher levels of available water.

Terrain erosion. Flow routing is a critical component of terrain
erosion, as it provides the mechanism by which material is worn
away and transported, ultimately over geological time shaping the
mountains themselves. Furthermore, even the ordering of recipient
cells plays a role in the implicit integration of the stream power law
erosion equation. This is expressed as [CBC∗16]:

∂z
∂t

= u− kQm ∂z
∂x

, (2)

where the first term u is the tectonically induced uplift (or growth
rate of the mountain), and the second term is the erosion, de-
pendent on the discharge Q, erosion coefficients k and m, and
the slope ∂z/∂x. The discharge provided by flow routing is scale-
independent, so to compensate we scale the discharge Q by accu-
mulating ∆x2 p, where ∆x is the cell size and p is the precipitation.
The uplift is usually considered time-independent and therefore ap-
plied as a pre-process. This leaves an implicit solution to the second
erosive part of Equation 2 as:

zt [c] = zt−∆t [c]−K(zt [c]− zt [recipient of c]), (3)

where ∆t is the time step and K = kQm
∆t/∆x. Eq. 3 can be further

simplified to:

zt [c] = αzt [recipient of c]+β, (4)

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 9 of 13

User draws the uplift Controls deposition Increases time

Figure 7: Different stages in an interactive authoring session. The user paints uplift to provide an initial mountain structure, then changes
the deposition parameters (sediment in dark brown and lakes and rivers in blue), and, finally, increases the overall simulation duration.

where α = K/(1+K) and β = zt−∆t [c](1+K).

As with water surface extraction, we can compute zt using a
simple modification of basin identification (see Algorithm 7). The
outcome of applying our accelerated method of fluvial erosion is
illustrated in Figure 8. Note that Equation 2 is a special case of
the Stream Power Law with the slope exponent set to one. Further
research is required to adapt our solution to the general case, for
instance with a global Newton-Raphson’s algorithm.

Algorithm 7: Implicit fluvial erosion
Input : Terrain cells T with elevation z, per cell

coefficients α and β

Output: Eroded terrain z′

1 z′← copy of z
2 for i← 1 to log2(|T |) do
3 foreach cell c ∈ T in parallel do
4 z′[c]← z′[c]+α[c]z′[recipient of c]
5 α[c]← α[c]α[recipient of c]
6 recipient of c← recipient of recipient of c
7 end
8 end

Fluvial erosion is not the only erosive process responsible for
shaping terrain. Hillslope processes model the gradual accumula-
tion of solid material at the base of mountains and hills [BS97] and
is usually expressed as a diffusion equation. We follow Tzathas et
al. [TGSC24] and approximate it by including additional terms in
the Stream Power Equation, changing kQm to kQm + kt + khA−h,
where kt and h = 0.6 are hillslope erosion parameters, A is the
drainage area (obtained via flow routing with precipitation set uni-
formly to p = ∆x2). The parameter kt accounts for slope-dependent
effects (landslides, debris-flow), regrouped in computer graphics
under the catch-all term thermal erosion [MKM89].

Sediment deposition. Finally, flow routing can more generally
propagate any type of transportable material. A case in point is sed-
iment deposition, which acts as a complement to hydraulic erosion.
Incorporating sediment deposition requires an additional term in
the Stream Power Law [YBG∗19]:

∂z
∂t

=−kQm ∂z
∂x

+ kd
Qs

Q
, (5)

where kd is the sediment deposition coefficient and Qs is sedi-
ment flux, obtained by accumulating the negative elevation bal-
ance −∆x2 ∂z

∂t downstream with flow routing. While Yuan et

al. [YBG∗19] suggest a fully implicit solution that requires iter-
ating between Equation 5 and the accumulation of Qs, we propose
a semi-implicit variant in which Qs is computed from the elevation
balance of the previous time-step. While our solution introduces a
time dependency into mass conservation, it does not require iterat-
ing, which leads to a faster algorithm with no visual difference.

