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Figure 1: Given a low-resolution 128² input materials, our method produces 512² outputs preserving tileability and displaying sharper
material structures compared to widely-used per-channel upsampling filters (e.g. bilinear or Lanczos) in less than a minute.

Abstract
We propose MATUP, an upsampling filter for material super-resolution. Our method takes as input a low-resolution SVBRDF
and upscales its maps so that their rendering under various lighting conditions fits upsampled renderings inferred in the ra-
diance domain with pre-trained RGB upsamplers. We formulate our local filter as a compact Multilayer Perceptron (MLP),
which acts on a small window of the input SVBRDF and is optimized using a data-fitting loss defined over upsampled radiance
at various locations. This optimization is entirely performed at the scale of a single, independent material. Doing so, MATUP

leverages the reconstruction capabilities acquired over large collections of natural images by pre-trained RGB models and
provides regularization over self-similar structures. In particular, our light-weight neural filter avoids retraining complex ar-
chitectures from scratch or accessing any large collection of low/high resolution material pairs – which do not actually exist
at the scale RGB upsamplers are trained with. As a result, MATUP provides fine and coherent details in the upscaled material
maps, as shown in the extensive evaluation we provide.

CCS Concepts
• Computing methodologies → Reflectance modeling; Texturing;

1. Introduction

Digital materials describe the appearance of virtual 3D shapes un-
der arbitrary lighting and come in the form of spatially-varying
bidirectional reflectance distributions (SVBRDF) modeled by a

small collection of 2D maps. Capturing real-world material sam-
ples allows for reproducing their appearance in graphics applica-
tions, but is limited by acquisition conditions, which include the
physical sample size and distance to the sensor. Generative tech-
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niques for materials [GSH∗20, HHG∗22, ZHD∗22, ZHD∗23] al-
low for faster design and exploration but cannot produce ultra
high-resolution materials (4K) [HHG∗22, ZHD∗23], since train-
ing for such materials is computationally intensive. Consequently,
SVBRDF super-resolution from low-resolution inputs appears as a
key operator for both captured and generated materials.

State-of-the-art image super-resolution leverage deep-learning
architectures and large RGB image datasets, which do not exist for
materials. Although reusing existing trained models seems tempt-
ing, naively applying them to SVBRDF maps fails because their
color statistics strongly deviate from those of natural RGB images
(see Fig. 2). Hence, considering the lack of material data to train
from and the immense compute requirements, we propose to re-
use existing RGB super-resolution techniques for upsampling the
radiance of materials as perceived when rendered under a large set
of lighting conditions, before upscaling the underlying reflectance
maps so that their rendering matches such upsampled radiances.
To this end, we introduce MATUP, a neural SVBRDF upsampling
filter, optimized to upscale the maps. MATUP targets no reference
super-resolution and leverages the self-similarity of typical materi-
als to provide regularization.

Our key initial observation is that RGB-upsamplers provide
pleasing results when applied on rendered materials: they add sharp
features while retaining the original appearance of the material.
However, independently upsampling multiple ren-
derings with varying light conditions leads to in-
consistencies (see Fig. 2,a). Alternatively, upscal-
ing each map prior to rendering, as shown in Fig. 2
(b), results in spatially-uncorrelated output maps
(see the upper-part of the wooden material, where
albedo, roughness and normal do not match spa-
tially), as well as per-channel artifacts (see inset)
due mainly to RGB upsamplers being trained on
photographs and not scalar height, normal or rough-
ness maps. The best-in-class RGB upsamplers optimize indeed for
human-perception-based metrics. While it makes sense to use such
metrics for images as the goal is to offer high-resolution images that
eventually please the human eye, those metrics are not appropriate
for SVBRDF channels such as normal or roughness, as those maps
are merely material parameters for radiance computational models.

Instead, we propose to leverage multiple upsampled renderings
to recover the SVBRDF parameters using a data-fitting optimiza-
tion. This has two main advantages: we can use pre-trained RGB
super-resolution algorithms to provide data for optimization and
leverage the input low-resolution SVBRDF as a prior for estimat-
ing SVBRDF parameters in a highly-controlled lighting and shad-
ing environment. We design our algorithm with the following goals
in mind: (i) lightweight to enable rapid optimization (ii) structure-
preserving so that tileable inputs produce tileable outputs, (iii) para-
metric, with the possibility to exploit a variety of RGB upscalers as
super resolution is admittedly an ill-posed problem.

