
Conception d'outils de création de contenu 3D
basés sur le dessin 3D

Emilie Yu
Centre Inria d'Université Côte d'Azur

Équipe GraphDeco
Présentée en vue de l’obtention
du grade de docteure
en Informatique d’Université Côte d’Azur

Dirigée par : Adrien Bousseau
Soutenue le : 21 décembre 2023

Devant le jury composé de :

Wendy Mackay, Directrice de Recherche,
Inria Paris Saclay

Hongbo Fu, Professeur,
City University of Hong Kong

Damien Rohmer, Professeur,
Ecole Polytechnique

Martin Hachet, Directeur de Recherche,
Inria Bordeaux

Hui-Yin Wu, Chargée de Recherche,
Centre Inria d’Université Côte d’Azur

J. Andreas Bærentzen, Professeur,
Technical University of Denmark

Adrien Bousseau, Directeur de Recherche,
Centre Inria d’Université Côte d’Azur

CONCEPTION D’OUTILS DE CRÉATION DE CONTENU
3D BASÉS SUR LE DESSIN 3D

DESIGNING TOOLS FOR 3D CONTENT AUTHORING
BASED ON 3D SKETCHING

Jury:
Présidente du jury / President of the jury
Wendy Mackay, Directrice de Recherche, Inria Paris Saclay

Rapporteurs / Reviewers
Hongbo Fu, Professeur, City University of Hong Kong
Damien Rohmer, Professeur, Ecole Polytechnique

Examinateur·ices / Examiners
Martin Hachet, Directeur de Recherche, Inria Bordeaux
Hui-Yin Wu, Chargée de Recherche, Centre Inria d’Université Côte d’Azur

Visiteur / Visitor
J. Andreas Bærentzen, Professeur, Technical University of Denmark

Directeur de thèse / �esis supervisor
Adrien Bousseau, Directeur de Recherche, Centre Inria d’Université Côte d’Azur

Acknowledgements

Ce ne sont que “femmes puissantes” qui se sont “débrouillées seules”
pour “s’en sortir”. On les érige en icônes, ces femmes qui “ne se
laissent pas faire”, notre boulimisme d’héroı̈sme est le propre d’une
société de spectateurs rivés à leur siège, écrasés d’impuissance. Être
fragile est devenu une insulte. �’adviendra-t-il des incertaines ?
De celles et de ceux qui ne s’en sortent pas, ou laborieusement, sans
gloire ?

—Lola Lafon, Chavirer

Completing a PhD is a collective endeavor.

I was lucky to work with many collaborators, and each taught me something unique. I
thank Rahul Arora, for taking me under his wing from the start of my research journey,
and being always a source of support, care and motivation ; I thank Tibor Stanko for
sharing with me invaluable math and geometry processing intuition that served me
throughout my PhD. For my time at Adobe Research, I thank Cuong Nguyen for helping
me wrangle the dreaded camera-model-conversion problem and Kevin Blackburn-Matzen
for building a depth estimation pipeline that a novice in deep learning like me can use –
the project would not have been possible without either of these things.

I have also encountered great mentors and supervisors. I thank Andreas Bærentzen
for being with me from the start, always a source of positivity, inspiration and support
at all levels of a project. I do not know if I would be doing research without our �rst
project work during the master. I thank Karan Singh for his contagious enthusiasm and
excitement about research, I have never been plagued by lack of motivation or interesting
ideas in a project together. I thank Oliver Wang for being a VideoDoodles fan from
the start, as well as for invaluable insights in this project. I thank Rubaiat Habib Kazi
for patiently teaching me how to conduct interviews and other basic HCI knowledge
that I lacked, as well as for being an inspiring mentor and overall great person and I
thank Wilmot Li for pre�y much handing o� to me a great project idea and for taking
me on as a summer intern – I wish I could have spent more in-person time together. I
had the chance to spend time in the caring, supportive and joyful supervision of Fanny
Chevalier, thank you for training me in the art of listening to people and understanding
them – maybe the most valuable skill of the whole PhD – but also for encouraging me by
example to become a great researcher and mentor. Finally, I acknowledge my chance of
being supervised by Adrien Bousseau throughout the PhD. �ank you for leaving me
space to do my own things while still always being available when I needed support. Our
trusting and caring work relationship was invaluable in le�ing me �nd my own path in
research. I have been inspired by your curiosity and passion for what you do in research,

that never come at the expense of other things and people in your life. I appreciate that
this is a rare thing in the current academic world.

I deeply thank all past and present Graphdeco members. Each single person taught me
something new or made me re�ect on something that I never would have thought of
otherwise. I am humbled by seeing each individual person going through the group
evolve and grow. I am lucky to have been well advised by all those who graduated before
me, in particular Siddhant, Stavros and Yorgos. I am also inspired daily by the energy of
“young” PhD students and interns: Nicolás, Yohan Panagiotis, Petros, Aryamaan, Gilda,
Vishal, Berend. I am excited to follow what you are up to and I will miss our time together
in the lab. Doing a PhD is hard emotional work, and it would not have been possible
without the care work provided to me by my labmates. Evolving in an environment where
it is ok to say when something is not going well was vital for me. In particular, I want to
acknowledge the invaluable support from David, Felix, Nicolas and Capucine. I deeply
appreciate the time and e�ort we have put forth in supporting one another emotionally
throughout the years. �ank you to Alban and Nicolas for our long discussions about
academia, politics and everything in between. �ank you to Felix for always showing the
purest support and enthusiasm towards my endeavors, yet always helping me question
the things that ma�er. �ank you to David for teaching me so much about research and
overall about how to be a good human being. I would also like to thank all those in the
lab and around who shared and fueled my passion for bouldering and climbing – perhaps
the only thing that kept me sane at times: Gilles, Cécile, Felix, Yorgos, Stef, Leo, Lorenzo,
Antoine, Andreas, Panagiotis, Vishal, Alexandre. Lastly, I would like to thank George
Dre�akis, Adrien Bousseau and Guillaume Cordonnier for taking care of the life of the
group and Sophie Honnorat for providing the best administrative support we could hope
for. I would also like to thank Inria support sta� in general, in particular Pascal Tempier
from IT, HR and the canteen sta�.

I also thank the members of dgp at University of Toronto whom I had the chance to meet
during a summer stay. In particular I thank dgp-vis students: Eva, Anna, Moko, Book,
Warren and Arnav. We had a lovely time both in and outside of the lab, and I am very
grateful to each person in dgp-vis for fostering a caring and welcoming atmosphere. I
would also like to thank all others who made my stay there amazing, Leen for being the
best o�ce mate I could ask for ; Blaine for making me discover a love for backpacking
and hunting down new co�ee shops ; Mian and Bogdan for being so welcoming and
enthusiastic about everything food-related ; Kinjal for our small chats and snack breaks ;
Mengfei for launching the best desk-side impromptu chats ; Sarah for sharing stories in
Los Angeles ; also Selena, Kate, Bingjian, Yuta, Jiannan, Aravind and many others.

I thank my family for supporting me all my life and providing a good environment for me
to �nd my way. And lastly I thank my friends outside of the small academic bubble, in
particular thank you Charlo�e for being always a source of energy and ideas throughout
the years.

Résumé

L’accessibilité croissante du rendu 3D en temps réel a fait de la création de contenu 3D un
moyenmajeur d’expression et de communication.Mais la création de contenu 3D nécessite
d’interagir avec des représentations numériques de la forme et de l’apparence qui sont
compatibles avec les algorithmes de rendu et d’animation. Les maillages triangulaires,
les modèles de matériaux paramétriques et les courbes d’animation sont bien adaptés
aux opérations de rendu mais obligent les artistes à exprimer leurs idées en terme de
commandes bas niveau qui doivent être apprises et mémorisées.
Dans ce�e thèse, nous explorons l’utilisation de coups de crayon 3D ou courbes 3D comme
moyen pour les artistes d’exprimer leurs idées. Inspirés par la façon dont les artistes
travaillent avec un pinceau et une toile, nous considérons ce geste de coup de crayon de
l’artiste comme la principale commande d’entrée du système de création. Les courbes 3D
sont des primitives �exibles qui peuvent être créées dans des interfaces utilisateur 2D ou
dans des interfaces de réalité virtuelle (RV), et elles peuvent encoder une forme 3D ou
l’apparence �nale d’une peinture 3D. La conception d’outils qui considèrent les courbes
3D comme une représentation de la forme ou de l’apparence ouvre un espace vaste et
passionnant à explorer.
Les designers peuvent utiliser les courbes 3D comme une représentation partielle de
la forme 3D. Nous étudions comment convertir un croquis 3D clairsemé en un modèle
de surface 3D. Étant donné que les courbes caractéristiques de l’objet sont un élément
important de la forme designée et qu’elles sont représentées avec soin dans l’esquisse, nous
reconstruisons une surface lisse par morceaux qui préserve ces courbes caractéristiques.
En obtenant une surface à partir des courbes 3D non structurées, notre algorithme permet
le rendu 3D de la forme décrite par l’esquisse.
Pour mieux comprendre comment les courbes 3D peuvent représenter non seulement la
forme mais aussi l’apparence des objets, nous étudions la pratique de la peinture en RV au
sein d’une communauté d’artistes qui travaillent avec un logiciel commercial de peinture
en RV. Sur la base de ce�e étude, nous proposons une conception et une implémentation
pour les “calques 3D”, une nouvelle primitive d’interaction pour la peinture RV qui
considère les courbes 3D comme représentation à la fois de la forme et de l’apparence
3D, tout en découplant l’édition de ces deux éléments. Inspirés par l’utilisation de la
composition de calques en peinture numérique 2D, nous proposons un processus non
destructif pour modi�er l’apparence d’une peinture RV.
L’animation dessinée à la main est un moyen expressif de créer une animation avec des
coups de crayons. Dans les animations de type “video doodles”, les artistes créent un
dessin animé qui semble bouger dans le même espace 3D qu’une vidéo �lmée. Prendre en

compte les e�ets de perspective et les occlusions tout en dessinant des courbes 2D n’est
pas une tâche facile, c’est pourquoi nous utilisons des techniques de vision par ordinateur
pour placer les courbes dans l’espace 3D et les rendre en respectant le contexte de la vidéo.
Nous concevons une interface utilisateur en 2D qui ressemble aux outils traditionnels
d’animation en 2D, a�n de perme�re aux utilisateurs qui ne sont pas familiers avec les
outils 3D de créer de telles animations.

Globalement, nous montrons que les courbes 3D sont une représentation puissante pour
la création de contenu 3D en proposant trois systèmes qui exploitent les courbes 3D ou les
dessins 3D en tant que primitives d’interaction pour des applications créatives allant de la
création de forme à celle d’apparence et d’animation. Nous abordons la conception de ces
systèmes sous deux angles complémentaires ; nous développons de nouveaux algorithmes
pour interpréter les dessins et les commandes de bas niveau de l’utilisateur, et nous
concevons des interactions qui perme�ent aux utilisateurs d’exprimer leurs intentions
haut niveau.

Mots-clés: Dessin 3D – Réalité Virtuelle – Modélisation 3D – Outils de création

Abstract

�e increasing accessibility of real-time 3D rendering hardware has made 3D content
creation a major means of expression and storytelling. But authoring 3D content requires
interacting with the digital representations of shape and appearance that are compatible
with rendering and animation algorithms. Triangular meshes, parametric material models
and animation curves, while well suited to downstream computation, require artists to
convey their ideas in terms of low-level commands that need to be learnt and remembered.

In this thesis, we explore the use of 3D strokes as a way for artists to express their
ideas. Inspired by the way artists work with brush and canvas, we consider the artist’s
mark-making gesture as the main input to the authoring system. 3D strokes are �exible
primitives that can be created in either 2D desktop user interfaces or in virtual reality
(VR) interfaces, and they can encode a 3D shape or likewise the �nal appearance of a 3D
painting. Designing tools that consider 3D strokes as a shape or appearance representation
opens a large and exciting space to explore.

Designers can use 3D strokes as a partial representation of 3D shape. We investigate
how to interpret an unstructured sparse 3D sketch into a 3D surface model. Since feature
curves are a prominent part of the design and are �nely depicted by the sketch, we recover
a piece-wise smooth surface that preserves those sharp features. By obtaining a surface
from unstructured 3D strokes, our algorithm allows to render the shape depicted by the
sketch.

To be�er understand how 3D strokes can depict not only the shape but also the appearance
of objects, we study the practice of VR painting among a community of artists that work
with a commercial VR painting so�ware. Based on this inquiry, we propose a design and
implementation for 3D-Layers, a new interaction primitive for VR painting that embraces
3D strokes as the sole representation for both 3D shape and appearance, yet decouples
edition of these two elements. Inspired by the usage of layer compositing in 2D digital
painting, we support a non-destructive work�ow to edit the appearance of a VR painting.

Hand-drawn animation is an expressive way to convey an animation with strokes. In
“video doodles” animation, artists create an animated doodle that seems to live in the same
3D space as a captured video. Taking into account perspective e�ects and occlusions
while drawing 2D strokes is not an easy task, so we leverage computer vision techniques
to place strokes in 3D space and render them with respect to the video context. We design
a 2D user interface that resembles traditional 2D motion design tools, to enable users
unfamiliar with 3D tools to create such animations.

Overall, we show that 3D strokes are an expressive representation for 3D content cre-

ation by proposing three systems that leverage 3D strokes or 3D sketches as interaction
primitives for creative applications spanning shape, appearance and animation authoring.
We approach system design from two complementary perspectives ; we develop novel
algorithms to interpret strokes and low-level user input, and we design interactions to
provide new ways for people to express their high-level intent.

Keywords: 3D sketching – 3D modeling – Virtual Reality – Creativity Support Tools

Contents

Contents vii

I Introduction 1
I.1 3D sketching as a creative medium . 3
I.2 Outline . 7
I.3 Publications . 8

II Background and related work 9
II.1 Shape authoring . 10
II.2 Appearance authoring . 18
II.3 Motion authoring . 21

III VR sketching for 3D surface modeling 25
III.1 Motivation . 25
III.2 Piecewise-smooth surface ��ing onto unstructured 3D sketches 26
III.3 Related work . 28
III.4 Overview . 31
III.5 Method . 32
III.6 Implementation details . 41
III.7 Evaluation and results . 44
III.8 Conclusion . 53
III.9 Future work . 54

IV How do people paint in VR? 59
IV.1 Introduction . 59
IV.2 Related work . 60
IV.3 Procedure . 61
IV.4 An accessible, direct and controllable 3D authoring tool 64
IV.5 Challenges . 67
IV.6 Conclusion . 70

V 3D layer compositing for VR painting 71
V.1 Introduction . 71
V.2 Related work . 73
V.3 Challenges of depicting shape and appearance in VR painting 75
V.4 Painting with 3D-Layers . 77

CONTENTS

V.5 Implementation . 81
V.6 Work�ows . 84
V.7 User evaluation . 86
V.8 Conclusion . 89
V.9 Future work . 90

VI 3D scene-aware hand-drawn animation on videos 93
VI.1 Introduction . 93
VI.2 Related work . 95
VI.3 Challenges in video doodles authoring . 97
VI.4 User work�ow . 99
VI.5 Algorithmic Components . 100
VI.6 Results and evaluation . 105
VI.7 Conclusion . 113
VI.8 Future Work . 113

VIIConclusion 117
VII.1 Contributions . 117
VII.2 Research perspectives . 118

Bibliography 121

viii

Chapter I

Introduction

Contemporary to the work on this thesis, the technology industry has pushed to increase
the adoption of virtual reality (VR) hardware in an a�empt to drive social acceptance
of the so-called “metaverse”. Namely, in 2020 Meta has released a new VR headset that
sold 10 million units [316], and in 2023 Apple announced a new augmented reality (AR)
headset [17]. Corporate advertisements and technologists herald the start of a new era
in computing, from the way we work to how we connect with friends and family, yet
it is unclear for society at large whether this technology constitutes an advancement
in quality of life or a new a�empt by tech giants to capture a�ention and extract value
from users [351]. In this rapidly evolving technology and social landscape, we choose
to study the concrete possibilities that new input, display, and environment capture
technologies present to artists and how so�ware design might support or in�uence the
authoring work�ow. Should the forecasted adoption of VR hardware and the metaverse
happen, creative applications that are accessible to novices can help democratize 3D
content creation and ensure that the power to tell stories and design virtual surroundings
is shared with the general public.