7. Results

In this section, we show the results of our method applied to the use
cases detailed in section 6, and then demonstrate this performance
against competitor methods.

7.1. Implementation

We prototyped our algorithms in Python with PyTorch and opti-
mized our implementation with custom CUDA kernels. In partic-
ular, we seek to strike a balance by executing high-level functions
in PyTorch or TensorFlow and handling compute-intensive kernels
with CUDA. The code for this paper is available at: https://
gitlab.inria.fr/landscapes/fastflow. For ease of use, this
includes our standalone unoptimized PyTorch implementation and
a TensorFlow port, as well as our CUDA optimizations. The repos-
itory also includes examples of how to use our code to edit terrain
with Houdini [Sid23], as demonstrated in the accompanying video.

In terms of optimization, we reduce memory allocations and
copying and prevent CPU-GPU communication in the control flow.
We found that allowing the GPU to run for the maximum number
of iterations (e.g., log2 n for flow routing) was more efficient than
checking for early convergence. The only exception is in depression
routing, where we halt the algorithm when no depressions remain.

7.2. Interactive landscape simulation

In this section, we showcase the application of our methods to in-
teractive landscape simulation. In doing so, we compare against a
recent approximate GPU solution for flow routing [SPF∗23] and
evaluate the impact of our new approach to sediment deposition.

As a starting point, Figure 1 shows a real digitized terrain, sub-
sequently altered by fluvial erosion and sediment deposition, and
overlaid with flow-dependent vegetation, lakes, and rivers, in under
1.5 seconds.

Interactive landscape authoring. To demonstrate the general ap-
plicability of our algorithms we provide extracts from an interac-
tive landscape authoring session in Figure 7 and the accompany-
ing video. Here, user-guided simulation is applied to a 512× 512

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

https://gitlab.inria.fr/landscapes/fastflow
https://gitlab.inria.fr/landscapes/fastflow

10 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

terrain, which, thanks to GPU acceleration combined with im-
plicit time-stepping, requires only 10 iterations and 0.1s to capture
700,000 years of geomorphological evolution. For comparison, a
CPU implementation [CBC∗16] requires 2.6s. The user first de-
fines the primary mountains by progressively painting on an up-
lift map, and can then freely change simulation parameters (here
the deposition constant). Finally, the user advances the age of the
mountain by increasing the number of iterations to 100, producing
the result on the far right in 0.7 seconds. Note that lakes disap-
pear over time as a consequence of filling by deposition and uplift,
combined with erosion, which gradually removes the obstructions
between them.

Our method scales to higher-resolution landscapes, as illustrated
in Figure 8 for a 2048×2048 terrain with 300,000 simulated years
(200 iterations) generated in under 10 seconds.

Figure 8: A 300,000 year-old mountain, generated on a 2048×
2048 grid in under 10 seconds, incorporating fluvial erosion, sedi-
ment deposition, and river and lake formation.

Rivers and lakes In Figure 9, we demonstrate how our algorithms
can be used on complex large-scale terrains to demarcate lakes and
rivers that are registered correctly with existing erosion lines and
depressions. On the left in Figure 9, a mountainous region in the
Alps transitions into an urbanized flat glacial valley. On the right, a
tidal estuary around Mont Saint-Michel, France, leads into the sea.
They contain 383,918 and 8,445,644 basins, respectively. In both
cases, the elevation data was obtained from the IGN RGE ALTI
Digital Elevation 1m dataset [IGN22].

Alps Mont St.Michel

Figure 9: River and lake identification on an alpine terrain domi-
nated by a flat glacial valley (left), and a complex estuary (right).

Sediment deposition. Figure 10 highlights the impact of sediment
deposition. This increases the diversity of landscape patterns. In
particular, sediment deposition, where present, dampens erosion,
and leads to steeper slopes. Finally, we show in Figure 11 the vi-
sual impact of our semi-implicit deposition strategy. Our results are
similar to a fully implicit variant [YBG∗19]. We note, however, that
our gain in performance comes at the cost of some material loss.