2. Related work

Single-image RGB super-resolution Super-resolution of RGB
images is an active research topic. In our context, we are pro-
vided with a single material (i.e., a single stack of SVBRDF maps)

Figure 2: (Left) Given a Low-Resolution (LR) SVBRDF and a
light direction ωi as input: a) Upscaling LR renders using SwinIR
x4 [LCS∗21] leads to inconsistencies (renders under ω1, ω2). b)
Upscaling directly LR SVBRDFs using existing RGB-upsamplers
is not appropriate, as these are designed to upscale radiances (or
photographs). Notice how the structures do not overlap (SVBRDF
and renders ω3). c) Given an RGB-upsampler S, we optimize for
the upscaling of the input material, in order to retain S’s resolution
enhancement capabilities in the shading.

to upsample. For this task, learning-based methods [WYW∗19,
LCS∗21, LDVGT20, WXDS21, SHC∗22] have shown their capac-
ity at adding plausible high-frequency details to unseen images,
by leveraging datasets of pairs of low- and high-resolution images.
They rely on degradation models which include blur, resize, noise
and compression operations, which imitate plausible real world in-
puts [ZLVGT21, WXDS21]. When dealing with SVBRDF, down-
sampling of parameter maps is non-trivial as these quantities do not
have a linear relationship with the final rendered image [BN12].
However, shaded materials create images which imitate natural im-
ages, in the sense that radiance captured on a virtual sensor (ren-
dered images) computed from SVBRDF maps models real world
material acquisition (bricks, grounds, metals, etc.). Hence, apply-
ing super-resolution algorithms to rendered materials provides a
solid base for radiance super-resolution. As largely emphasized in
the literature [CZY∗19, YZT∗19, BM20, WCH21, CHQ∗22], data
super-resolution is a fundamentally ill-posed problem. With this in
mind, we allow exploring several super-resolution options, by tak-
ing an input RGB-upsampler as meta-parameter.

SVBRDF manipulation Procedural material estimation [HDR19,
GAD∗20, SLH∗20, HHD∗22, HGH∗22, LSM23] allow recovering
material graphs from rendered materials, to take advantage of their
unique capabilities: they allow for material generation at any res-
olution [SLH∗20, HHD∗22, LSM23], with precise control over the
appearance. Any material could theoretically be upsampled by sim-
ply recovering its graph and computing maps at a higher resolution.
Unfortunately, these methods do not generalize over all possible in-
puts and sometimes fail to recover complex mesostructures of in the
inputs. Inhomogeneous material synthesis [ZSL∗17,MMTK19] al-
lows for generating and expanding RGB or material textures by
leveraging exemplars, but do not focus on the super-resolution
task. AppIm [DRCP14] allows for editing spatial variations inside
SVBRDFs, but does not deal with the aliasing occurring when up-
sampling each map independently (such as bilinearly upsampled
diffuse color in linear space). This framework can however be used
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Figure 3: Overview of our method for radiance-based SVBRDF
super-resolution. The main metaparameters of our approach are a
shading model R, a super-resolution algorithm S, and a tile size
N.

as a post-process of our method. SVBRDF downsampling was also
explored in the literature [OB10, DHI∗13, GFL∗22], but those ap-
proaches cannot be easily reversed to enable upsampling. In partic-
ular, [GFL∗22] uses a cascade of networks to prevent error accu-
mulation. In our case, we focus on defining a robust data-fitting loss
to extract valuable information from many upsampled renderings.