Developing so�ware and algorithms to aid people in the authoring of three dimensional
(3D) content is a core research question in computer graphics. Ivan Sutherland’s seminal
work on Sketchpad [300] in the 1960s exempli�es that e�ort of making shape edition
on the computer easier and more accessible. While at the time, creating shapes on the
computer was possible only through wri�en commands, Sutherland showed that human
and computer could instead “converse rapidly through the medium of line drawings”, by
using a pen interface to point at the screen and draw lines and curves. Sketchpad stands as
an early example of a new way of designing interactions between human and computer,
in which the human’s physical actions – of moving the pen – yield rapid operations onto
an object of interest – the drawing – whose graphical representation is present at all time
on the screen and always up to date.

An interface presenting these qualities was described as a Direct Manipulation interface
by Shneiderman [282], by opposition to the prevalent user interfaces at the time, which
were based on text command inputs. Hutchins et al. [138] further characterize what
makes an interface feel “direct”, by conceptualizing an interface as a bridge over the gap
between the state of the digital system and a user’s goals. In particular, they describe
the process of translating one’s intent into a set of low-level actions on the computer’s

CHAPTER I. INTRODUCTION

data as bridging the gulf of execution. �ey describe how all interfaces can introduce
two types of distance that describe how large that gulf is: semantic distance describes
how close commands or actions available in a system are to how a person “thinks of the
task”, and articulatory distance measures how close the physical form of the input that
the user performs matches the corresponding command in the system. �is description
of interactions is general and can be applied to all types of applications such as text
processing, book keeping, and data tabulation. In particular, I claim that the concepts of
direct manipulation interfaces are relevant to design visual content authoring tools, since
reducing semantic and articulatory distances can support artists in quick externalization
of ideas and promote exploration [255].

Despite tremendous progress in making 3D content creation accessible and the availability
of quality consumer so�ware, the cra� and technical mastery of 3D creation remains
daunting to many. Most professional 3D modeling so�ware relies on a 2D mouse user
interface, so they provide tools that let users edit 3D data by dragging geometric primitives
along constrained 2D planes or 1D axes. In this interaction, the articulatory distance
between the 2D gesture and the 3D editing operation is arguable quite large. Furthermore,
many 3D modeling tools make users work with low-level representations of geometry
such as polygonal meshes, since they are the de facto way to encode digital shapes. �e
authoring process consists in iteratively deforming this representation – eg extruding a
polygonal face or moving a primitive shape in a CSG model. Working with those tools
require the artist to bridge the semantic distance by learning how to convey their idea
in terms of valid deformation operations on this strictly de�ned digital material. In this
se�ing, bridging the gulf of execution [138] can feel prohibitively di�cult for an artist
that doesn’t have enough experience working with such digital representations.

In this thesis, we explore the use of 3D strokes as a “high-level language” between a
person’s goals and the 3D authoring system. Inspired by the way artists work with brush
and canvas, we consider the artist’s mark-making gesture across the domain as the main
physical input action to the authoring system. Creating a stroke via a motion of the
hand through space arguably presents a small articulatory distance. We embrace the
inherent lack of structure and freeform nature of sketched strokes in our system design.
Our algorithms and user interfaces do not expect artists to sketch in a particular way,
which aims at bridging the semantic distance by le�ing the system interpret raw user
input instead of asking the user to make their input conform to system requirements. In
the following chapter, we de�ne what 3D sketching is and we will see that 3D sketching
in the broad sense maps out a large space of possible designs and applications. We will
proceed by narrowing down on the particular topics we choose to study in this thesis.

2

I.1. 3D SKETCHING AS A CREATIVE MEDIUM

Fig. I.1: In the following section, we define what we mean by 3D sketching (middle), and in
particular we look at input methods for 3D sketching (le�) and define what the 3D strokes depict
in di�erent use cases (right). Second image from the le� ©Lois van Baarle ; third image ©Nick
Ladd ; fourth image ©James Robbins.

I.1 3D sketching as a creative medium
�is work uses the term 3D sketching to refer to the act of expressing an idea or concept
by creating 3D strokes embedded in a 3D space that can be empty or contain some context
to which the strokes relate. We use the term 3D strokes to refer to 3D curves that have
been “marked” in space [53] by the direct gesture of an artist’s hand – usually holding
an appropriate tool. �is de�nition is voluntarily broad, and opens up a large space to
explore in this thesis. �e following section delves into the speci�cs of the input methods
used to create 3D strokes (Fig. I.1, le�), and the di�erent meanings that such a stroke
may carry (Fig. I.1, right) ; each of these options comes with its own set of challenges. I
conclude by narrowing down on which challenges we choose to explore more in depth
in this thesis.

I.1.1 How to create 3D strokes?
2D input Traditionally, user interfaces for display and for input are two dimensional
(2D), like the computer display and light pen used by Sutherland. Sketching on a tablet
is very close to the action of sketching with pen on paper, making it easy to transition
to, and just as expressive as sketching on paper. One way to create 3D strokes with
pen and tablet input is for a user to draw a 2D stroke and “li�” it to 3D following some
rule determined by the interface designer – o�en by making the assumption that the
2D stroke depicts a projection of the 3D stroke onto a camera plane. Such a tool for 3D
content creation lets the artist’s hand gesture input directly a�ect the shape of a stroke
upon creation.

Challenges As interface designers we are le� with the responsibility to decide how
the user’s 2D strokes should be li�ed to 3D space. �is problem is ill-posed since one 2D

3

CHAPTER I. INTRODUCTION

stroke can be li�ed to many 3D strokes: solving it requires choosing suitable heuristics
or designing ways to let the user li� the uncertainty. If the user wishes to sketch in an
existing 3D context, the challenge becomes to decide how to relate the strokes to that
context.

©FRONT Design [107]

3D input Another way to create 3D strokes is to record an
artist’s hand gesture in 3D space, and to let that 3D gesture
be the direct source of creation of a 3D stroke, as if the artist
were holding a small LED light that forms a 3D light trail in
a long exposure photograph (see inset). With early hardware
for 3D input and hand-tracking, Galyean and Hughes [112],
Schkolne et al. [267] among others introduced that idea of
creating shape through such a process, referred to as analogous to “squeezing toothpaste”
or more formally as “repeated marking”. With the increasing availability of virtual reality
(VR) hardware that put 6 DOF tracked controllers in the hands of many, commercial
applications such as TiltBrush and �ill have adopted this idea of a hand-held 3D brush
tool that leaves digital 3D marks in space. Creating 3D content with such a VR paint
brush compared to a 2D pen and tablet bridges the gap in degree of integration, as we
have a 3D input device for 3D content creation.

Challenges Performing gestures in 3D space with a high degree of accuracy is an
activity that is di�cult to do without extensive practice. Compared to marking 2D paper,
for which we have trained since our early childhood doodles, sketching in 3D space
is a novel activity to most people and presents a steep learning curve. �is leads to a
challenge for users in terms of creating accurate and intentional strokes, as shown by
experimental studies [19, 211].

I.1.2 What do 3D strokes depict?
Just as physical drawing media can be used to depict a sphere in very di�erent ways, 3D
strokes are a �exible primitive that can be used with a variety of depiction styles (Fig. I.2).

Shape In an analogy of the line drawing in Fig. I.2a, an artist can depict a 3D surface by
placing a few strokes in 3D space. For example the sphere drawing in Fig. I.2c is composed
of very sparse strokes, yet the viewer’s brain can understand that this represents a sphere.
Line drawings are a popular way to express design concepts in early stages of design, in
part because of their remaining uncertainty and ambiguity, which stimulates the viewer’s
creativity while �lling the gaps. Expressing a design with a few lines and curves is also a
valuable tool for product or automotive design, where feature lines of an object are o�en a
deliberate part of cra�ing its �nal look. In 3D sketching, depicting a 3D surface with few
strokes is appealing for the same reasons and additionally presents an opportunity for

4

I.1. 3D SKETCHING AS A CREATIVE MEDIUM

2D input

(a) (b) (c) (d)

3D input

Shape Appearance AppearanceShape

Fig. I.2: A sphere can be depicted with 2D strokes by sketching on a pen tablet (a, b), or with
3D strokes by sketching in VR (c, d). The sphere can be depicted by a suggestion of its shape (a,
c), or by directly rendering its appearance (b, d). Sketching with 3D strokes yields a 3D artwork
that can be viewed from another viewpoint (inset).

the 3D sketch to serve directly as a rough starting point for a more de�ned 3D modeling
step.

Challenges Just like with the sphere example shown earlier, observing a 3D sketch
a�entively is o�en enough for a human to perceive a reasonable approximation of the 3D
surface depicted. However, from the perspective of a computer, the sparse set of strokes
of a 3D sketch form an uneven sampling of the underlying surface, which makes it very
di�cult to infer what this surface might be. While the 3D strokes are related to each
other through near-intersections or other geometric criteria such as symmetry, these
relations do not form a de�nite and clear structure suitable for analysis. Nevertheless,
obtaining a well-de�ned 3D surface from such an unstructured 3D sketch might be a
valuable starting point to other downstream design steps, such as rapid prototyping, or
CAD modeling.

Appearance While the thin and sparse pencil strokes of Fig. I.2a depict a sphere by
suggesting its shape, the thick dense and colored brush strokes of Fig. I.2b depict a sphere
by representing its appearance. Similarly, 3D strokes can be used to directly represent
appearance (Fig. I.2d), and by arranging many colored brush strokes, skilled artists can
depict complex 3D scenes. Such “3D paintings” open unique possibilities in the space
of 3D content creation: artists can create scenes that present all the expressivity and
hand-cra�ed aesthetic of a traditional painting, yet can be explored by free viewpoint
navigation as any 3D scene.

Challenges While the design of 2D digital painting applications has been a topic of
research for decades, how to design and implement practical and expressive “3D painting”

5

CHAPTER I. INTRODUCTION

Shadows
overlay
linear gradient

Smooth light
screen
spherical gradient

Highlights
overlay

x
y

(b) Layered appearance depiction
in VR painting

(c) Hand-drawn animation in 3D
with a 2D user interface

(a) Recover piecewise-smooth
surfaces from an unstructured 3D sketch

Input 3D sketch Result

3D painting

3D trajectory

in 3D scene context

2D controls

La
ye

rs

Low-� proxy

Fig. I.3: We present three possibilities to leverage 3D sketching as an authoring tool. (a) From
3D strokes sketched in VR we can recover a piecewise-smooth surface that fits the sketch. In
ambiguous cases, a user-defined proxy surface (a, top) can be used to guide surface fi�ing. (b)
We augment VR painting with a data structure and rendering algorithm to support organizing
strokes in stacked layers, enabling a more precise and non-destructive coloring workflow to
hand-paint 3D appearance. (c) We facilitate authoring hand-drawn animation on top of existing
videos by combining a 2D keyframing and drawing interface with a 3D tracking method.

tools is still an open problem. It is not clear how well-established tools and paradigms
from 2D painting can be ported to this di�erent domain. Unlike 2D paintings, 3D paintings
do not rely on the concept of a substrate onto which paint strokes are accumulated by
layering and mixing – eg the oil painter’s canvas, or Photoshop’s background layer. A lot
of features in 2D digital painting are designed around this mental model: layering and
compositing of strokes, textured brushes that simulate traditional media applied onto a
canvas, cu�ing regions and masking layers. Current commercial 3D painting so�wares
lack analogous functionalities and struggle to support artist work�ows.

I.1.3 Our work in this space
In this large and exciting space of what 3D sketching can be, we choose to explore three
possibilities during this thesis. First we delve into how VR hardware could support 3D
sketching creative tools, by studying both how sparse 3D sketches could be surfaced
(Chapter III) and how to improve the design of 3D painting tools by designing new
interaction primitives inspired from 2D digital painting tools (Chapter V). �en we turn
to the case of pen and tablet 2D interfaces, and how these can be used to support creating
3D doodles in the context of an existing video (Chapter VI).

3D sketching is used by communities of artists that develop ad-hoc methods to achieve a
diverse set of creative goals, such as industrial 3D design, illustration, game asset design,
and motion design. By studying tutorials, conducting interviews and browsing created
artifacts, we aim to be�er understand how artists work with 3D sketching, in which
scenarios they encounter the challenges that come with 3D sketching, and what work-
arounds they have found to overcome those challenges. Adopting this methodology that

6

I.2. OUTLINE

is commonplace in human-computer interaction research [212] helps us design solutions
to the challenges outlined previously (Section I.1.1 and Section I.1.2).

First, in our work on surfacing VR sketches (Chapter III), we tackle imprecision and
ambiguity of the description of a shape through a freehand 3D sketch (see Fig. I.3a).
We formulate well-posed objectives for our surfacing algorithm by observing common
depiction strategies in VR sketches, and reduce the overall complexity of the problem
by le�ing the user control the coarse look of the �nal shape by a rough 3D model. �en
we seek a be�er understanding of how VR artists depict appearance in 3D paintings by
conducting interviews with 4 participants (Chapter IV). �is study led us to propose a new
way to organize 3D paintings to give �ner control to the artist over colors while relaxing
the need for precise motions (Chapter V. see Fig. I.3b). Finally we study how people
create animated doodles on videos in order to design a user interface that puts the power
of deep 3D scene understanding in service of a controllable and playful animated doodles
creation work�ow (Chapter VI, see Fig. I.3c). By leveraging 3D scene understanding, we
can “li�” 2D animated doodles to the 3D context of a captured video.

I.2 Outline
�e rest of the thesis is organized as follows. Chapter II presents previous work on tools
for 3D content authoring based on direct manipulation interaction. We will show that
developing tools for 3D shape, appearance and animation authoring that feel direct has a
long history, with rich contributions from both a technical and interaction design point
of view.