Without sediment With sediment

Figure 10: Sediment deposition acts as a shield against erosion
leading to more pronounced slopes.

Implicit Semi-implicit

Figure 11: The visual results of implicit and semi-implicit deposi-
tion are on par (with 100 iterations at ∆t = 2000, ∆x = 16, and a
resolution of 20482).

Comparative evaluation. An alternative strategy for landscape
simulation on the GPU [SPF∗23, JBC24] is to use explicit time-
stepping for erosion combined with approximate flow routing,
where the discharge is propagated by a single cell on each simu-
lation step. This method requires many more iterations due to the
stability conditions of the explicit scheme but does eventually con-
verge to a solution qualitatively similar to ours. Crucially, there are
several situations where this strategy cannot be applied. One case is
the erosion of an existing terrain containing depressions. Another
failure case (see Figure 12) occurs when noise is added to uplift
to increase the diversity. The approximate solution relies on the
assumption that the flow path weakly varies over time, which al-
lows the approximation of the discharge to progressively improve.
Adding noise invalidates this assumption and leads to a significant
underestimation of drainage and, consequently, an underestimation
of erosion. This is visible in Figure 12, where the maximal eleva-
tion depends on the amount of noise. In contrast, our combination
of implicit-time-stepping and exact-flow does not suffer from this
shortcoming.

±2
m

±1
m

±0
m

Approx. routing Exact routing

3041m

3476m

4698m

3034m

3064m

3024m

Figure 12: Approximate flow routing [SPF∗23] (left) versus ours
(right), subject to noisy uplift with varying amplitude (top to bot-
tom: ±0, 1, and 2m per timestep). Compared to ours, the elevation
with approximate routing depends on the magnitude of that noise.

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 11 of 13

Another consideration is the acceleration afforded by the larger
timesteps of our implicit solution. We show in Figure 13 that a
512×512 terrain with ∆x = 32m obtained with an explicit scheme
(∆t = 1,000 years) is visually similar to the result of our implicit so-
lution (∆t = 20,000 years). Our implicit scheme allows an increase
of the timestep by a factor of 20, which reduces, by the same factor,
the iterations needed to achieve the same total geological timespan.
With such timesteps, generating a 10 million year-old landscape
requires 7.2s and .5s, for the explicit and our implicit scheme, re-
spectively. Note that larger implicit timesteps are unconditionally
stable, and only diverge slightly from the explicit solution. Note
that explicit and implicit schemes in general do not yield identical
solutions as they accumulate discretization error differently.

Explicit Implicit

Figure 13: Our implicit solution with ∆t = 20,000 (right) provides
a result similar to the explicit scheme with ∆t = 1,000 (left). The
latter is at its upper stability limit.

We further motivate the need for depression routing by recreat-
ing the escarpment scenario from Cordonnier et al. [CBB19]. This
begins with a flat terrain in which the boundary edges are lowered
by 100m. Figure 14 shows the results without uplift after 250 it-
erations of 5,000 years, both with and without depression routing.
Depression routing prevents water loss, and therefore leads to a
much deeper carving of the valleys.

Without depression With depression

Figure 14: Erosion carving on an escarpment, without (left) and
with (right) depression routing.

Limitations. For efficiency, our flow routing relies on parallel op-
erations on a tree data structure, which in turn requires a single re-
cipient per cell (Single Flow Direction, or SFD). As a consequence,
we cannot handle multiple recipients (Multiple Flow Directions, or
MFD), unlike some other schemes [Bar19, SPF∗23]. Figure 15 il-
lustrates the differences in appearance between rivers formed by
SFD and MFD, using a CPU variant of Barnes approach [Bar19].
From a visual standpoint, MFD is more blurred and SFD more
sharply defined. From an application standpoint, SFD is favoured
for terrain erosion and river modeling, while MFD is more used in
ecosystem simulation. Furthermore, Algorithm 7 for implicit flu-
vial erosion assumes a linear correlation with slope, meaning it
cannot be applied study non-linear behavior in geomorphology.