Radiance-based SVBRDF acquisition Recovering SVBRDF
maps from radiance data enables lightweight material acquisition.
Deep learning approaches were proposed, which take as input
a single flash-photograph [AAL16, LDPT17, DAD∗18, HDMR21,
MRR∗22], a collection thereof [DAD∗19, GLD∗19, GSH∗20], or
flash-lit videos [YDPG21]. The aim of such techniques is to re-
cover a compact representation for material appearance, based on a
few samples from real-life material captures. Our framework shares
similarities with these approaches, as we recover SVBRDF param-
eters from radiance data. However, in our framework we have a pre-
cise control over the illumination conditions, the number of sam-
ples and the shading model. This allows us to provide as much in-
formation as required for recovering the parameters. Hence, we do
not need strong priors for our optimization, as modeled by previous
learning-based approaches through deep learning frameworks. We
show how an outlier-sensitive optimization such as l1 minimization
over all samples provides convincing results for this task.

3. Method

Our approach takes as input a set of low-resolution (LR) SVBRDF
maps MLR. It is parameterized by a shading model R and a super-
resolution algorithm S, and outputs a set of high-resolution (HR)
SVBRDF maps MSR.

We start by rendering the low-resolution inputs materials under a
set of illumination conditions ωi to obtain low-resolution radiance
images Rωi{MLR} before upsampling them with a state-of-the-art
RGB upscaler. From these upsampled renderings S(Rωi{MLR}),
we reconstruct the upscaled parameter maps of the SVBRDF MSR
i.e., base color, normal, metalness, roughness and height maps
(see Fig. 3). To do so, we use a differentiable rendering pipeline

based on R which allows back propagating through a small fully-
connected Multilayer Perceptron (MLP) which learns to optimize
MSR for a radiance-based loss L, defined for each pixel p of the
high-resolution SVBRDF MSR. Next, we detail our loss term and
motivate the need for using a supervised neural upsampling filter.

3.1. Collaborative learning of materials upsampling

Given a collection of texels P = {p} (many texels fetched from
the input LR SVBRDF), we aim at collectively minimizing their
respective loss functions {L(p)}p∈P . As shown in Fig. 2, while
many of the upscaled renderings exhibit common structures, out-
liers appear (in subregions for some of them) in the form of ar-
tifacts, discontinuities, or invalid pixels in the upsampled render-
ings. We design a 2-level fitting strategy to output a clean upscaled
SVBRDF in this context:

(i): At the pixel level, we use a data-fitting loss Lfit, that allows
retaining a pertinent BRDF signal, even in the presence of such
outliers (Subsec. 3.1.1).

(ii): At the material level, we leverage an MLP as an implicit reg-
ularizer to collaboratively optimize for a function mapping input to
output. This guarantees consistent upsampling of similar regions
(Subsec. 3.1.2).

3.1.1. Outlier-insensitive data fitting loss

We first propose a pixel-level strategy to retrieve high-resolution
SVBRDF by leveraging differentiable rendering. As mentioned
earlier, each upsampled rendering S(Rωi{MLR}) contains high-
resolution information which may be partly inconsistent between
different illumination conditions (see Fig. 2, red insets). Hence, we
propose to collaboratively leverage all renders to optimize for a sin-
gle SVBRDF which best explains those while enforcing robustness
to outliers. Given P , we introduce the following fitting loss:

Lfit = ∑
p∈P

∑
ωi∈Ω

∥∥S(Rωi{MLR}(p))−Rωi{MSR}(p)
∥∥

2 (1)

Lfit is therefore a mixed l2,1 norm† over all data-fitting terms in
P , inducing group sparsity at the light level, but remaining sensitive
to outliers at the color channel level. Note that using an l2,2 (or l1,1,
or any lp,p) norm instead would allow rewriting Lfit as a sum over
all (r,g,b) channels separately, thus resulting in three separate and
independent optimizations for all three color channels in practice.

Per-pixel optimization alone suffers from several limitations (see
Fig. 4).

First, RGB supersamplers cannot process very large SVBRDFs
(e.g. 40962). In addition, such inputs cannot be optimized concur-
rently because of the high amount of VRAM required during a gra-
dient descent optimization.

† The lp,q norm of bi-indexed elements α = {{αi, j} j}i is defined as

∥α∥p,q =

∑
i

(
∑
j
|αi, j|p

)q
p
1

q

, see [Kow09] or [BJMO11, section 1.1.1]
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Figure 4: Limitations of a per-pixel approach. Top: discontinuities
between adjacent tiles (orange) in the optimized roughness and
normal maps. Bottom: rendering (right) showcasing inconsistent
optimizations (red arrows) in a self-similar material (left).