Chapter III explores how 3D strokes can be used as a representation of shape. We show
that a sparse 3D sketch can be converted to a piecewise-smooth 3D surface that preserves
characteristic feature lines of the sketch. Our key insight is that 3D strokes encode not
only samples on the 3D surface, but can also indicate where sharp features lie on the
surface.

3D strokes can encode not only shape ; they can represent �nal appearance of a 3D
scene. In VR painting, artists use colored brush strokes to directly depict appearance and
create complex scenes that have a unique visual style, hard to achieve with traditional 3D
authoring tools. We study the emergent practice of VR painting in Chapter IV through 4
semi-structured interviews with practicing VR artists, and provide a preliminary analysis.

In our formative study, we �nd out that artists use brush strokes to depict both shape
and appearance in their painting, with a strong coupling between these two. While
this enables artists to directly manipulate both, this coupling makes editing appearance
without a�ecting shape di�cult, and hinders making changes in appearance to a VR
painting. In Chapter V, we propose a new interaction primitive inspired by 2D bitmap
layers in digital painting to alleviate this challenge. We showcase two complex work�ows

7

CHAPTER I. INTRODUCTION

achieved with our prototype, and propose a preliminary plan for a user study to test our
design.

In Chapter VI, we show that 3D strokes can also be helpful in the context of hand-drawn
animation. We focus on the creation of video doodles: simple hand-drawn animation
overlaid on a video, in which the drawn doodles have to look as if they were in the
captured scene. We propose a user interface that enables novice users to create video
doodles, by decomposing the authoring process into on one hand 3D trajectory estimation
of a “scene-aware 3D canvas”, and on the other hand sketching multiple frames.

Finally, we conclude this thesis by proposing future research directions in Chapter VII.

I.3 Publications
�e work of Chapter III has been published:

Emilie Yu, Rahul Arora, J. Andreas Bærentzen, Karan Singh, and Adrien
Bousseau. 2022. Piecewise-smooth surface ��ing onto unstructured 3D sketches.
In ACM Transactions on Graphics (Proceedings of SIGGRAPH), volume 41-4,
pages 1-16.

�e work of Chapter VI has been published:

Emilie Yu, Kevin Blackburn-Matzen, Cuong Nguyen, Oliver Wang, Rubaiat
Habib Kazi, and Adrien Bousseau. 2023. VideoDoodles: Hand-Drawn Anima-
tions on Videos with Scene-Aware Canvases. In ACM Transactions on Graphics
(Proceedings of SIGGRAPH), volume 42-4, pages 1-12.

Chapter IV and Chapter V present preliminary results of ongoing work that has not been
published yet.

8

Chapter II

Background and Related Work

�is chapter provides background for the thesis as a whole, highlighting common themes
that span all three of our more speci�c projects, and situating them in the current
landscape of research and industry tools for 3D digital content authoring. Each of the
core chapters (Chapters III to VI) will give background concerning the particular authoring
scenario that the chapter focuses on.

In this chapter we map out the landscape of tools and e�orts to make digital 3D content
authoring more direct and more expressive. Digital 3D content serves varied applications,
from creating frames in a feature animated movie, to generating the commands that a
laser cu�ing machine will use to make parts for a kitchen table. All digital 3D content
destined to be visualized on a computer is composed of di�erent data structures with
particular values, that a rendering algorithm interprets to form an image. �ree core
aspects that de�ne digital 3D content are shape, appearance and motion.

For a more concrete example, let us look at this crow character, created for a small video
game project (Fig. II.1). �e shape (Fig. II.1a) de�nes what space the crow occupies in 3D,
it de�nes the outline of the crow character from any given viewpoint, as well as what
kind of creases, kinks and bumps the crow presents. Shape can be authored in many
di�erent ways as we will see in Section II.1, but in the end it is typically an assembly of
geometric primitives such as 2D polygons – triangles, in the case of the crow. Knowing
the shape of the crow is enough to draw its outline, but by de�ning appearance, we can
convey that this crow character is purple and we can make it match the �at visual style of
the game (Fig. II.1b, bo�om), or instead make it look like a plastic toy (Fig. II.1b, top). �e
appearance of the crow encodes some information about how a computer program should
render the crow to a 2D frame. It de�nes visual aspects about the surface such as color,
and how the surface reacts to virtual incoming light. It also encompasses information
about the environment in which the crow lies, such as the lighting setup and surrounding
objects that might a�ect the appearance of the crow by casting shadows or re�ecting
light [84]. Appearance authoring is a vast topic, in Section II.2 we focus on methods
to author appearance by painting strokes. Finally, the crow character can be made to
appear in motion (Fig. II.1c) by authoring motion via animation. We end this landscape
of authoring tools by giving in Section II.3 an overview of animation methods aimed at
novice users, as they, in particular, strive to design more direct interaction techniques for
animation.

CHAPTER II. BACKGROUND AND RELATED WORK

(a) Shape

(b) Appearance

(c) Motion

Fig. II.1: Authoring digital 3D content encompasses many aspects, among which we focus on
authoring 3D shape (a), appearance (b) and motion (c).

VR, AR and other 6-DOF input devices have driven a lot of research in 3D content
authoring systems. We discuss those contributions across all sections of this chapter,
as we will see that they can be well classi�ed along the same categories as 2D desktop
systems.

II.1 Shape authoring
Methods and user interfaces to create and edit 3D geometry cover a vast body of academic
and industry e�orts, and have been designed to cater to a variety of use cases, such as
industrial design, 3D game asset creation or digital fabrication. For brevity, this section
dwells on the landscape of work that most closely matches our e�ort of making tools
that let users author shape by direct manipulation. We organize related work in this
�eld by the kind of representation that they let users manipulate. �e choice of shape
representation in a particular authoring tool is sometimes driven purely by practical
aspects of performance or compatibility concerns, yet the representation introduces
di�erent trade-o�s and constraints. �is a�ects whether a given tool supports a particular
artist’s work�ow, just like how choosing to work with vector curves will support a
di�erent process than working with bitmap brushes [191].

If it is true that the waywe think about something is shaped by the vocabulary
we have for talking about it, then it is important for the designer of a system
to provide the user with a good representation of the task domain in question.

—Hutchins et al. 1985, Direct manipulation interfaces

10

II.1. SHAPE AUTHORING

II.1.1 Manipulating surfaces
A popular representation for 3D geometry authoring is to encode a shape as a surface that
de�nes its outer boundary. �is surface is discretized as a polygonal mesh, for example
composed of quadrilaterals or triangles. �e user can visualize the discretization elements
such as vertices, edges and faces, and those elements are the main object of interest in
the interaction ; the user can select them and apply operations onto them.

Box modeling

A complex surface can be created by starting from a simple primitive shape such as a
cube, and iteratively applying operations onto the elements of the polygonal mesh – a
process referred to as box modeling [315] (see Fig. II.2a). By extruding faces, subdividing
face loops and pulling on edges and vertices, the artist can create a low-polygon mesh
that captures the rough shape they envision [38]. �is low-polygon mesh can optionally
be subdivided to obtain a smooth looking surface. �is work�ow gives the artist a high
level of control over the topology of the polygonal mesh they are forming – ie how the
discretization elements are assembled.

While this control enables skilled modelers to build a surface with few discretization
artifacts and deliver an optimized mesh, working at the polygon level widens the “gulf of
execution” by le�ing the user �gure out how a desired shape modi�cation translates to
topology modi�cations. Previous work has sought to simplify this process by automating
topology modi�cations for simple operations [200] (see Fig. II.2b), or by converting an
arbitrary surface into a quadrilateral mesh with a topology that facilitates this modeling
work�ow [238]. Doing box modeling in VR can make grabbing and pulling on primitives
in 3D quicker andmore direct thanwith a 2D desktop interface (see Fig. II.2c) [25, 246, 287],
but the user is still in charge of constructing a valid shape in terms of mesh topology, or
is limited to interacting with shapes via rigid transformations [299]. �is extra cognitive
load is not appropriate in early stages of the design process, when sketching out an idea
must be a “quick” and “inexpensive” process [52].

�us we see artists start the box modeling process with references from earlier stages
of design, which can be 2D images or sketches that they “trace” over from a particular
viewpoint [252]. In particular in VR modeling tools we observed artists using a 3D rough
sketch done in VR as a visual sca�old to help the modeling step [287]. Our work in
Chapter III explores how this kind of ideation 3D sketch can be used to automatically
model a 3D shape, and the other projects presented in this thesis (Chapters III and V)
consider only strokes as interactable geometric primitives, hiding the complexity of
surface discretization away from the user.

11

CHAPTER II. BACKGROUND AND RELATED WORK

(a) Box modeling
in Blender

(b) Resolving topology for face pull interaction
[Lipp et al. 2014]

(c) VR box modeling
[Bærentzen et al. 2019]

Fig. II.2: In box modeling, users apply operations onto elements of a polygonal mesh such as
faces (a) via gizmos [38]. Ensuring correct mesh topology updatesmatching a desiredmodification
(orange arrow) is not always trivial (b) [200]. VR interfaces can make mesh manipulation easier
(c) [25].

Surface deformation

Digital surface deformation operations are designed as analogies to modeling actions
that take place with physical media, such as clay sculpting, in order to build on users’
pre-existing understanding of the non-digital world [151]. �e idea of taking inspiration
from the actions in sculpting can be found in the early work of Coquillart [67] that uses a
3D la�ice as handle to deform the 3D surface. More recent work on surface deformation
made manipulation simpler by allowing more �exibility in the handle construction and
achieving real-time deformation [153] (see Fig. II.3a). �e user can also grab vertices as
handles and see the surface deformed in a way that matches “naive physics” expectations
[151], by solving a variational problem with a well-chosen energy that models surface
stretching and bending [44] or rigidity [291].

Another popular deformation user interface consists in exposing a “brush” tool that
de�nes a 3D deformation �eld corresponding yet again to sculpting analogies such as
grab, twist, pinch [75] (see Fig. II.3b). Such modeling tools are implemented in commer-
cial desktop so�ware [39, 215] and for VR hardware to enable 6-DOF manipulation of
deformation brushes [7].

While modeling by deformation is a very popular and e�cient method for 3D shape
editing, it is more suitable to re�ne an already-existing coarse version of the desired
shape than to create a shape from scratch. We see these techniques as complementary
to our work, since we focus more on the initial stage of design when the idea must be
externalized from a blank slate.

Speci�cally, some surface deformation techniques use on-surface curves or curve net-
works as meaningful handles, motivated by the observation that pro�le curves and sharp
feature curves are strong shape descriptors that artists want to have explicit control over.
Singh and Fiume [286] show the expressive power of using a few on-surface curves to
deform a surface, and later work explored the use of networks of curves that are either

12

II.1. SHAPE AUTHORING

(a) Skeleton handles
[Jacobson et al. 2011]

(b) Sculpting brushes
[De Goes and James 2017]

(c) Curve network handles
[De Goes et al. 2022]

Fig. II.3: Surfaces can be deformed by a user through di�erent interaction metaphors. The
system can expose di�erent kind of handles such as a skeleton (a) [153], or a curve network (c)
[76]. Alternatively, the user can use a “brush” that displaces the content inside by simulating an
elastic material being pulled (b) [75].

hand-authored [76] or automatically generated given a shape [111] to enable deformation
of complex character meshes (see Fig. II.3c) and regular man-made shapes respectively.
We push the idea of using curves for shape de�nition further, by using curves not only for
editing an existing surface but also for de�ning that surface from scratch in Chapter III.

Composing surfaces

Finally, a last notable interaction metaphor that can power direct manipulation interfaces
is to consider how multiple surfaces can be composed together. A closed surface de�nes
a solid volume, and multiple such volumes can be composed with boolean operations.
�is method – called Constructive Solid Geometry (CSG) – enables the construction
of complex shapes via the manipulation of simple parametrized primitive shapes such
as boxes, spheres, or tori [277]. More generally, both these primitive shapes and more
complex organic shapes can be described by an implicit surface representation: the
surface is the set of 3D points in which a scalar function evaluates to a �xed value
[41]. In a user interface for CSG or implicit surface modeling, the user can edit the
primitive shapes themselves by changing their parameters or by moving them in 3D
space, and they can de�ne how the shapes are composed together by choosing a boolean
operation and a blending mode [15, 135]. �is type of shape authoring work�ow has
been implemented in commercial so�ware, both for 2D desktop interfaces and for VR
[96, 130, 219]. Making CSG edition easier for users is an active �eld of research, for
example to enable the conversion of other shape representations to CSG [89] ; to de�ne
variants of CSG representation that allow more powerful edits [90] ; or to let users
manipulate a complex CSG program with direct manipulation paradigms [218].

Composing surfaces to obtain complex e�ects is something we explore in Chapter V,
where 3D strokes can act on the color of their interior. �is interaction metaphor is
directly inspired by CSG interfaces [96, 130] ; and the implementation we choose to
render the coloring e�ect is related to similar ideas in CSG rendering [339].

13

CHAPTER II. BACKGROUND AND RELATED WORK

II.1.2 Manipulating strokes
�e question of how to facilitate conversation between human and machine “through
the medium of line drawings” from Sutherland’s thesis remains open to this day and has
inspired many researchers to look into how hand-drawn strokes can be interpreted by a
computer for diverse applications. We are in particular interested in how strokes can be
used for the purpose of 3D content authoring, and in this section we present previous
work on using strokes to de�ne 3D geometry.

2D strokes to 3D strokes

A simple pen drawing as in Fig. I.2(a) is readily perceived as a 3D sphere by a human
observer. Perhaps because of how simple that process feels to us, a large body of research
called “sketch-based modeling” has studied how computers could be programed to un-
derstand 2D line drawings as 3D shapes [42, 232]. �is line of work considers 2D line
drawings as representations of 3D shape that have been projected to some image plane.
�e goal of sketch-based modeling systems is to inverse that projection such that from an
input 2D stroke we obtain a 3D stroke, or such that from an input sketch we obtain a 3D
surface. �ere is inherent ambiguity in this process since the “depth” of a stroke in the
virtual 3D space before projection is unknown. �ere are multiple strategies developed
in prior work to be�er constrain the problem, anchored in observations on how people
draw [65, 331].

Some work has considered the design of interactive systems to facilitate converting
2D strokes into 3D strokes. In this se�ing, the depth ambiguity can be resolved by
designing work�ows to let the user specify it explicitly, for example by le�ing them
provide multiple views of the same stroke [23, 161], sketch by projection on a 3D plane
[23, 85, 196, 334], or on a transient 3D surface [24, 77, 172, 173, 231] (see Fig. II.4a). To
reduce the need for multiple changes of viewpoints while sketching and to allow users
to sketch more complex non-planar curves, Schmidt et al. [271] and Krs et al. [179] rely
on geometric priors such as minimizing total curvature and on the spatial relationships
between a stroke and its surrounding 3D context. �ey formulate such priors as terms in
an optimization, and spatial relationships as hard constraints.