SFD MFD

Figure 15: The visual differences between our Single Flow Direc-
tion (SFD) algorithm and Multiple Flow Directions (MFD), which
we are unable to handle.

7.3. Performance

In this section, we compare our approach against other parallel
GPU and CPU implementations of flow and depression routing.

Our performance tests were executed on a computer equipped
with an Nvidia RTX A6000 GPU with 48GB of memory and used
20 cores of an Intel Xeon Gold CPU clocked at 2.10GHz with
128GB RAM.

For our test dataset, we incorporated a mix of real and synthetic
terrains. We began by extracting a set of 10 real terrains from the
IGN RGE ALTI Digital Elevation 1m dataset [IGN22] chosen on
the basis of topographic variety. These 10 terrains were sampled
at cell resolutions of 512× 512, 1024× 1024, 2048× 2048 and
4196×4196 to support scaling experiments.

We also included 5 synthetic terrains at the same resolution lev-
els, and each with a controlled proportion of depression coverage
(at synth-1%, synth-5% and synth-15% levels). These were gener-
ated by erosion simulation (Section 6), followed by layering differ-
ent amplitudes of uniformly distributed noise. Note that it is com-
mon practice to add this type of noise during erosion simulation to
mimic natural stochastic processes.

Finally, we included a uniformly flat terrain as an extreme test
case, since in this instance all cells are local minima and hence
coded as depressions.

7.3.1. Spatial scaling

We show in Figure 16 the relationship between performance and
terrain size, for resolutions ranging (logarithmically) from 64×64
to 8192×8192. We observe that parallelism is limited by the max-
imum simultaneous threads in our GPU model at around 8192×
8192, where performance follows a near-linear trend.

Flow routing

0.0001

0.001

0.01

0.1

64 128 256 512 1024 2048 4096 8192

Ti
m

e
(s

)

0.001

0.01

0.1

1

64 128 256 512 1024 2048 4096 8192

Ti
m

e
(s

) Dep. Carving Dep. Jumping

() ()

Figure 16: Scaling experiments: (1) flow routing, (2) depression
jumping, and (3) depression carving.

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

12 of 13 A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow

0.001

0.01

0.1

Ti
m

e
(s

) 512×512 Terrain

Ours (J) Ours (C) [Bar16] [CBB19]

0.001

0.01

0.1

1

Ti
m

e
(s

) 1024×1024 Terrain

0.001

0.01

0.1

1

Ti
m

e
(s

) 2048×2048 Terrain

0.01

0.1

1

10

Ti
m

e
(s

) 4096×4096 Terrain

Figure 17: Performance of depression jumping (Ours (J)) and carving (Ours (C)) against a parallel CPU implementation [Bar16] and a
single-core CPU implementation [CBB19].

7.3.2. Flow routing

Topographic variation does not have a significant impact on the
performance of flow routing, so we benchmark flow routing solely
on real terrains. We compare our algorithm against:

• Barnes [Bar19], who provides a GPU algorithm for flow routing
based on a pre-ordering of the computation graph.

• Schott et al. [SPF∗23], who use a GPU algorithm similar to ours,
but without pointer jumping, which results in as many iterations
as the node length of the longest river in the terrain (∼

√
n).

Note that neither of these algorithms provides a solution for
depression routing on the GPU. The results are illustrated in
Figure 18, with an average speed-up of 10×, 5×, 3× and 3×
against [Bar19] for each target resolution, respectively.

0.1

1

10

100

Ti
m

e
(m

s)

512×512 Terrain

0.1

1

10

100

1000

Ti
m

e
(m

s)

1024×1024 Terrain

1

10

100

1000

Ti
m

e
(m

s)

2048×2048 Terrain

1

10

100

1000

10000

Ti
m

e
(m

s)

4096×4096 Terrain

Ours

[Bar19]

[SPF∗23]

Figure 18: Performance of our flow routing against [Bar19]
and [SPF∗23].