One possibility is to rely on a tiling strategy. In this context, op-
timizing for all texels independently i.e., minimizing Eq. (1) for
each texel p of the sum, results in noisy output maps and visible
seams between adjacent tiles (see Fig. 4, top). Second, materials
showcasing self-similarities should be treated consistently by the
optimization. However, independently optimizing texels leads to
self-similar patches which provide inconsistent results (see Fig. 4,
bottom), where similar colored structures tend to result in either
smooth or sharp visual transitions.

3.1.2. Material-level learning

To address the aforementioned issues, we propose to train an MLP
to achieve spatial regularization (see Fig. 3). This MLP takes as in-
put a small texel patch in the bilinearly upsampled low-resolution
SVBRDF M↑↑

LR and outputs a single texel of the high-resolution
SVBRDF MSR. This SVBRDF is fed to our differentiable renderer
and used to compute the loss L of Eq. (1), before back propagating
through the MLP to evolve its weights. In our setup, each texel p
of the high-resolution maps MSR(p) is computed using the MLP
whose entries are a square window of size N ×N centered in p of
the input material upsampled bilinearly M↑↑

LR. The MLP measures
a difference to the center texel, similar to a residual connection
and learns a filter that takes as input the raw material upsampled
bilinearly and output the upsampled material texel. The resulting
model optimizes for a specific pair of shading model R and radi-
ance upsampler S. Training a neural upsampling filters also allows
for tileability preservation, when the input is tileable.

3.2. Metalness regularization

As shown in Fig. 3, base color, normal, metalness and roughness
are concurrently optimized. The case of the height map is discussed
next. During optimization however, we noticed that the metalness
map tends to encode values diverging from its original LR counter-
part. To prevent this, we propose a regularization term:

Figure 5: Comparisons between our inputs and the metalness and
render outputs for varying α. Our approach prevents value shifts
while preserving the aspect of the rendered results.

Lreg = α · ∑
p∈P

(m↑↑
LR(p)−mSR(p))2, (2)

where α is a weighting parameter, m↑↑
LR denotes a bilinear up-

sampling of the low-resolution metalness map mLR, and mSR the
optimized metalness map. This produces maps more faithful to the
original metalness distribution while remaining sharper than the bi-
linearly upsampled input. We analyze the impact of our regulariza-
tion term in Fig. 5.

Hence, our final loss takes the form L= Lfit +Lreg.

3.3. Height map reconstruction

In the case of materials, most of the geometric mesostruc-
tures are captured by the normal map, onto which we
focus our efforts, while reconstructing the height map
from it afterwards following Martin et al. [MRR∗22].
More precisely, we adopt the nor-
mal integration scheme proposed
in [DC07], which requires a Pois-
son solve. As noticed by Nehab et
al. [NRDR05], geometry reconstruc-
tion by normal integration suffers
from low-frequency noise. Fortunately,
the low-resolution input height map
provides us with a dense enough
anchor to combat this, by compositing
a high-pass filtering of the upsampled
normal-based height channel with a bi-
linear upsampling of the input. Resulting Ambient Occlusion (AO)
maps are shown as insets, compared with Lanczos upsampling
(the color mapped input LR height is provided on top). We provide
more results in the supplementary material.

4. Optimization setup

Data preprocessing As a preprocessing step we render the input
low-resolution SVBRDF in the unit square domain under varying
point light positions, using an orthographic camera model placed
above it. We use 100 single point lights sampled from Fibonacci
sequence over the hemisphere [SJP06]. Our differentiable ren-
derer implements a standard microfacet reflectance model [CT82]

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



A. Gauthier et al. / MATUP: Repurposing Image Upsamplers for SVBRDFs 5 of 11

Figure 6: Comparisons between SRFlow [LDVGT20] and SwinIR [LCS∗21] for upsampling SVBRDFs. Since each upsampler comes with
its loss and training dataset, the upsampled renderings inherit from the upsamplers’ features. SRFlow tends to remain closer in appearance
than SwinIR. The latter deviates from the original maps, producing sharper renderings and slight color shifts (best seen in the bottom row).

with a GGX [WMLT07, TR75] normal distribution function in Py-
Torch. We then apply an off-the-shelf RGB super-resolution algo-
rithm on those renderings, providing us with pairs of low-resolution
SVBRDF and high-resolution renderings with per-pixel correspon-
dence for training our upsampling MLP. As already mentioned, to
cope with memory and compute limitations of the state-of-the-art
RGB upsamplers we selected, we use crops of size 1282, which we
found sufficient to keep those upsamplers effective while maintain-
ing acceptable performance on a standard machine (upsampling at
a rate of 1.6 secs. per batch of 10 images using at most 1.5GB of
VRAM).