In the case where only one sketch from a single viewpoint is provided by the user, Xu et al.
[333] showed that if the sketch follows industrial design sketching principles, formulating
these same principles as objectives that the �nal 3D sketch should minimize makes it
possible to reconstruct a complex 3D sketch. Recently, by using similar design principles
and expressing them in robust optimization frameworks, Gryaditskaya et al. [120] and
Hähnlein et al. [124] have shown that it is possible to deal with more complex sketches
with messy oversketched strokes [121] (see Fig. II.4b).

Some work in this �eld has studied how to leverage real-world 3D context to li� 2D
sketches to 3D [196, 236] (see Fig. II.4c). We are interested in this particular case in

14

II.1. SHAPE AUTHORING

(a) Sketching on transient
surfaces [Kim et al. 2018]

(b) Lifting a single-view sketch
to 3D [Hähnlein et al. 2022]

(c) Sketching in a 3D context
[Li et al. 2017]

Fig. II.4: Creating 3D strokes via a 2D input device can be done by le�ing users draw on transient
3D curved surfaces (a) [172] ; or by reconstructing a plausible 3D interpretation of the 2D strokes
by analyzing intersections and symmetries (b) [124]. To design in a real-world 3D context (c),
partial 3D geometry reconstructed from a RGB-D capture can be used to place strokes in 3D
[196].

Chapter VI, where our context consists of a casually captured video, and our goal is to
help the user place animated 2D doodles in this 3D context.

2D strokes to 3D surfaces

To let users create 3D surfaces by sketching, a simple and e�ective idea was �rst developed
in Teddy [142] based on the assumption that a closed 2D curve represents the silhoue�e
of a smooth round surface (Fig. II.5a). �is idea was pushed further by Nealen et al. [226]
that introduced more robust optimization framework to solve for the surfaces, and others
explored how implicit surfaces could be used as surface representation in this problem
[73, 162, 272]. While these methods typically rely on the user iteratively sketching
multiple 2D contours from di�erent viewpoints, others developed methods that work
with a single sketch from one viewpoint by leveraging annotations [94, 114, 159, 189] (see
Fig. II.5c), or by applying learnt priors from synthetic data [190, 208] (see Fig. II.5b). In
the �rst core chapter of this thesis (Chapter III), we are inspired by the premise of sketch-
based modeling and seek to explore a closely related question: if a user could sketch 3D
strokes, how could those be used to create a 3D surface? While such a sketch is already
well de�ned in 3D space, it shares some of the characteristics of the 2D sketches studied
in sketch-based modeling, such as being a partial depiction of the surface, presenting
oversketching, imprecisions and gaps between strokes.

Mid-air 3D sketching

Despite the recent burst of interest in virtual reality (VR) hardware, the core ideas of
VR user interfaces have been developed by researchers for decades. In 1968, Sutherland
[301] demonstrated the possibility of a head-mounted display that renders a virtual 3D
scene from the viewpoint of the spectator’s head. In the 90s, more practical hardware

15

CHAPTER II. BACKGROUND AND RELATED WORK

(a) Contour inflation
[Igarashi et al. 1999]

(b) Surface detailing with
normal map prediction [Luo et al. 2021]

(c) Annotated strokes
define curvature [Li et al. 2017]

Fig. II.5: Sketch-based modeling research investigates how to let users create and edit 3D
shapes by sketching in 2D. A closed 2D curve can be inflated to a smooth surface (a) [142] ; a 2D
pre-trained normal map estimation network can help interpret detailing 2D strokes as 3D edits
(b) [208] ; and annotated 2D strokes can convey rich information about local surface curvature
(c) [189].

systems for VR and AR such as the CAVE [69] and the Responsive Workbench [180]
supported researchers in exploring the use of head-mounted display and tracked hand-
held controllers for authoring applications. HoloSketch proposed to use 3D position input
from such a hand-held device to create primitive objects or free-form tubes that follow
the hand motion of the user [79]. Surface Drawing enabled users to create and deform
surfaces in mid-air with a sweep of the hand [267] (see Fig. II.6a). In FreeDrawer, the
3D model was created on the Responsive Workbench by sketching a sparse network of
3D strokes, from which the system inferred surfaces that could later be deformed [322].
�e ideas from these seminal papers are still very relevant to modern VR sketching
applications. OpenBrush [140] and many other VR creative applications [228, 287, 289]
employ a mid-air sketching interaction similar to the ideas presented in HoloSketch and
Surface Drawing.

Israel et al. [148] reported that 3D sketching with tracked hand-held controllers could be
useful for designers, by helping them externalize ideas and foster creativity. However, VR
sketching interfaces present new challenges to users compared to 2D sketching. When
sketching simple strokes like a straight line or a circle, users – especially novices in 3D
sketching – achieve poor accuracy when trying to match a target [19, 211]. �e lack
of a supporting surface induces the need for be�er motor control in a space with more
degrees of freedom than traditional 2D sketching. Adding to that, low spatial ability
can inhibit users, making them more prone to errors when positioning strokes relative
to each other. We refer the interested reader to a recently published book chapter that
covers more thoroughly the opportunities and challenges of 3D sketching [21].

Motivated by those studies on the challenge of geometric accuracy when trying to achieve
a particular shape with mid-air drawing gestures, a variety of interfaces have been
proposed. One idea is to reduce the degrees of freedom when drawing a stroke mid-air.
3-Draw [263] did so by decoupling the act of drawing the curve to de�ne its shape from

16

II.1. SHAPE AUTHORING

(a) Painting mid-air
[Schkolne et al. 2001]

(b) Lifting 2D strokes to 3D
[Jackson and Keefe 2016]

(c) Combining 3D mid-air and
2D pen input [Arora et al. 2018]

Fig. II.6: Creating 3D strokes can be done using hardware with 6 degrees-of-freedom tracking.
The motion of the user’s hand mid-air can create a ribbon (a) [267] ; the user can grab and li�
strokes drawn in 2D to 3D (b) [150] ; or 3D strokes can be created in two steps, by first using 3D
mid-air sketching to define 3D canvases, then sketching on a canvas with a pen tablet (c) [18].

indicating its position and orientation in the overall drawing. Keefe et al. [166] use haptic
feedback from a Phantom device and a 2-hand interaction metaphor inspired by tape
drawing [26] to separate drawing the curve from indicating its tangent direction. Other
methods avoid direct 3D freehand sketching in the creation process. Jackson and Keefe
[150] proposed to use curves from a 2D sketch as a basis for VR creation (see Fig. II.6b), a
feature also available in the commercial so�ware Gravity Sketch [287] along with other
curve editing operations based on control points.

Another line of work proposes to let artists sketch on a supporting surface. Arora et al.
[18] and Drey et al. [87] use a 2D tablet on which the artist can sketch precise strokes that
are mapped to a proxy 3D surface de�ned by a few freehand 3D strokes (see Fig. II.6c),
and Jiang et al. [157] use the artist’s non-dominant hand as a transient physical support
for sketching. In a mobile AR context, using the phone as both a 3D tracked input device
and a tactile screen to draw on can help make the best of both input conditions [182]. In
an augmented reality context, physical 3D objects can also serve as support to sketch
more accurately [318, 336], or to provide tactile feedback similar to sketching on paper
[101, 187]. In lack of a good support surface, vibrotactile or pneumatic feedback can also
provide some help in understanding pen position with respect to virtual surfaces [95].

Inspired by ideas from the domain of 2D sketch beauti�cation [102, 141, 240], some work
explored how beautifying, snapping or generally regularizing user’s 3D strokes could
help draw regular shapes [74, 210], curve networks [337], and complex 3D curves with
precise control over positions and tangent directions [338]. In Chapter III and Chapter V,
we propose methods that are resilient to imprecisions in 3D sketches, while avoiding
sketch modi�cation behaviors. We preserve the freedom of unconstrained freehand
sketching by assuming from the get go that input sketches in our surfacing and coloring
applications might be imprecise.

17

CHAPTER II. BACKGROUND AND RELATED WORK

Finally, recent work proposed to overcome the need for geometric accuracy while sketch-
ing by instead considering the 3D sketch as a query into a learnt distributions of 3D
shapes [205, 206]. �is allows retrieving the closest 3D shape to the sketch or generating
new shapes in this distribution that resemble the sketch, while being robust to ambiguity
and imprecisions of sketches.

II.2 Appearance authoring
Appearance authoring is yet again a vast topic in computer graphics. We provide a scoped
overview of appearance authoring by focusing on methods that give a high level of direct
control over the �nal visual appearance. Since our work focuses on using 3D strokes to
create appearance, we are de facto more interested in stylized or painterly appearance,
which are styles that bene�t most from providing the artist control via strokes. For
example, we forgo discussing physically-based material models [84], or material capture
techniques, as those do not give the opportunity to the artist to control appearance via
mark-making with strokes. In the following section, we �rst give an overview over
methods to paint on the surface of a 3D shape, then we look at methods to paint brush
strokes that �oat mid-air in 3D.

II.2.1 Painting on a 3D shape
Since most objects are fully opaque and that we visualize them solely from their outside,
they can be modeled as 3D surfaces with appearance described everywhere on this surface.
A 3D surface is “in a certain sense, two-dimensional” [82], and for us that means that
a straightforward way to describe appearance on this surface is to consider de�ning
appearance on the familiar 2D plane – as if drawing on a canvas – and then �nd a valid
mapping from each point of the 3D surface to the 2D plane. Most models in computer
animation and computer games are de�ned in this way – artists paint on a 2D texture,
and they de�ne a mapping function between the 3D surface and the 2D texture space.

From 3D surface to texture

Finding a mapping from a 3D surface to 2D texture space is not an easy task in the
general case. 3D surfaces with non-zero Gaussian curvature cannot be mapped to the
plane without introducing distortions, just as one cannot wrap a soccer ball with gi�
wrapping paper without introducing creases and bunched up areas. 3D surfaces such as
spheres that are not simply connected two-dimensional manifolds with boundary also
need to be cut in some way to ensure that they can be �a�ened out. In other terms, the
soccer ball gi� wrapping must present at least one seam. Finding a good mapping for
surface texturing thus requires multiple considerations, such as choosing appropriate cuts
and de�ning how the surface patches are �a�ened out – a process called parametrization,
in order to minimize visual artifacts of stretching or discontinuities once the texture is

18

II.2. APPEARANCE AUTHORING

(a) Global texture mapping in Blender (b) Local texture mapping along sketched strokes
[Sun et al. 2013]

Fig. II.7: We can paint on a 3D shape by finding out how to map 2D paint strokes onto the
surface. This can be done by finding a global texture mapping (a), that defines where each point
of the sphere (inset) reads its color on the 2D planisphere [40] ; or by finding local mappings
along sketched strokes (b) [298].

mapped to the 3D surface.

Previous work has proposed e�ective solutions to create mappings with low distortion.
�is can be done by introducing seams to reduce areas of high curvature, while taking
care to hide the seams in less visible parts [279] ; by alternating user edits with automatic
optimization based on a geometric distortion measure [248] ; or by automatically opti-
mizing for both parametrization and cut placements [193]. Commercial so�ware such as
Blender [40] and ZBrush [216] provide implementations of some algorithms for texture
mapping – also referred to as UV unwrapping. �ey also provide a direct manipulation
interface where artists can edit how polygons from their 3D models are laid out in 2D
(see Fig. II.7a). Because it is challenging to mentally predict how a change in 2D texture
space a�ects the �nal look of the texture on the 3D surface, Gingold et al. [115] propose a
user interface that enables the user to edit texture maps while working on the 3D surface.

�ese texturing approaches create a global mapping from the 3D surface to a 2D texture
space. Other approaches have considered instead creating local maps on the surface in
order to decorate it with decals [241], just as one might put a small sticker onto a surface.
Schmidt et al. [269] describe how this can be achieved e�ciently by approximating the
exponential map of the surface at a point in the discrete se�ing, and they show how decals
can be used to achieve interactions similar to 2D image processing but on the surface –
eg copy and pasting, moving and deforming decals. �is approach can be extended to
support generating exponential maps along a sketched curve on the surface [298], in
order to let users paint long strokes on the surface which can be textured with images –
eg to simulate painting on the surface with an ink brush (see Fig. II.7b).

Lastly, DeBry et al. [78] introduced a di�erent texturing paradigm: texture can be stored
in 3D space in a sparse adaptive octree, instead of being stored on a 2D plane. �is
entirely bypasses the problem of �nding an appropriate texture mapping for a surface
before painting on it. In Chapter V, we take inspiration from this vision by encoding color

19

CHAPTER II. BACKGROUND AND RELATED WORK

(a) Texture painting
in Blender

(b) Raycast projection for 2D
texture painting

(c) Projecting mid-air 3D strokes
to a 3D surface [Arora and Singh 2020]

Fig. II.8: Painting textures can be done by applying strokes directly on the 3D surface (a) [40, 125].
When painting with a 2D input device, strokes are mapped to the 3D surface by raycasting each
point (b). However, when painting mid-air in VR (black strokes), special precautions must be
taken to ensure the resulting strokes on the surface (orange) are smooth (c) [22]. Note: (a) ©Cra�
Reaper ; (b) figure from [22].

texture as 3D strokes. �is enables us to support coloring extremely messy geometry
composed of many strokes.

Painting textures

Assuming we have obtained a global texture mapping for a 3D surface, the question
of how to let artists paint the texture remains. Since the texture is a 2D image, it is
trivial to paint on it but that remains a rather indirect way to de�ne the appearance
of the 3D surface, since the mapping from 2D texture to 3D surface might introduce
transformations and distortions. In 1990, Hanrahan and Haeberli [125] proposed instead
to let artists paint on the 3D surface directly. Brush stroke points are mapped from 3D
to 2D texture space, and the texture image is painted in this way (see Fig. II.8a). �is
simple and very e�ective method was used to create complex 3D environments with a
painterly style in Tarzan [70] ; and it is still in use today, as many material and texture
painting so�ware uses this interaction metaphor of painting directly on the 3D surface
[5]. Painting on a 3D surface using a 2D input device – pen tablet or mouse – introduces
challenges: how to map the strokes painted by the user in image space to the 3D surface?
Typically, this is done by sampling the stroke and raycasting every sample to the closest
point on the surface [125] (see Fig. II.8b). But this can make it di�cult for artists to paint
a complex 3D shape with self-occlusions, and requires many viewpoint changes to paint
the whole surface. Previous work has explored how to help artists sketch on complex 3D
shapes with many self-occluding layers by resolving depth ambiguities [108] and how to
automate camera placement in order to �nd disoccluded views for painting [234, 304].

Using a 3D input device such as a VR controller, it becomes possible to paint on a surface
with 3D motion. Agrawala et al. [9] used a tracked stylus to let people paint a texture
by moving the stylus in 3D around a physical version of the digital 3D model they are

20

II.3. MOTION AUTHORING

working on. �e tracked stylus applies paint to the digital surface in a small volume
around its tip. When trying to paint with a hand-held device in 3D space without such
a convenient physical support, people can su�er from poor geometric accuracy, which
makes painting smooth lines on a surface rather di�cult. Arora and Singh [22] proposed
a new method to map mid-air 3D stroke point to on-surface points, while ensuring the
sketched strokes are smooth (Fig. II.8c).