7.3.3. Depression routing

To test the performance of depression routing we include all terrain
categories (synthetic, real, and flat) from our benchmarking suite
since the distribution of local minima can have a significant impact
in this case. We compare two variants of our algorithm and previous
work, as follows:

• Ours (J) Our algorithm with depression jumping.
• Ours (C) Our algorithm with depression carving.
• Barnes [Bar16], who proposed an algorithm optimized for CPU-

based parallel or distributed computing.

• Cordonnier et al. [CBB19], who provided a O(n) solution for
flow routing on the CPU with a single-core implementation.

Note that [Bar16] does not solve the depression routing problem
as posed here since their goal is instead to fill depressions. Extend-
ing this to a more general solution that enables flow routing for
discharge computation is far from trivial.

The comparative performance of these depression routing algo-
rithms is shown in Figure 17. In particular, we note that our algo-
rithms outperform previous work by one order of magnitude for ter-
rains up to a resolution of 2048×2048. However, this gap narrows
somewhat for the largest terrains, which indicates non-favorable
scaling at the upper end. Also worth noting is that, with the excep-
tion of flat terrains, the comparative advantage of using depression
jumping increases for larger terrains.

8. Conclusion

Algorithms for evaluating water flow over terrains are a staple of
geo-analysis, with applications in computer graphics and beyond.
Consequently, any improvement in their run-time performance is
worth serious consideration. In this paper, we provide improved al-
gorithms for solving both flow and depression routing problems,
with, respectively, O(logn) and O(log2 n) complexity for a terrain
with n nodes. This is an improvement on previous methods, which
usually require as many iterations as the length of the longest river
(∼
√

n). Most importantly, we are the first to propose a GPU solu-
tion for both flow and depression routing.

In comparative terms, our GPU implementation for depression
routing outperforms an optimized parallel CPU algorithm by 34×
to 52× on a 10242 resolution terrain, depending on the strategy for
recipient correction. We also improve on previous GPU methods
for flow routing [Bar19, SPF∗23] by a factor of 5×.

In terms of raw performance, our GPU implementation executes
in under 55ms on terrains up to 40962 sample resolution. This
opens up new opportunities and research avenues for the future use
of flow and depression routing in an interactive context. Further
work on our algorithm is also required to reach more general appli-
cations, for instance by allowing for multiple recipients (Multiple
Flow Directions).

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

A. Jain, B. Kerbl, J. Gain, B. Finley, G. Cordonnier / FastFlow 13 of 13

Acknowledgements

This project was sponsored by the Agence Nationale de la
Recherche project Invterra ANR-22-CE33-0012-01 and research
and software donations from Adobe Inc. BK acknowledges funds
from WWTF project ICT22-055 (IVILPC).

References

[Ban07] BANNINGER D.: Technical Note: Water flow routing on irregu-
lar meshes. Hydrology and Earth System Sciences 11, 4 (2007), 1243–
1247. 2, 3

[Bar16] BARNES R.: Parallel priority-flood depression filling for trillion
cell digital elevation models on desktops or clusters. Computers & Geo-
sciences 96 (2016), 56–68. 2, 3, 12

[Bar17] BARNES R.: Parallel non-divergent flow accumulation for tril-
lion cell digital elevation models on desktops or clusters. Environmental
modelling & software 92 (2017), 202–212. 3

[Bar19] BARNES R.: Accelerating a fluvial incision and landscape evo-
lution model with parallelism. Geomorphology 330 (2019), 28–39. 2, 3,
11, 12

[BCW20] BARNES R., CALLAGHAN K. L., WICKERT A. D.: Comput-
ing water flow through complex landscapes–part 2: Finding hierarchies
in depressions and morphological segmentations. Earth Surface Dynam-
ics 8, 2 (2020), 431–445. 3