Optimization details Our MLP consists in 4 fully-connected hid-
den layers of size 128 with LeakyReLu activations, which takes as
input a 17x17 tile of SVBRDF texels (all material channels are con-
catenated). We use a sliding window mechanism over valid patches
to avoid the borders. We opt for α = 10−1 in our loss and use a
batch size of 128. The networks’ weights are optimized using gra-
dient descent with the Adam optimizer with default parameters and
a learning rate of 10−4. Differentiable SVBRDF rendering with
PyTorch is implemented for GPU execution without CPU control
flow or synchronization. Thus, the entire routine can be encapsu-
lated in a single CUDA graph, which minimizes idle time between
kernels. Furthermore, we employ CUDA streams to fully overlap
the training of the current batch with the copying of the next. This
eliminates almost all delays between successive training iterations,
which consisted in the slowest part of the pipeline when profiling
was carried out. Each epoch takes an average of 3.1 seconds to
complete at 512² resolution (from 128² inputs) on a RTX 3080 Ti,
and requires less than 1GB of VRAM. The full method hence takes
less than a minute in total for 128² inputs (including rendering at
low-resolution and upsampling them). We chose to optimize for 10
epochs for all results in the article. Since our method scales lin-
early with respect to the number of texels, it takes a minute from
128² to 512², 4 min. from 256² to 1K², 16 min. from 512² to 2K²
and 64min. from 1K² to 4K². Note that these timings consist in the
upper bound because it is likely that most materials showcase re-
dundancy which lowers the number of optimization steps required
to achieve converged results.

Figure 7: We show the impact of the number of epochs on the
quality of the optimization. Red arrows: the aliasing artifact pro-
gressively disappears with more epochs. Blue arrows: Textured el-
ements become more salient with optimization time.

5. Results and Evaluation

5.1. Results

Choice of super-resolution algorithm We experimented with 4x
super-resolution using two efficient learning-based RGB upsam-
plers: SwinIR [LCS∗21] and SRFlow [LDVGT20]. For SwinIR,
we opt for the learned weights of the large model SwinIR-
L_x4_GAN trained for real-world images. For SRFlow, we use the
SRFlow_DF2K_4X trained weights and a temperature of 0.5. We
compare them in Fig. 6 and Fig. 8 (in which we provide additional
comparisons to standard filters such as Bilinear and Lanczos).

Progressive training In Fig. 7, we demonstrate the effect of opti-
mizing for multiple epochs. Our neural filter progressively removes
aliasing and sharpens the textures of the materials.

×16 chained upsampling. We propose to apply chained upsam-
pling using our neural filter twice on the input material. A single
level strategy consists in optimizing for x4 upsampling and ap-
plying the filter as is to its first output. The two-level strategy re-
optimizes a neural filter on upsampled rendering of the first x4 out-
put. As illustrated in Fig. 9, our upsampling neural filter is stable
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Figure 8: Results of our method trained using SRFlow [LDVGT20] and SwinIR [LCS∗21] upsamplings compared with 4x bilinear and
Lanczos upsampling shown in rendered close-ups. Our method provides sharper results in terms of geometry and prevents aliasing compared
with the other upsampling methods. Notice how Lanczos filters create overshooting in the color and geometry.

© 2024 Eurographics - The European Association
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Figure 9: We achieve x16 super-resolution using SwinIR x4 by ap-
plying our neural filter twice to the input. The single level strategy
provides usable SVBRDFs but the optimization of the second stage
in the two-level strategy brings sharper structures and fewer arti-
facts.