Finally, while hand-painted textures are beautiful and expressive, they cannot react to
changes in lighting or viewing conditions – eg a painted highlight will not move when
viewed from a di�erent point of view. Previous work has proposed techniques that
augment hand-authored shading strokes or shapes with computational control, enabling
hatching shading strokes to follow a shaded region [160], or le�ing artists de�ne how
shading shapes should react to changes in lighting [244].

II.2.2 Painting in 3D space
Limiting the application of paint to a pre-de�ned 3D surface limits the expressivity
of painting, as it will always appear to be “stuck” to the underlying surface. Overcoat
overcomes this by le�ing artists de�ne 3D strokes in the vicinity of a base 3D surface
[28, 268]. Strokes are de�ned in 3D space, and they are rendered with brush splats a�er
being projected to image-space. �is technique supports a painterly style with strokes
that create a fuzzy volume around the 3D surface.

Painting on a surface by projection, like in “WYSIWYG texturing” [125], can also be used
to create the impression of o�-surface strokes by simply hiding the supporting surface in
the �nal result. Only the painted strokes remain, and they appear to �oat in 3D space
[36, 85, 144]. We use this technique in Chapter VI: 2D doodles are mapped to 3D by using
the texture mapping from an invisible 3D canvas plane.

All previous techniques require the existence of a well-de�ned proxy surface to paint on,
which means the user has to provide it before they can start painting. In VR painting, the
artist can create 3D brush strokes mid-air directly, without an explicit support [140, 219,
228, 267, 289]. We study further the opportunities and challenges associated with this
new medium in Chapter IV.

II.3 Motion authoring
We end our tour of digital 3D content authoring research by looking brie�y at the topic
of motion authoring. Supporting motion authoring or animation covers a vast spectrum
of research, to cite just a few examples: how to pose a 3D character with a high level
of control over the �nal shape [27, 76, 313], how to control large crowds [64], how to
capture a live actor’s performance [61], how to edit 2D graphics animation [341] or even
how to make tangible stop-motion animation [2, 181]. Our work in this thesis dwells on

21

CHAPTER II. BACKGROUND AND RELATED WORK

(a) Animating clip arts based on
tracked pose [Liu et al. 2020]

(b) Controlling smoke emission with mid-air hand gestures
[Arora et al. 2019]

Fig. II.9: Direct manipulation interfaces for animation can leverage captured motion content
such as tracked human pose from a video (a) [201] ; or use the principle of authoring by demon-
stration, for example le�ing the user create and control e�ects with gestures of their hands (b)
[20].

animation from the point of view of casual users with limited time and resources who
would like to create short animated doodles (Chapter VI). �erefore we will focus in this
section on previous work that looked at how to support similar practices: �rst, we survey
techniques to author animation through direct manipulation, then we look at techniques
catered to hand-drawn animation.

II.3.1 Direct manipulation interfaces for animation
�e trajectory of a point or object through space is a characteristic component of motion.
Previous work has leveraged this idea to help novices de�ne animations by drawing a
trajectory curve that controls the 2D translation and rotation of a 2D image along the
curve [72]. �orne et al. [310] considers sketched trajectories as being composed of a
vocabulary of gestures that can be interpreted as di�erent character animation segments
to be synthesized. With control over a 3D character through a detailed skeleton, the
character itself can be deformed to match the shape of a space-time trajectory, to follow
a curved trajectory closely [122]. Motion trajectories were also used by previous work
as a way to navigate videos [86, 117, 227], and simultaneously navigate and animate
properties of objects [265]. In Chapter VI, we provide a visualization of an animated
doodle’s trajectory through 3D space as a way to help the user visually understand the
animation and quickly spot and �x errors in our tracking results – the user can click on
the trajectory to scrub the video in time.

Another line of work on animation tools for novice users leverages already captured
content to drive an animation. Motion capture data or the video of a person acting
a motion can be abstracted to a skeleton animation, which can be used to drive the
deformation of a sketch that shares a similar structure [288, 295], or to add clip arts of
virtual objects onto the video that follow the person’s motion [201] (see Fig. II.9a). Our

22

II.3. MOTION AUTHORING

work (Chapter VI) follows this idea to create complex 3D motion trajectories by analyzing
scene motion from a video.

Finally, a very simple way to author animation is by demonstration – just like a child
“animating” their plush toy by grabbing it and making it move. Previous work has used
video capture of paper cutouts to create 2D animations [29], hand gestures to control
3D particle e�ects [20] (Fig. II.9b), recorded 3D controller motion to make strokes move
[289], or a tracked tablet to create prototypes of augmented reality in-situ animations
[188].

II.3.2 Animating sketches
Sketches are easy to create for novice users or children, so they are o�en used as a
starting point in animation systems targeted at novices. Animating a sketch can be done
at the sketch-level: by creating a suitable triangulation, Smith et al. [288] show that they
can make a child drawing animate by deforming the triangulated sketch with ARAP
[143]. Su et al. [295] follow a similar process to animate doodles, with the addition of
a stroke-rigidity preservation term to the ARAP formulation. Sketched elements can
also be animated procedurally, for example by cloning example sketched elements and
applying simple procedures like emission from a source, or an oscillating e�ect [165].

A higher level of control over the look of an animation can be achieved by drawing
more than one sketch. Indeed, many iconic hand-drawn animation e�ects cannot be
reproduced by deforming a single sketch, such as when the shape of a character’s head
changes drastically between a frontal and side view. At an extreme, it is possible to draw
every single frame of an animation. Since this is quite time-consuming, previous work
has proposed methods to reduce the amount of frames to be drawn to obtain the full
animation. �is can be done by generating interpolating frames in-between sketched
keyframes [8, 99], or by predicting how other frames should be modi�ed given new
strokes in one frame [332]. Lastly, one idea is to consider strokes to be 3D or “2.5D”, since
they are typically depicting the projection of a 3D object. Rivers et al. [257] propose
to solve the problem of interpolating keyframes of a cartoon character animation by
combining the e�ects of point interpolation in 3D and stroke interpolation in 2D. �is is
achieved by associating each stroke with a 3D position. A similar idea is to place strokes
on a 3D canvas, and to de�ne keyframes both in terms of canvas 3D shape and position,
and in terms of strokes [110]. We take inspiration from this idea in Chapter VI, where
we show that introducing the notion of a 3D canvas animated in 3D space simpli�es the
creation of animated doodles, making it possible to create complex animation e�ects by
drawing just a few frames.

23

Chapter III

VR Sketching For 3D Surface Modeling

III.1 Motivation
As discussed earlier in Chapter I, sketching in 3D can serve as a way for artists to convey
their intent for 3D shape authoring tasks. Creating 3D sketches composed of sparse
strokes (Fig. III.1a) is a quick and inexpensive way to externalize and re�ect on an idea,
which can be helpful to designers for exploratory phases of design [148, 255].

However, 3D sketches are still only a partial representation of a 3D shape, and just like 2D
design sketches they can be hard to parse visually due to the clu�er created by occlusion
when viewing the sketch as a 2D projection [120]. Communicating a design to a wider
audience and other downstream tasks such as physical prototyping require designers
to create a well-de�ned 3D surface model (Fig. III.1e). �is is typically done with 3D
modeling tools where users gradually create and re�ne polygonal meshes (Fig. III.1(b-d)).
While the 3D sketch can be used as visual guidance or as a snapping target to align
polygon vertices to 3D strokes, this process still involves a signi�cant amount of manual
work. Having the option to quickly convert a sparse 3D sketch into a well-de�ned 3D

Fig. III.1: Sparse 3D sketches are a quick and inexpensive way for artists to externalize an idea
(a), before eventually working on modeling a well-defined surface model (b-d), which can be used
for downstream applications such as visualizing the design in-context to evaluate it (e). ©Gravity
Sketch, used with permission.

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

surface can enable novel work�ows with a quick back and forth between loose sketching
and detailed 3D surface modeling.

III.2 Piecewise-smooth surface ��ing onto unstructured 3D
sketches

In this project, we make a �rst step towards this potential work�ow by proposing, to our
knowledge, the �rst approach to transform such 3D sketches into piece-wise smooth 3D
surface models that preserve salient sketched features (Fig. III.2). We design our method
based on several key characteristics of 3D sketches, highlighted as insets in Fig. III.2(a).

• Artists o�en depict piecewise-smooth surfaces by strategically placing strokes at
sharp surface discontinuities, consistent with traditional sketching practices of
representing an object through its feature curves – ridges and valleys [65, 121].

• While the main patches that form the envisioned surface are o�en delimited by
strokes, other strokes lie within individual patches to depict sub-parts and decora-
tive details.

• 3D sketches are o�en imprecise, exhibiting over-sketching or gaps and missing
intersections between strokes.

(a) Unstructured 3D sketch (b) Smooth surfacing [Huang et al. 2019] (c) Joint segmentation & fitting (d) Piecewise-smooth surfacing

Fig. III.2: 3D sketches created in Virtual Reality (VR) or with sketch-based modeling systems
o�en depict piecewise-smooth surfaces (a), but lack proper inter-stroke connectivity to detect
the individual surface patches, as illustrated in the insets where pen strokes do not intersect
precisely, and where detail strokes lie on the imaginary surface without being connected to
other strokes. State-of-the-art surfacing algorithms only produce smooth surfaces from such
sparse and unstructured 3D data (b). Our algorithm segments such an initial smooth surface into
regions aligned with the pen strokes to produce a piecewise-smooth surface that be�er captures
the intended shape. ©James Robbins, used with permission.

26

III.2. PIECEWISE-SMOOTH SURFACE FITTING ONTO UNSTRUCTURED 3D SKETCHES

While the relative importance of these characteristics in 3D sketches may vary by artist
and the drawing tool used, they underlie both AR/VR sketching and traditional sketch-
based 3D modeling systems [23, 173, 333], making our approach well-suited in general to
surfacing any sketches, that are provided as an unstructured collection of 3D curves.

Existing surfacing methods only partly account for these characteristics. Point cloud
surfacing algorithms target densely sampled surfaces and fail on sparse stroke clouds
[132, 164] or cannot capture sharp features of the sketch (Fig. III.2b).

Methods dedicated to 3D drawings focus on well-connected curve networks [1, 34, 233,
264, 349], where surface patches are bounded by closed cycles of curve segments. Due to
their strong requirements on curve network topology, such methods cannot process the
imprecise, unstructured stroke clouds we target.

To reconstruct piecewise-smooth surfaces from inaccurate 3D sketches, we must jointly
determine which parts of the sketch correspond to di�erent surface patches, and recover
the geometry of these patches away from the strokes.

A �rst challenge is to determine where surface patches should lie in the empty space
between the strokes. �is task is particularly ambiguous for sparse sketches, since the
inter-stroke Euclidean proximity does not necessarily denote geodesic proximity on the
envisioned surface. We reduce this ambiguity by complementing the input sketch with a
low-�delity proxy surface, which we obtain by applying the smooth point cloud surfacing
method of Huang et al. [137], or in cases where this automatic method fails, by asking
users to create a simple proxy with low-poly modeling tools (see Section III.6). �e proxy
surface provides us with a manifold domain on which we project nearby strokes, such
that our problem of locating the surface patches amounts to segmenting the proxy into
regions roughly bounded by strokes.

Our second challenge is to shape each proxy region into a surface patch that represents
well the geometry of the strokes that project in that region, which is especially di�cult
when the strokes themselves are sparse and approximate. We address this challenge by
representing each patch as an implicit surface de�ned as the zero level-set of a low degree
polynomial – which we refer to as an implicit polynomial surface. Such implicit surfaces
o�er multiple bene�ts in our context. �ey have in�nite support, allowing the surface
regions they capture to grow or shrink arbitrarily as the algorithm progresses, and they
are fast to evaluate and �t to stroke points.

Equipped with the concepts of a proxy surface and implicit polynomial surface patches,
we cast �nding the piecewise-smooth surface that best represents the sketch as a multi-
model ��ing problem [147]. In a nutshell, our algorithm alternates between re�ning a
segmentation of the proxy into regions well represented by a set of implicit surfaces, and
improving the implicit surfaces by ��ing them over the strokes within each region. A�er
convergence, we generate the �nal 3D triangle mesh by projecting the proxy surface

27

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

onto the zero-level sets of the implicit polynomial surfaces, e�ectively recovering sharp
features at the intersections between patches.

While our method automatically produces piecewise-smooth surfaces aligned with the
input strokes, it also supports user indications to further improve the quality of the
surface; for instance, to force the creation or removal of surface discontinuities. We
also rely on user indications to discard strokes that are not supported by our approach,
notably internal strokes that lie inside the outermost depicted surface, small disconnected
parts, and so-called skeletal strokes that depict thin cylindrical features (see Fig. III.18).

In summary, we present the �rst surfacing method for 3D sketches that produces
piecewise-smooth meshes while being oblivious to stroke connectivity. We evaluate
our method by surfacing more than 50 sketches created with a variety of VR and sketch-
based modeling systems, by comparing to surfacing methods tailored to well-connected
curve networks, by measuring deviation from ground truth surfaces from which syn-
thetic sketches were generated, and by studying the impact of the main components
of our algorithm. Finally, we provide an interactive visualization of all our results as
supplemental materials for close inspection.

III.3 Related work
Surfacing curve networks �e problem of surfacing 3D sketches emerged with the
advent of practical user interfaces, algorithms and devices to create such sketches. Early
2D interfaces deduce the depth of the strokes from the intersections they form with other
strokes [271, 333] or with sketching planes [23], e�ectively producing well-connected
curve networks by construction. As a consequence, a number of surfacing algorithms
strongly rely on the connectivity of the curve network to identify closed cycles delimiting
surface patches [1, 233, 264, 349]. Each such patch can then be surfaced by propagating
geometric information from the boundary curves [34, 237, 293]. Curve connectivity
information provides strong geometric hints, since surface normals can be estimated at
each intersection – as done by Pan et al. [237] to detect sharp features and determine
which curves are �ow lines.

However, the reliance on accurate curve network topology prevents these methods to
work on raw, unstructured stroke clouds as typically produced via freehand VR sketching
[140, 287, 289].

Recent studies have shown that precise sketching in VR is more challenging than in 2D
due to the lack of a supporting surface for the hand and the need for �ner motor control
to position strokes in 3D [19, 211]. In a preliminary work to this thesis, we prototyped a
VR sketching system that automatically neatens the 3D sketch as the user is sketching
to form a well-connected curve network despite inaccuracies [337], and other work
also looks at correcting user’s strokes to enforce intersections or geometric regularity
[210, 338]. However, we found in our user study for CASSIE [337] that people sometimes

28

III.3. RELATED WORK

felt constrained in what they could achieve by being forced to think of their designs in
terms of a curve network.

Processing 3D sketches to form well-connected curve networks is both challenging and
o�en undesirable. First, many strokes in 3D sketches are not meant to connect to others
– see the details on author1 bulbasaur (Fig. III.19), and on the car (Fig. III.2 insets). Simply
ignoring such disconnected strokes can alter the original design intent (Fig. III.15, red
strokes). Secondly, 3D sketches may exhibit oversketching and imprecisions (vr controller
Fig. III.19), which make forming clean curve networks from 3D strokes a challenging
problem, akin to 2D vectorization. We instead propose an approach that is oblivious to
stroke connectivity, achieving high robustness to inaccuracy and to detail strokes that lie
on the envisioned surface but are not connected to other strokes.