[Ben07] BENES B.: Real-time erosion using shallow water simulation.
In VRIPHYS (2007), pp. 43–50. 1, 2

[BLM14] BARNES R., LEHMAN C., MULLA D.: Priority-flood: An op-
timal depression-filling and watershed-labeling algorithm for digital ele-
vation models. Comp. and Geosciences 62 (2014), 117–127. 3, 4

[Bor26] BORUVKA O.: O jistém problému minimálním. Pràce Moravské
pr̆ìrodovĕdecké spolec̆nosti 3, 3 (1926), 37–58. 2, 6

[BS97] BRAUN J., SAMBRIDGE M.: Modelling landscape evolution on
geological time scales: a new method based on irregular spatial dis-
cretization. Basin Research 9, 1 (1997), 27–52. 9

[BW13] BRAUN J., WILLETT S. D.: A very efficient o(n), implicit and
parallel method to solve the stream power equation governing fluvial in-
cision and landscape evolution. Geomorphology 180-181 (2013), 170–
179. 1, 2

[CBB19] CORDONNIER G., BOVY B., BRAUN J.: A versatile, linear
complexity algorithm for flow routing in topographies with depressions.
Earth Surface Dynamics 7, 2 (2019), 549–562. 2, 3, 6, 11, 12

[CBC∗16] CORDONNIER G., BRAUN J., CANI M.-P., BENES B.,
GALIN E., PEYTAVIE A., GUÉRIN E.: Large scale terrain generation
from tectonic uplift and fluvial erosion. In CGF (2016), vol. 35, Wiley
Online Library, pp. 165–175. 1, 2, 3, 8, 10

[CHL01] CHONG K. W., HAN Y., LAM T. W.: Concurrent threads and
optimal parallel minimum spanning trees algorithm. Journal of the ACM
(JACM) 48, 2 (2001), 297–323. 6

[Coa20] COATLÉVEN J.: Some multiple flow direction algorithms for
overland flow on general meshes. ESAIM: Mathematical Modelling and
Numerical Analysis 54, 6 (2020), 1917–1949. 3

[DLM11] DO H.-T., LIMET S., MELIN E.: Parallel computing flow ac-
cumulation in large digital elevation models. Procedia Computer Science
4 (2011), 2277–2286. 3

[GGP∗19] GALIN E., GUÉRIN E., PEYTAVIE A., CORDONNIER G.,
CANI M.-P., BENES B., GAIN J.: A review of digital terrain model-
ing. Computer Graphics Forum 38, 2 (2019), 553–577. 2, 3

[GLCC17] GAIN J., LONG H., CORDONNIER G., CANI M.-P.: Eco-
Brush: Interactive Control of Visually Consistent Large-Scale Ecosys-
tems. Computer Graphics Forum 36, 2 (May 2017), 63–73. 2

[GM97] GARBRECHT J., MARTZ L. W.: The assignment of drainage
direction over flat surfaces in raster digital elevation models. Journal of
Hydrology 193, 1 (1997), 204–213. 1, 2

[IGN22] IGN: Rge alti 1m [data set]. IGN, 2022. Accessed 2022-07-01.
URL: https://geoservices.ign.fr/rgealti. 10, 11

[JBC24] JAIN A., BENES B., CORDONNIER G.: Efficient debris-flow
simulation for steep terrain erosion. ACM TOG 43, 4 (July 2024). 10

[KBKv09] KRIŠTOF P., BENES B., KŘIVÁNEK J., ŠŤAVA O.: Hydraulic
erosion using smoothed particle hydrodynamics. Computer Graphics
Forum (Proceedings of Eurographics 2009) 28, 2 (2009), 219–228. 2

[MKM89] MUSGRAVE F. K., KOLB C. E., MACE R. S.: The synthe-
sis and rendering of eroded fractal terrains. ACM Siggraph Computer
Graphics 23, 3 (1989), 41–50. 2, 9