Figure 10: Direct super-resolution of SVBRDF maps using ML-
based RGB upsamplers (2nd and 3rd columns) is not viable, as
material maps differ in nature, geometric constraints and statistics
from RGB photographs. All maps contribute also in a very different
manner to and have a different impact on the final shading.

enough to be applied successively to its own outputs, but provides
sharper results when optimized twice.

We also provide additional results in the supplementary mate-
rials. First, we show how our neural upsampling filters can learn
on Lanczos-upsampled renderings to provide smoothed yet blurry
results and prevent aliasing. Second, we demonstrate how our fil-
ters generalize over unseen patches of a material when learned on a
partial number of patches. Last, we showcase upsampling on real-
world scanned materials (from 4K² to 16K²).

5.2. Comparisons

Basic SVBRDF upsampling We compare MATUP with a baseline
consisting in upsampling independently each map using bilinear
and Lanczos filters. We compare renderings of these upsampled
maps to our method in Fig. 8. These filters only interpolate the

Method Inputs Timings

GFT [DDB20] LR maps + 1 render ∼ 11-14 min
DIR [GLD∗19] LR maps + N renders ∼ 10 min
MGAN [GSH∗20] LR maps + N renders ∼ 8 min
Ours (1282 → 5122) LR maps + N renders ∼∼∼ 1 min

DIR-ref [GLD∗19] HR maps + N renders ∼ 1 min

Table 1: Comparisons with SVBRDF estimation/optimization
techniques (for 1282 → 5122). DIR-ref: per-pixel refinement step
of [GLD∗19]. This optimization requires the high-res output.

signal and lead to staircase effects, aliasing and overshooting (in
particular in the normal map) which produces strong visual artifacts
at rendering time.

SVBRDF upsampling with ML-trained RGB-upsamplers Us-
ing directly RGB upsamplers on SVBRDF maps fails at properly
preserving and enhancing the input structures (see Fig. 10). SwinIR
fails to handle the heterogeneous content of SVBRDF maps and
produces materials which strongly diverge from the inputs (to com-
pare with bilinear upsampling). SRFlow better handles this hetero-
geneity but systematically adds high-frequency noise to the maps,
especially visible in the highlight of specular materials. Overall,
processing all maps separately with these ML-based approaches re-
sults in uncorrelated signals in the output (Fig. 2–2nd line, Fig. 10).

For the following experiments, we adapt our shading model with
our competitors, by extracting diffuse and specular colors from our
base color and metallic maps, computed using MATUP and our
own shading model. We report each method’s inputs and timings
in Table 1. The details of the comparison procedure and configu-
rations used are detailed in the supplementary material. Note that
the methods to which we compare below do not directly allow for
super-resolution. We provide them with our data as inputs to assess
their capability to recover higher-resolution SVBRDFs.

Comparison with Guided Fine-Tuning. This approach
(GFT) [DDB20] consists in finetuning a SVBRDF estima-
tion network on known SVBRDF patches to later apply the
estimation on a single large photograph. Fig. 11 illustrates the
results of their method compared with ours. Theirs takes more than
10 mins on a RTX Titan GPU for 2562 to 10242 upscaling, while
ours takes less than 2 minutes (5 epochs only at 256²).

Comparison with MaterialGAN. We compare MATUP with the
multi-image SVBRDF recovery method of [GSH∗20](MGAN) in
Fig. 13. Even if the optimization happens in the latent space, the
rendering loss is computed in pixel space and optimizing for a full
resolution (e.g. 10242 or 40962), done iteratively using patches of
2562 texels, which take around 2 minutes for a 642 low-resolution
input. In comparison, our method takes 2 to 4 minutes to process
an input tile of 2562 to get a 10242 output. Our method leads to
smoother results, while preserving sharp edges.

© 2024 Eurographics - The European Association
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Figure 11: Comparisons with the approach of [DDB20]. The 1st row shows the LR finetuning guides and corresponding renderings. The
estimated maps and renderings are shown in the 2nd row. As expected, the method is unable to provide consistent normals and bakes shading
into the SVBRDF because of the lack of information coming from the single input. Our method (3rd row) better preserves the visual aspect
of the material when rendered.