Our work also di�ers from interactive systems designed tomodel 3D surfaces by sketching
in 2D [93, 94, 189, 226]. Users of these systems draw in dedicated interfaces and provide
annotations of surface discontinuities. In contrast, we take as input 3D sketches created
with a variety of tools, and we propose a multi-model ��ing algorithm to automatically
locate sharp features where and only where they are needed.

Surfacing point clouds �e 3D sketches we consider can easily be converted to point
clouds by sampling points along each stroke, which would allow leveraging the wealth
of methods developed for surfacing such unstructured 3D data [33]. Unfortunately, most
existing methods have been designed to process dense point clouds acquired using 3D
scanning technology [132, 164], and are doomed to fail on 3D sketches that only provide
a very sparse, non-uniform sampling of the envisioned surface. While some methods are
robust to missing data, they only �x holes that are relatively small compared to the scale
of the overall surface [133], or guide surface completion by ��ing geometric primitives
on otherwise dense parts of the point cloud [273, 303]. In contrast, 3D sketches are
dominated by large holes, and only contain 3D information along thin, 1-dimensional
subspaces.

�e recent VIPSS algorithm of Huang et al. [137] achieves impressive resilience to sparsity
and non-uniformity of the point cloud, and has even been demonstrated on unstructured
stroke clouds similar to our target sketches. But this robustness is obtained thanks to a
global smoothness energy that misses sharp surface discontinuities. Nevertheless, we
use VIPSS to initialize our method, and focus on the problem of segmenting its result into
individual patches forming a more faithful reconstruction of the input sketch.

Our approach relates to algorithms that recover piecewise-smooth surfaces from point
clouds by identifying locally-smooth patches and by detecting sharp discontinuities as
the intersections of these patches [104, 136, 156]. However, these methods rely on a dense
sampling of the surface away from sharp features, while 3D sketches are mostly empty
in such regions and are only densely sampled along feature curves.

29

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

We also take inspiration from methods that reconstruct or approximate 3D shapes as
a collection of parametric geometric primitives, such as planes [63, 220, 245], cones,
cylinders and spheres [195, 326], generalized cylinders [348], and quadric surfaces [335].
Similarly to these methods, we cast the discovery of representative surface patches as a
multi-model ��ing problem. Our originality is to leverage speci�cs of 3D sketches to
guide this optimization, notably by encouraging large, uniform patches bounded by the
input strokes, and by representing free-form surfaces as 4th-order implicit polynomial
surfaces.

Note that the resulting segmentation is purely driven by geometry and does not carry
any semantic meaning other than when semantic parts happen to be well-represented by
di�erent smooth patches – eg, the hood of the car and the windshield (Fig. III.2c).

Surfacing stroke clouds Our work focuses on sparse 3D sketches, which contrast
with the dense VR paintings targeted by Rosales et al. [261] that are created by covering
the surface with large, overlapping ribbons that provide position and orientation samples
all over the surface [140, 260].

In the computer vision community, a few methods have been proposed to reconstruct
curve clouds by matching edges in a multi-view stereo algorithm [100]. Usumezbas et al.
[312] proposed a surfacing algorithm dedicated to such unstructured 3D data, where
candidate surface patches are lo�ed between pairs of curves. But this method largely
relies on the availability of multiple photographs of the shape to select valid candidate
patches based on occlusion reasoning.

Closest to our problem statement, Batuhan Arisoy et al. [30] surface sparse and imprecise
3D sketches by smoothly deforming an initial low-�delity surface of correct topology,
using a discrete guidance vector �eld that points towards the closest stroke point. �is
approach produces globally smooth surfaces and requires user intervention to specify
strokes that should be inserted into the mesh as sharp edge polylines (see Fig. 17 and
18 in their paper for a visual comparison of their results on similar sketches to ours).
In contrast, our multi-model ��ing formulation produces piecewise-smooth surfaces
automatically.

30

III.4. OVERVIEW

(a) 3D sketch (b) Proxy [Huang et al. 2019] (c) Segmentation & surface fitting (d) Piecewise-smooth result

Fig. III.3: Overview of our method. We take as input a 3D sketch (a) and a proxy mesh (b), for
example obtained with VIPSS [137]. We iteratively improve a segmentation of the proxy mesh (c,
le�) and parameters of a set of surface models (c, right) to obtain a decomposition of the surface
into smooth patches that approximate the input strokes well. We represent each surface model
as the zero level set of an implicit polynomial, which o�ers infinite spatial support and a good
balance between expressivity and complexity. Finally, we project the vertices of the proxy mesh
onto the surface models to recover the final piecewise-smooth surface with sharp features (d).
When appropriate, we trim the proxy mesh to match user-annotated boundary strokes (a, blue),
and we leverage sketch symmetry by surfacing only half of the sketch and mirroring the result.

III.4 Overview
Fig. III.3 illustrates the main steps of our method, which takes as input a 3D sketch, along
with an approximate proxy surface obtained with an automatic surfacing algorithm [137]
or an existing low-poly modeling tool (see the accompanying video for a demonstration
of this work�ow). A�er projecting the sketch onto the proxy, our goal is to segment the
proxy into regions, each associated with a smooth surface model, such that the resulting
piecewise-smooth surface satis�es the following desiderata.

• Reproducing stroke geometry. �e surface models should run close to the input
strokes, both for strokes that depict sharp surface discontinuities and for strokes
that depict details within smooth areas.

• Aligning patch boundaries with strokes. �e boundary between neighboring
regions should lie along strokes that depict sharp surface discontinuities, yet not
all strokes in the sketch depict a discontinuity.

• Keeping the reconstruction simple. �e surface should be composed of a small
number of smooth patches, rather than many intricate patches that would over�t
to inaccuracy in the input strokes.

We formulate these competing requirements as energy terms in an optimization. A �rst
energy term measures the distance between each stroke and the surface model it is
assigned to. A second term measures the smoothness of the segmentation away from
the strokes, encouraging the transitions between models to occur along strokes. �is
smoothness term also penalizes small, isolated regions, which contributes to satisfy our
third desiderata. Finally, a third term measures the complexity of the reconstruction by
counting the degrees of freedom of the models used.

31

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

While each of our terms has an intuitive interpretation, their combination yields a chal-
lenging optimization problem that combines discrete variables (which surface model
should be assigned to which region of the proxy) and continuous variables (parameters
of these models). We tackle this challenge by expressing our problem within PEARL, a
general algorithm to solve multi-model ��ing problems [147]. In our context, the algo-
rithm alternates between optimizing the discrete variables describing the segmentation
while keeping the model parameters �xed, and optimizing for the continuous model
parameters while keeping the segmentation �xed (Fig. III.3c).

A�er convergence, we obtain a segmented proxy, as well as a set of surface models repre-
sented by implicit polynomial surfaces. �e last step of our method aims at converting
this representation into a triangle mesh suitable for downstream applications (Fig. III.3d).
Since the proxy provides us with a mesh of correct topology relatively close to the surface
models, we recover the �nal surface by projecting this mesh onto the zero level-sets of
the polynomials.

III.5 Method
We now de�ne the variables and the energy terms of our optimization problem, before
describing how we solve this problem by alternating segmentation and ��ing. In what
follows, we use the terms points and segments to refer to the stroke polylines, and the
terms vertices and edges to refer to the triangles of the proxy mesh.

III.5.1 Encoding stroke information on the proxy domain
While our segmentation algorithm relies on the proxy mesh as a computational domain,
several of our energy terms are de�ned as functions of the stroke points. To reason about
stroke geometry on the proxy domain, we project each stroke to its nearest location on
the proxy and associate it with nearby mesh elements.

Speci�cally, we start by projecting each stroke point to its closest face on the proxy mesh.
We then trace out stroke segments as geodesics lying on the mesh surface. Note that
we do not need to trace precise geodesics on the mesh, since we are only interested
in detecting which mesh edges are crossed by a given stroke segment. �erefore, we
approximate the geodesics with shortest paths in the dual graph of the mesh (light blue
path in Fig. III.4a). �is gives us the list of primal mesh edges that are crossed by the
projected stroke segment.

We can then associate stroke points to these crossed edges (Fig. III.4, red) by sampling
additional points on the stroke segment (Fig. III.4, blue). If 𝑛 edges are crossed while
tracing a segment, we sample 𝑛 regularly-spaced points on that segment. Each of these
points is then associated to the corresponding mesh edge.

Finally, we associate to each vertex 𝑣𝑖 the stroke points associated with each edge of its

32

III.5. METHOD

stroke

proxy

(a) Projection (b) Association

Fig. III.4: Associating stroke information to the proxy graph. (a) Stroke points are projected
onto the mesh and we find the shortest path (light blue) between the mesh faces on the dual
graph of the mesh (in grey). (b) The shortest path yields a list of edges crossed by the projected
segment (red). We associate stroke points sampled from the stroke segment with neighboring
vertices of each crossed edge.

1-ring. If there are multiple stroke points associated to a single edge, we only associate
the closest point to 𝑣𝑖 .

stroke

proxy

projection

�anks to this association, our segmentation algorithm as-
signs one surface model per mesh vertex, yet can �t several
surface models to a single stroke point – which is critical
for positioning boundaries of surface patches along strokes.
Denoting P the set of all stroke points, we denote P𝑣 ⊂ P
the subset associated with a given mesh vertex 𝑣 ∈ V , which
can contain zero or many stroke points (see inset).

We also leverage the association of stroke points to mesh edges by assigning a weight
𝑤𝑒 to each edge 𝑒 ∈ E of the mesh, using a low weight 𝑤𝑒 = 1 if the edge is crossed
by a projected stroke segment (red edges in Fig. III.4b), and a high weight 𝑤𝑒 = 100
otherwise. �e values given here we are in case all edges have approximately the same
length. In practice, we introduce mesh simpli�cation to reduce our algorithm’s runtime
(Section III.6), and use a scaling term to adjust edge weights to edge lengths in the case
of anisotropic meshes.

III.5.2 Problem formulation
Our goal is to assign each mesh vertex to a surface model 𝑓𝛼 , associated with the label
𝛼 ∈ L. We denote the corresponding vertex labeling as 𝑙 : V → L. Furthermore, we
denote as 𝜃𝛼 the vector of real-valued parameters of the surface model 𝑓𝛼 . Our surface
model representation, detailed in Section III.5.3, is the zero level-setZ (𝑓𝛼) of an implicit
polynomial. Finally, we denote as Θ =

⊕
𝛼∈L 𝜃𝛼 the concatenation of the parameter

vectors 𝜃𝛼 for all 𝛼 ∈ L.

33

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

Given these de�nitions, we cast our problem as �nding the labeling and the associated
model parameters that minimize

𝐸L (𝑙,Θ) = 𝐸fidelity (𝑙,Θ)
+𝑤smoothness · 𝐸smoothness(𝑙)
+𝑤simplicity · 𝐸simplicity (𝑙),

(III.1)

where 𝐸fidelity, 𝐸smoothness, and 𝐸simplicity capture the three desiderata listed in Section III.4.
Note that the number of labels required for a given sketch is also unknown, since we do
not know how many smooth patches are necessary to faithfully represent the 3D surface
a priori. We next describe each of the three energy terms.

Fidelity to input strokes We seek a piecewise-smooth surface that reproduces well
the input stroke geometry. We measure this property by summing over all mesh vertices
𝑣 the distance between their surface modelZ

(
𝑓𝑙 (𝑣)

)
and each of their associated stroke

points p ∈ P𝑣 :

𝐸fidelity (𝑙,Θ) =
1

𝜖2𝑁𝑝

∑︁
𝑣∈V

∑︁
p∈P𝑣

𝑑𝑖𝑠𝑡
(
Z

(
𝑓𝑙 (𝑣)

)
, p

)2
, (III.2)

where the normalization term 𝑁𝑝 is the total number of stroke points involved in the
summation. We detail in Section III.5.3 how to compute 𝑑𝑖𝑠𝑡 (Z(𝑓), p)2 e�ciently. �e
scale factor 𝜖 controls the sensitivity of 𝐸fidelity to small deviations of the strokes from
the surface models. We experimentally set this parameter to 1% of the input sketch’s
bounding-box diagonal for all results presented in the paper, but we show the impact of
alternate values in Fig. III.12.

Smoothness of the labeling Our smoothness term seeks to concentrate changes of
labels along strokes, such that sharp surface discontinuities appear at these locations
when transitioning from one surface model to another. Inspired by classic work on
edge-aware image segmentation [49], we encourage neighboring vertices to share the
same label, unless they are separated by a stroke. We achieve this goal by leveraging
edge weights of the proxy mesh as penalties: each change of label along an edge incurs
as penalty the weight of the edge, which we de�ne based on whether that edge is crossed
by a stroke segment or not (see Section III.5.1). Speci�cally, we de�ne the smoothness
energy:

𝐸smoothness(𝑙) =
1

𝑊

∑︁
{𝑢,𝑣}∈E

𝑤𝑢𝑣 (1 − 𝛿 (𝑙 (𝑢), 𝑙 (𝑣))) , (III.3)

with 𝛿 being the Kronecker delta function, 𝛿 (𝑖, 𝑗) = 1 if 𝑖 = 𝑗 , 𝛿 (𝑖, 𝑗) = 0 otherwise. �e
normalization term𝑊 is the sum of all edge weights. We set𝑤smoothness = 10.

34

III.5. METHOD

Surface simplicity To be resilient to the typical inaccuracy of 3D sketches [19], we en-
courage the surface reconstruction to be as simple as possible. Wemeasure the complexity
of a solution as the total number of surface parameters involved. Denoting dim(𝜃𝛼) the
number of parameters of a surface model 𝑓𝛼 , we de�ne the simplicity energy as:

𝐸simplicity (𝑙) =
1

𝐷

∑︁
𝛼∈{𝑙 (𝑣) |𝑣∈V}

dim(𝜃𝛼), (III.4)

where we set 𝐷 = 35, the number of parameters of a degree 4 model, as a normalizer.
Note that by summing over assigned models only, this energy also pushes for using a
small number of models to explain the 3D sketch, to the point where a single model can
be used to represent multiple non-adjacent regions of the surface. For all results, we set
𝑤simplicity = 0.01 (and demonstrate varying values in Fig. III.11).

III.5.3 Energy minimization
Algorithm 1 adapts the general PEARLmulti-model ��ing algorithm [147] to estimate the
labeling 𝑙 and surface model parameters Θ that locally minimize Equation III.1. A�er an
initialization phase, the algorithm alternates between improving the labeling and re�ning
the model parameters, and terminates when the labeling 𝑙 no longer changes. We next
detail each step.