[OM84] O’CALLAGHAN J., MARK D.: The extraction of drainage net-
works from digital elevation data. CVGIP 28 (1984), 323–344. 2

[PGG∗24] PEYTAVIE A., GAIN J., GUÉRIN E., ARGUDO O., GALIN
E.: Deadwood: Including disturbance and decay in the depiction of dig-
ital nature. ACM Trans. Graph. 43, 2 (feb 2024). 8

[PMG∗22] PAŁUBICKI W., MAKOWSKI M., GAJDA W., HÄDRICH T.,
MICHELS D. L., PIRK S.: Ecoclimates: climate-response modeling of
vegetation. ACM Trans. Graph. 41, 4 (2022). 8

[QBCP91] QUINN P., BEVEN K., CHEVALLIER P., PLANCHON O.: The
prediction of hillslope flowpaths for distributed hydrological modeling
using digital terrain models. Hydrological Processes 5 (1991), 59–80. 3

[Rie98] RIEGER W.: A phenomenon-based approach to upslope con-
tributing area and depressions in DEMs. Hydrological Processes 12,
6 (1998), 857–872. 7

[RKKL21] RIIHIMÄKI H., KEMPPINEN J., KOPECKÝ M., LUOTO M.:
Topographic wetness index as a proxy for soil moisture: The importance
of flow-routing algorithm and grid resolution. Water Resources Research
57, 10 (2021). 2

[SAF05] SEVILGEN F. E., ALURU S., FUTAMURA N.: Parallel algo-
rithms for tree accumulations. Journal of Parallel and Distributed Com-
puting 65, 1 (2005), 85–93. 2, 4, 5

[Sid23] SIDEFX: Houdini, 2023. URL: www.sidefx.com. 9

[SPF∗23] SCHOTT H., PARIS A., FOURNIER L., GUÉRIN E., GALIN
E.: Large-scale terrain authoring through interactive erosion simulation.
ACM Transactions on Graphics 42 (2023). 2, 3, 9, 10, 11, 12

[TGSC24] TZATHAS P., GAILLETON B., STEER P., CORDONNIER G.:
Physically-based Analytical Erosion for fast Terrain Generation. Com-
puter Graphics Forum (2024). 3, 4, 9

[VBHS11] VANEK J., BENES B., HEROUT A., STAVA O.: Large-scale
physics-based terrain editing using adaptive tiles on the GPU. IEEE
Computer Graphics and Applications 31, 6 (2011), 35–44. 2

[VHPN09] VINEET V., HARISH P., PATIDAR S., NARAYANAN P.: Fast
minimum spanning tree for large graphs on the gpu. In Proceedings of
High Performance Graphics 2009 (2009), pp. 167–171. 2, 6

[WQZ19] WANG Y.-J., QIN C.-Z., ZHU A.-X.: Review on algorithms
of dealing with depressions in grid dem. Annals of GIS 25, 2 (2019),
83–97. 3

[WZF18] WEI H., ZHOU G., FU S.: Efficient priority-flood depression
filling in raster digital elevation models. International Journal of Digital
Earth 0, 0 (2018), 1–13. 3

[YBG∗19] YUAN X. P., BRAUN J., GUERIT L., ROUBY D., CORDON-
NIER G.: A new efficient method to solve the stream power law model
taking into account sediment deposition. Journal of Geophysical Re-
search: Earth Surface 124, 6 (2019), 1346–1365. 1, 9, 10

[ZLFS17] ZHOU G., LIU X., FU S., SUN Z.: Parallel identification and
filling of depressions in raster digital elevation models. International
Journal of GIS 31, 6 (2017), 1061–1078. 3

[ZSF16] ZHOU G., SUN Z., FU S.: An efficient variant of the Priority-
Flood algorithm for filling depressions in raster digital elevation models.
Computers and Geosciences 90 (2016), 87–96. 3

Authors’ Version. Published in Computer Graphics Forum (PG 2024).

https://geoservices.ign.fr/rgealti
www.sidefx.com