Comparison with Deep Inverse Rendering. We also compare
with the method of [GLD∗19](DIR) (see Fig. 13, bottom rows), in
which we optimize the SVBRDF in the latent space of the learned
autoencoder. Their method takes more than 10 minutes for each
5122 output patch. We showcase the initial inversion in the latent
space (inverse opt.) and the refinement step (refinement opt.), as
well as the initial guess provided instead of the SVBRDF estima-
tion used in their paper. Note that the refinement step is exactly
the per-pixel approach described in Section 3.1.1, and illustrated
Fig. 4.

6. Discussion

6.1. Limitations

Failure cases We present failure cases in Fig. 12. The first row
shows a material where the geometry is baked into the base color
(see renderings), and the hue is both biased by SwinIR and dark-
ened by both upsamplers. Note that this material has very low
roughness, leading to a really sparse signal to process. The sec-
ond row shows how the artifacts (vertical lines) cause by upsam-
pling using SRFlow with temperature t = 0.1 are baked into the
SVBRDF. Increasing this value to t = 0.8 removes them.

Inconsistent upsamplers When experimenting with recent
diffusion-based RGB upsampling methods [RBL∗22], we ob-
served blurry artifacts in the upsampled material due to strong
inconsistencies in the upsampled renderings. Our data-fitting loss

Figure 12: Failure cases of our approach.

struggles to optimize the SVBRDF when the upsampled renderings
contain too few structures persisting across lighting conditions.
Temporally-consistent super-resolution of videos has however
gained recent interest [CZXL22a, CZXL22b, LFX∗22], and we
expect that those methods will provide us with additional quality
and feature recovery, as material rendering sequences computed

© 2024 Eurographics - The European Association
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Figure 13: Comparison with MaterialGAN [GSH∗20] and Deep Inverse Rendering [GLD∗19]. MaterialGAN (3rd column) exhibits noise,
renderings artifacts, and the concatenation of independently upsampled patches leads to visible seems. Deep Inverse Rendering’s inversion
in the latent space (4th column) leads to biased and blurry SVBRDF, which the refinement step (last column) improves, at the cost of noise.
The refinement cannot improve the biased output of the inversion step (see 3rd row), but create sharper results, as shown in both refined
outputs materials. Our method (2nd column) leads to smooth and alias-free maps

© 2024 Eurographics - The European Association
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with continuously-moving lighting conditions should be an ideal
input for those.

Optimizing specular highlights For highly specular materials, re-
covering signal from point light illumination proves to be feasi-
ble since our method has access to the base maps, as opposed to
pure SVBRDF estimation methods. Still, our simple point lighting
scheme sometimes prevents all regions from being recovered, as
shown in the top row of Fig. 12, where the cavities are not well re-
constructed. For this task, leveraging other types of illuminant (area
light, environment maps, etc.) could help to recover highly specular
material information.

Optimization time Although we propose lightweight neural up-
sampling filters, each optimization relies on a preprocessing step
of a dozen of seconds as well as fitting time of less than a minute.

6.2. Future work

Applying the Metappearance framework [FR22] to our pipeline
would allow for rapid finetuning, provided the training data. In-
deed, experimenting with finetuning the network using about ten
samples and handcrafted parameters seems to improve the quality
for some of our results. Also, a perceptual loss term for training our
network would help to achieve even better detail preservation com-
pared to our sparsity norm, and explore the perception-distortion
trade-off for SVBRDFs [BM18]. Finally, experimenting with con-
trollable super-resolution [BM20, RBL∗22] could be useful for en-
hancing artistic control over the upsampled results.

6.3. Conclusion

We proposed MATUP, a lightweight SVBRDF upsampling filter
based on radiance super-resolution. We train our neural filter per-
material, using a loss defined as a combination of data-fitting and
regularization terms, which produces higher resolution SVBRDFs
while preserving tileability of the inputs. We demonstrated the
superiority of our method compared to a collection of alterna-
tive SVBRDF upsampling strategies and justify the need for our
learning-based approach by thoroughly comparing with state-of-
the art SVBRDF estimation algorithms. MATUP finds application
in material capture, for upsampling regions-of-interest, old graph-
ics content update, as well as in generative material upsampling,
such methods being currently limited in their native resolution.
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