Segmentation. At each iteration, we �rst optimize the current labeling 𝑙 while keeping
all surface model parameters Θ �xed. We perform 𝛼-expansion [48] – which �nds the
optimal change of labeling where some nodes are assigned a label 𝛼 – for every label
𝛼 ∈ L to e�ciently �nd a local minimum of 𝐸L 1. While 𝐸smoothness and 𝐸simplicity

are straightforward to compute for a given labeling 𝑙 , 𝐸fidelity requires computing the
distance 𝑑𝑖𝑠𝑡 (Z(𝑓), p)2 between each surface model and the corresponding stroke points.
Since the exact distance between a point and the zero level-set of an implicit polynomial
surface cannot be computed exactly with a direct method, we employ the �rst-order
approximation proposed by Taubin [308],

𝑑𝑖𝑠𝑡 (Z(𝑓), p)2 ≈ 𝑓 (p)2
‖∇𝑓 (p)‖2

, (III.5)

which can be computed in linear time with respect to the number of stroke points p.
Since the resulting labeling might leave some labels unassigned, we update L to only
keep the selected models.

1We use the C++ multi-label optimization library of Delong et al. [80] https://vision.cs.

uwaterloo.ca/code/

35

https://vision.cs.uwaterloo.ca/code/
https://vision.cs.uwaterloo.ca/code/

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

Algorithm 1: PEARL algorithm [147] applied to our problem
(0) Initialize variables
Propose𝑚 vectors of parameters {𝜃01, · · · , 𝜃

0
𝑚} as initial surface models

Θ←−
⊕𝑚

𝑖=1 𝜃
0
𝑖 // Concatenated surface parameters

L ←− {1, . . . ,𝑚} // Set of existing labels

𝑙 ←− 𝑙 : 𝑣 ∈ V ↦→ 1 // Initialize with single label

repeat
𝑙prev ←− 𝑙
(1) Optimize labeling
𝑙 ←− 𝛼-expansion [48] ∀𝛼 ∈ L to optimize previous labeling 𝑙prev for energy
(Equation III.1), given the current parametric surface models Θ
L ←− {𝛼 = 𝑙 (𝑣) | 𝑣 ∈ V} // Remove unassigned labels

Θ←−
⊕

𝛼∈L 𝜃𝛼 // And the corresponding inactive models

(2) Optimize parametric surface models
for 𝛼 ∈ L do
V𝛼 ←− {𝑣 ∈ V | 𝑙 (𝑣) = 𝛼} // Vertices with label 𝛼

𝜃𝛼 ←− Best �t for points in P𝛼 =
⋃
𝑣∈V𝛼
P𝑣

end
(3) Propose new models
Propose new labels Lnew and models Θnew

L ←− L ∪ Lnew

Θ←− Θ ∪Θnew
until 𝑙 = 𝑙prev;

Model representation and �tting. A�er each segmentation step, we improve the
surface model of each label 𝛼 ∈ L by optimizing its parameters 𝜃𝛼 to best �t the stroke
points p ∈ P𝛼 associated with the vertices 𝑣 ∈ V𝛼 . We de�ne each surface model as the
zero level-set of a polynomial 𝑓 : R3 → R,

Z(𝑓) = {(𝑥,𝑦, 𝑧) | 𝑓 (𝜃𝛼 ;𝑥,𝑦, 𝑧) = 0},

with 𝑓 expressed as
𝑓 (𝜃𝛼 ;𝑥,𝑦, 𝑧) = X(𝑥,𝑦, 𝑧)𝑇𝜃𝛼 ,

where 𝜃𝛼 =
[
𝜃1 . . . 𝜃 𝑡

]𝑇 is the 𝑡 × 1 vector of coe�cients and X(𝑥,𝑦, 𝑧) a 𝑡 × 1 vector of
monomials,

X(𝑥,𝑦, 𝑧) =
[
1 𝑥 𝑦 𝑧 𝑥2 . . . 𝑥𝑑 𝑦𝑑 𝑧𝑑

]𝑇 .
To avoid over��ing to approximate strokes, we limit the expressivity of the surface models
by keeping their degree 𝑑 low. In practice we set 𝑑 to be at most 4, which corresponds to
𝑡 = 35 parameters. We describe at the end of this section how we introduce lower-degree
models at the end of each iteration. Fig. III.5 shows how surface models of di�erent
degrees capture shapes of varying complexity.

36

III.5. METHOD

Fig. III.5: We represent surface patches as zero level-sets of implicit polynomials of degree up to
4. Low-degree polynomials can represent planes, developable and simple doubly-curved surfaces,
while higher-degree polynomials can represent complex freeform surfaces.

Given the set of stroke points p = (𝑥,𝑦, 𝑧) ∈ P𝛼 , we seek the vector of coe�cients 𝜃𝛼
that minimize the geometric error between the stroke points and the zero level set of
the function 𝑓 . However, the geometric distance from a point to the zero level-set of
a polynomial has no closed form expression, and minimizing it requires an iterative
approach [10]. Similarly, minimizing Equation III.5 is costly since its derivatives are
non-linear with respect to the model parameters 𝜃 . A common alternative consists in
minimizing the algebraic distance to the implicit polynomial surface, which yields a linear
least-squares regression:

argmin
𝜃

∑︁
p∈P𝛼

(
X(p)𝑇𝜃

)2
.

As shown by Tasdizen et al. [307], this minimization problem can be made more stable by
also encouraging the gradient of the implicit function to align with prescribed normals
at a set of points P′𝛼 :

argmin
𝜃

∑︁
p∈P𝛼

(
X(p)𝑇𝜃

)2
+ 𝜇

∑︁
p∈P ′𝛼

(
1 − np · ∇𝑋 (p)𝑇𝜃

)2
,

where ∇𝑋 (p) is a 𝑡 × 3 matrix denoting the gradient of the monomial vector 𝑋 (p), and
np denotes the normal vector at the point p. Since we do not have normal information at
the stroke points, we encourage alignment with the proxy mesh normals at the mesh
vertices. Furthermore, we exclude normals from vertices that lie close to the strokes,
since strokes o�en denote surface discontinuities for which the smooth proxy mesh is
only a crude approximation. We thus de�ne the set of points for the alignment term as
P′𝛼 = {𝑣 ∈ V𝛼 | P𝑣 = ∅}. Finally, we also include an 𝐿2 regularization term to penalize
large polynomial coe�cients [307], yielding:

𝜃𝛼 = argmin
𝜃

∑︁
p∈P𝛼
(X(p)𝑇𝜃)2 + 𝜇

∑︁
p∈P ′𝛼

(1 − np · ∇𝑋 (p)𝑇𝜃)2 + 𝜆 ‖𝜃 ‖2 , (III.6)

with 𝜇 = 0.1 and 𝜆 = 1. Fig. III.6 illustrates the impact of each of these regularization
terms.

From Equation III.6, we obtain the parameters 𝜃𝛼 that best �t the stroke points by solving
the linear system

(𝑀𝑇𝑀 + 𝜇𝑀𝑇
align𝑀align + 𝜆𝐼) 𝜃𝛼 = 𝜇𝑀𝑇

align. (III.7)

37

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(a) No regularization (b) Alignment (c) Alignment +

D
is

ta
nc

e

0

0.075

Fig. III.6: Fi�ing an implicit polynomial surface to a subset of strokes (thick red strokes).
We visualize a slice of the unsigned distance field in the second row (distances consider a
sketch bounding box diagonal of unit length). (a) Minimizing the algebraic distance without
regularization yields level sets with spurious turns close to the data points. (b) By encouraging
the gradient to align with the proxy normals [307], the implicit function is well behaved in a
neighborhood around the data points. (c) Adding 𝐿2 regularization avoids overfi�ing to noise in
the data points and yields a more stable zero level-set.

𝑀 is a (|P𝛼 | × 𝑡) matrix composed of rows of the monomial vector 𝑋 (p) for every point
in P𝛼 . And given the set of points P′𝛼 for the alignment term, 𝑀align is a (1 × 𝑡) vector
de�ned as:

𝑀align =
∑︁
p∈P ′𝛼

np
𝑇∇X(p). (III.8)

To keep the 𝐿2 regularization position and scale independent, and resilient to non uniform
scaling in the point setP𝛼 , we apply a transformation to the space of monomials composed
of a translation – to center the data – and a non uniform scaling – to normalize it. In
practice, we compute the column-wise mean values 𝜇 and standard deviations 𝑆 of 𝑀 ,
and consider the transformed polynomial function:

𝑓 (𝜃𝛼 ;𝑥,𝑦, 𝑧) =
(
X(𝑥,𝑦, 𝑧) − 𝜇

𝑆

)𝑇
𝜃𝛼 ,

where the division by the vector 𝑆 is a column-wise division. As a consequence, the
vectors 𝑋 (p) that compose matrix𝑀 are transformed by subtracting 𝜇 and dividing by 𝑆 ,
and the vector𝑀align is divided by 𝑆 .

Note that 𝜃𝛼 does not necessarily decrease 𝐸�delity (Equation III.2) given a �xed labeling,
since it minimizes the algebraic distance augmented with regularization terms – and not
the geometric distance. To guarantee convergence to a local minimum of Algorithm 1,
we only update the parameter vector 𝜃𝛼 if this yields a decrease of 𝐸fidelity for the vertices
labeled as 𝛼 . If not, we keep the previous parameter vector and introduce the new
parameter vector as a di�erent model.

38

III.5. METHOD

Initialization. Starting the algorithm with a good initial guess leads to higher qual-
ity solutions (see evaluation in Fig. III.10). We obtain this initial guess by leveraging
the observation that some of the strokes depict boundaries of smooth surface patches.
Assuming that this is the case for all strokes, we compute an over-segmentation of the
proxy surface by running spectral clustering [280] on the mesh, using the same edge
weight 𝑤𝑒 as in 𝐸smoothness. We then �t an implicit polynomial surface to the strokes
associated to the vertices of each cluster to obtain our initial set of models.

Spectral clustering requires the number of clusters to be speci�ed in advance. Yet, the
appropriate number varies among sketches, depending of their level of details. We
address this challenge by running spectral clustering with di�erent numbers of clusters
(in practice, 20, 30, 40, and 50 clusters), which produces surface models of di�erent scales.

For this initial surface ��ing, we boost the regularization weights 𝜇 and 𝜆 by a factor
10 to limit complexity of the models and prevent the appearance of sub-optimal large
models across sharp features.

New model proposal We end each iteration by proposing new surface models, which
helps decrease the energy 𝐸L in subsequent iterations [147]. First, we introduce models
of lower degree by ��ing a polynomial of degree 𝑑 − 1 to the set of stroke points P𝛼 for
each active model 𝑓𝛼 of degree 𝑑 > 1. Second, we propose new models by merging pairs
of neighboring regions and ��ing a polynomial to the union of their stroke points. We
prioritize merging regions that are separated by edges with a high weight 𝑤𝑒 , as this
strategy is more likely to yield a decrease in 𝐸smoothness. In practice, we select three pairs
of regions to be merged per iteration.

III.5.4 Extracting the surface mesh
�e outcome of our multi-model ��ing algorithm is a set of implicit surfaces that extend
in�nitely beyond the strokes they capture (Fig. III.3c). Our goal is now to extract a
triangular mesh from this arrangement of surfaces. One option to reach this goal would
be to trim each surface along its intersection with other surfaces, for example by meshing
the isosurfaces, resolving intersections [57], and then selecting the set of patches that best
cover the strokes while forming a closed manifold [31, 91]. Unfortunately, the halfspaces
de�ned by our implicit polynomial surfaces are not guaranteed to bound the desired
shape, as two surfaces that describe adjacent regions might not intersect. Even when
neighboring surfaces do intersect, they can be nearly tangential to each other, which
makes the detection of intersections prone to numerical inaccuracies. We bypass all
these di�culties by leveraging the proxy mesh, as it provides us with a good estimate
of the mesh we are looking for. We formulate our problem as the local minimization of
an energy that projects the mesh towards the implicit surfaces assigned to each region,

39

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

regularized by a smoothness term:

𝐸mesh = 𝐸project + 𝐸regularize (III.9)

Insertion of segmentation boundaries. Before a�empting to min-
imize Equation III.9, we �rst need to insert edges that split the mesh
triangles crossed by segmentation boundaries, so that these boundaries
can emerge as sharp surface discontinuities in the optimized mesh. �e
inserted vertices (blue circles in inset) inherit the two or three labels
of the regions they separate, yielding a multi-labeling function that we
denote 𝑙 .

Projection to the implicit surfaces. We project each mesh vertex onto its associated
surface patches by minimizing its distance to the zero-level sets of the corresponding
polynomials:

𝐸project(V) =
∑︁
𝑣∈V

∑︁
𝛼∈𝑙 (𝑣)

1

|𝑙 (𝑣) |
𝑑𝑖𝑠𝑡 (Z(𝑓𝛼), 𝑣)2 , (III.10)

where we use the �rst-order approximation from Equation III.5 to compute the distance.

Regularization. Minimizing Equation III.10 sometimes pulls neighboring vertices
in opposite directions, yielding a distorted surface. We achieve smoother results by
regularizing the optimization with a 2D Laplacian term on the mesh triangles, and a 1D
Laplacian to favor smooth sharp feature curves:

𝐸regularize(V) = 𝛾2D
∑︁
𝑣∈V

w𝑣 | |Δ2D𝑣 | |2 + 𝛾1D
∑︁

𝑣∈Vseams

| |Δ1D𝑣 | |2, (III.11)

whereVseams is the set of vertices inserted along segmentation boundaries, and Δ2D and
Δ1D denote the discrete graph Laplacian operator for triangles and edges respectively
[225]. We set 𝛾2D = 100 and 𝛾1D = 500.

�e weight w𝑣 controls the strength of the surface regularization, which we want to
vanish along segmentation boundaries that correspond to sharp surface discontinuities.
We set w𝑣 = 1 for vertices away from segmentation boundaries, and w𝑣 = 0 for boundary
vertices that are shared by more than two segmentation regions. For vertices that lie
in-between two regions, we adjust their weight according to the angle formed by the
implicit surface normals on each side of the boundary, with w𝑣 = 0 when the angle is
greater than 𝜋/3, w𝑣 = 1 when the angle is smaller than 𝜋/8, and w𝑣 varies linearly
in-between. E�ectively, this preserves sharpness of the boundary between regions that
intersect sharply, while favoring smoothness elsewhere.

While the Laplacian regularization in Equation III.11 favors smooth, regular meshes, it
has the adversarial e�ect of shrinking open meshes. We prevent this e�ect by adding

40

III.6. IMPLEMENTATION DETAILS

(a) Input proxy
& labeled strokes

(b) Weighted graph
& inside/outside nodes

(c) Inside/outside
labeling

Fig. III.7: To locate the boundary of an open surface, we ask the user to indicate which strokes
correspond to boundaries in the input sketch (a, blue strokes). We perform a graph cut on the
mesh to separate inside nodes (b, green) from outside nodes (b, red), while encouraging cuts to
happen at edges crossed by boundary strokes (b, blue edges). The resulting labeling separates
the inside of the surface (c, white) from the outside (c, red).

to 𝐸mesh a term that constrains boundary vertices of open meshes to stay close to their
associated stroke points

𝐸a�ract =
∑︁

𝑣∈Vboundary

∑︁
p∈P𝑣
| |𝑣 − p| |2 (III.12)

whereVboundary is the set of vertices associated to the boundary strokes of the sketch.

However, we do not know a priori where an open surface should be trimmed to align with
the sketch boundary. We thus ask users to annotate the boundary strokes of sketches
depicting open surfaces (shown in blue in all sketches). A�er projecting these strokes over
the proxy mesh, we segment the mesh into an interior and an exterior region separated
by the boundary strokes (Fig. III.7c), and trim the exterior region to obtain a mesh whose
boundary Vboundary aligns with the boundary strokes. We perform this segmentation
with a graph cut, where we encourage cuts along edges crossed by boundary strokes by
se�ing their cost to zero (Fig. III.7b). �e graph cut source node is linked to all boundary
vertices of the input mesh (red in Fig. III.7b) and the sink node is linked to vertices of
the mesh that have associated stroke points but are geodesically far from the boundary
strokes (green in Fig. III.7b).

For ease of comparison, we also apply this boundary cu�ing step to results of Huang
et al. [137] against which we compare.

We minimize 𝐸mesh with L-BFGS, by precomputing the gradient matrices for the quadratic
terms.

III.6 Implementation details
Proxy creation Our method requires a proxy surface that has the same topology as
the desired result, and that lies close to the envisioned surface, so that projecting the
strokes onto the proxy yields the same embedding as it would on the envisioned surface.

41

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(b) VIPSS

(e) Results

(a) Sketch

(c) Low-poly

(d) Sculpt

attract

attract

Fig. III.8: For the same sketch, we demonstrate how a proxy mesh can be created with VIPSS
(b), low-poly modeling with Blender [38] (c), and rough VR sculpting in Adobe Medium [7] (d). We
automatically improve the proxy mesh by remeshing, smoothing, and a�racting it to the strokes
(middle column). When the sketch is symmetric, we only process half of the proxy mesh. Note
that despite a drastically di�erent original appearance, all three proxy meshes yield a similar
result (e), faithful to the input sketch (a).

�e automatic VIPSS surfacing algorithm [137] produced suitable proxies for many of
our results. We additionally re-meshed the output of VIPSS to obtain a high-resolution,
uniform mesh [154]. However, VIPSS sometimes fails to surface complex sketches that
exhibit many sharp features, a very sparse sampling, or thin features. In these cases, we
experimented with multiple casual modeling tools to create our proxies in just a few
minutes, including low-poly modeling with Blender [38] (Fig. III.8c), rough VR sculpting
with Adobe Medium [7] (Fig. III.8d), assembly of simple geometric primitives (Fig. III.20
author1 bulbasaur). We provide an example modeling session in our accompanying video.

Manually-created proxy meshes are o�en approximate, and would not yield satisfying
results if projected directly on the implicit surface models (Section III.5.4). We obtain
be�er results by �rst a�racting the proxy towards the strokes, which we achieve by
projecting the stroke points onto the proxy and by using these points as control vertices
for a Least-Squares mesh de�ned by the initial proxy connectivity [292]. Fig. III.8 shows
how this a�raction brings approximate proxy meshes much closer to the intended surface.

Symmetric sketches Many VR sketching and sketch-based modeling tools provide a
mirror plane to ease the creation of symmetric sketches. When this is the case, we only
surface half of the sketch and mirror the result, which speeds up computation and yields
surfaces that are symmetric by construction.

42

III.6. IMPLEMENTATION DETAILS

User control Most results shown in this chapter were obtained automatically. Never-
theless, an additional strength of our formulation is that it admits user control naturally.
Fig. III.9 illustrates two scribble-based controls that we o�er users to re�ne the segmenta-
tion:

• Inserting a new region. Users can scribble over a part of the mesh to trigger the
insertion of a new region in that part (Figure III.9, yellow scribbles). �is interaction
is particularly useful to recover details that might have been over-smoothed.

• Merging regions. Users can scribble over multiple regions to merge them into a
single one (Figure III.9, green scribbles). �is interaction can be used to correct for
over-segmentation.

We implement region insertion by introducing a new model, which we �t to the stroke
points associated with the scribbled-on mesh vertices. We implement region merging
in a similar manner, except that we �t the new model to the stroke points associated
with every vertex that shares a label with any scribbled-on vertex and lies on the same
connected component. For both edits, we also penalize the use of other models by adding
a term to Equation III.1:

𝐸penalty(𝑙) = 𝜌
∑︁

𝑣∈Vscribbled

1 − 𝛿 (𝑙 (𝑣), 𝑙new) (III.13)

where Vscribbled denotes the set of scribbled vertices, 𝑙new denotes the label of the new
model, and the penalty 𝜌 is set to (10𝜖)2, with 𝜖 from Section III.5.2. We then update the
solution by re-running Algorithm 1 from step (1) until convergence.

�is combination of new model proposals and a penalties on other models e�ectively
pushes the optimization towards a di�erent local minimum that satis�es the user indica-
tions. We describe an edge-collapse algorithm in Section III.6 that reduces the complexity
of the mesh on which we compute the labeling, making our method react faster to user
edits.

Graph simpli�cation Algorithm 1 has a complexity that increases linearly with the
number of nodes in the graph to be labeled [48]. Yet, we note that only the vertices
that are associated to stroke points contribute to 𝐸�delity, other vertices being solely
determined by the smoothness and simplicity terms. We leverage this observation to
simplify the graph away from the strokes, which we achieve by performing greedy edge
collapses [113, 132]. In our context, we are not interested in preserving the 3D shape of
the original mesh, but rather its connectivity. �erefore, we prioritize collapses that yield
vertices of low valence, and stop collapsing edges whenever any further collapse would
yield a vertex of high valence (> 12 in practice). We exclude edges that have a vertex
associated with stroke points to preserve high resolution near the strokes.

43

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(b) Automatic results

(a) Sketches

(c) User scribbles

(d) User refined result

Fig. III.9: Our automatic method might produce over-segmented regions or miss geometric
details (b). The user can indicate desired changes by scribbling on a preview of the result (c).
Yellow scribbles trigger region insertion, green scribbles trigger region merging. Encouraging
the segmentation to respect these constraints yields the desired result (d). Le� column sketch
©Jacopo Colò, used with permission.

�is simpli�cation produces a mesh with spatially-varying resolution, which we account
for by adjusting the edge weight to 𝑤̃𝑒 = 𝑤𝑒𝑐𝑒 , where𝑤𝑒 is the original edge weight as
de�ned in Section III.5.2, and 𝑐𝑒 scales this weight according to the size of the triangles
adjacent to the edge, as measured by the Euclidean distance between the vertices opposite
the edge on the two adjacent faces.

A�er running Algorithm 1 on the simpli�ed graph, we propagate the labeling to the ver-
tices of the original graph based on proximity. �is simple strategy speeds up Algorithm 1
by a factor of 2.9 on average, while yielding qualitatively similar results.

III.7 Evaluation and results

44

III.7. EVALUATION AND RESULTS

III.7.1 Algorithm evaluation
Initialization strategy

We initialize our method by over-segmenting the proxy mesh using spectral clustering
(Section III.5.3). Fig. III.10 compares this strategy with two baselines, over multiple runs
of the method. �e �rst baseline strategy creates the initial surface models by sampling
random sets of points among all stroke points in the sketch. �e second baseline applies
spectral clustering but keeps the default regularization weights rather than scaling their
values during the initial surface ��ing.

�is evaluation reveals that our strategy is more stable, as it makes the optimization
converge to approximately the same energy for di�erent random seeds. In addition,
our strategy is more e�ective, as evidenced by the lower or comparable median energy
values at convergence. Finally, visualizing the segmentation produced by each strategy
highlights the bene�t of boosting the regularization when ��ing the initial models, as
it prevents the creation of complex models covering large regions of the sketch, which
would be di�cult to remove in subsequent steps of the optimization.

While our initialization strategies guarantees low variance and similar results regardless
of random seed (see bo�om two inset results Fig. III.10), for all subsequent results we
reduce the in�uence of initialization by running our method 10 times and selecting the
solution with the lowest energy.

Segmentation parameters

Fig. III.11 shows the e�ect of our simplicity term (Equation III.1) by varying its weight.
�e result is over-segmented when we omit the simplicity term altogether (Fig. III.11a).
Increasing this parameter (Fig. III.11b, c) leads to smaller model counts𝑚, and to models of
lower degrees (see the spaceship cockpit), at the cost of an increase in mean ��ing residual
𝜖 . �e simplicity energy also encourages using the same model across disconnected
regions (Fig. III.11c, yellow ellipsoid), which cannot be achieved with the smoothness
energy alone.

�e other tunable parameter of our method is the factor 𝜖 that de�nes the scale of the
��ing error we tolerate (Equation III.2). Increasing this factor leads to results that follow
the strokes more loosely, which can be useful if the input sketch is imprecise and needs
to be smoothed (Fig. III.12).

In�uence of proxy mesh

Fig. III.13 illustrates the in�uence of the proxy resolution and shape on our results. Since
the proxy serves as a discrete domain for our segmentation algorithm, its resolution
impacts the size of the regions we can detect. At low resolution, neighboring strokes
will be lumped together and sharp features will be misplaced (Fig. III.13a, third row). In

45

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

random

En
er

gy
 (c

on
ve

rg
ed

)

cluster cluster
& regularize

random cluster cluster
& regularize

Fig. III.10: Comparison of di�erent initialization strategies. Each plot shows the energy
(Equation III.1) of the converged state over 10 runs with di�erent random seeds. Initializing the
surface models with a random selection of stroke points yields high variance across runs (le�
column of each plot). Spectral clustering identifies local patches that form good candidate models,
but the default regularization weights used to fit these models can result in complex surfaces
that cover large portions of the sketch (middle column of each plot, red circles in segmentation
results). Boosting the regularization weights favors simpler models at the start of the optimization,
yielding be�er and more stable results a�er convergence (right column of each plot).

addition, a low-resolution mesh might lack degrees of freedom to follow the curvature of
the implicit surfaces, and is thus unable to reproduce the shape of smooth high curvature
parts of the sketch (Fig. III.13a, fourth row).

�e proxy also serves to embed the strokes into a manifold domain representative of
the envisioned surface. When the proxy is too far from the desired surface, strokes that
should be disjoint might end up projecting to the same location on the proxy and be
approximated by the same surface patch (Fig. III.13b, top). A slightly more precise proxy
mesh resolves the issue (Fig. III.13b, bo�om).

III.7.2 Results and comparisons
Fig. III.19 and Fig. III.20 provide a gallery of results obtained by surfacing 3D sketches
from varied sources, ranging from clean curve networks created with 2D sketch-based
modeling interfaces [23, 333], to imprecise and over-sketched stroke clouds created with
2D and VR ideation tools [66, 173, 337]. All these results were obtained without user

46

III.7. EVALUATION AND RESULTS

(a) (b) (c)
model degree
1 4

Fig. III.11: We demonstrate the impact of the simplicity energy by varying the weight𝑤simplicity

in Equation III.1 on two sketches. We measure the number𝑚 of models used in the segmentation,
and the mean deviation 𝜖 between stroke points and the models of the vertices they are associated
with, as a % of the bounding box diagonal.

Fig. III.12: We demonstrate the impact of the fidelity energy by varying the error scale factor 𝜖
in Equation III.2 on the spaceship sketch (top row). In bo�om rows, we show concrete examples
of sketches with imprecise strokes where a higher 𝜖 gives be�er results compared to the default
𝜖 = 1% parameter. The error scale factor is measured in % of the sketch bounding box diagonal.

47

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(a) Resolution (b) Geometry

Proxy Result

Fig. III.13: Our method depends on the resolution of the input proxy surface (a) as well as on
its shape (b). The proxy should have su�icient resolution to capture fine details, and be close
enough to the envisioned surface to avoid thin parts of the sketch to collapse. Le� column sketch
©Arturo Tolentino, used with permission.

correction. We use a light gray material to shade proxy meshes computed automatically
with VIPSS [137], and a dark gray material for the ones created manually. Note how our
method recovers the �ne details and sharp edges depicted in the sketch even from very
smooth, approximate proxy meshes. Our supplementary website 2 displays each result
with an interactive 3D viewer.

We detail in Table III.1 the performance of our algorithm on all results shown in the
main paper. Timings vary from a few seconds on simple sketches up to a few minutes on
complex sketches composed of many strokes. �e bo�lenecks reside in the initialization
of the algorithm and in the �nal mesh optimization, while the segmentation algorithm
takes less than 10 seconds in most cases. Users can thus re�ne the segmentation multiple
times with relatively short wait times and only compute the �nal mesh once satis�ed.

2see https://ns.inria.fr/d3/Surface3DSketch/results-page/

48

https://ns.inria.fr/d3/Surface3DSketch/results-page/

III.7. EVALUATION AND RESULTS

0%

> 5%

Fig. III.14: We evaluate our method on synthetic sketches extracted from ground truth surfaces
using FlowRep [119] (bo�le, boat) or from the boundary representation of CAD models (iron,
bishop). The deviation is measured as a % of the sketch bounding-box diagonal, and is low
almost everywhere except in places where the sketch lacks strokes to disambiguate the intended
surface (interior of the iron handle, bo�om of the bishop). We provide the median and maximum
deviation for each sketch.

Comparison against ground truth surfaces We evaluate our method quantitatively
by comparing our results to ground truth surfaces for which curve networks are available.
We obtain such data from FlowRep [119], a method to generate descriptive curve net-
works from 3D meshes, as well as from CAD models for which we extract the boundary
representation (B-rep) [175]. Fig. III.14 visualizes the results of this experiment, where the
color map indicates that our results are very close to ground truth except in ambiguous
regions devoid of strokes.

Comparison against curve network surfacing Fig. III.15 compares our method to
the one by Pan et al. [237], which is the most recent method for surfacing well-connected
curve networks. �e two methods produce very similar results on the original connected
network. However, a unique strength of our method is to also produce similar results
from disconnected, noisy sketches, which we synthesized by perturbing the original
network (displacing and duplicating strokes, introducing gaps). Our method also accounts
for strokes that are not connected to the main network, which Pan et al. [237] had to
ignore (Fig. III.15, red strokes at the front of the car).

In Fig. III.16, we compare to Pan et al. [237] on a more complex input. By balancing

49

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

Table III.1: For each sketch in the paper, we provide the runtimes for the initialization (1) –
which corresponds to the strokes-proxy association (Section III.5.1) and step 0 of Algorithm 1
; for the iterative segmentation (2), and for the final mesh optimization (3). We also give the
number of iterations of Algorithm 1 necessary to converge to a stable solution.

Sketch name (1) (2) (3) It. In paper
robbins car1 46.3s 11.4s 68.3s 8 Fig. III.2
author1 car 16.7s 1.9 s 41.4s 5 Fig. III.3
�owrep boat 17.1s 1.6 s 45.7s 3 Fig. III.14
�owrep bo�le 17.6s 2.2 s 20 s 3 Fig. III.14
onshape bishop 9.2 s 1.2 s 14.8s 4 Fig. III.14
onshape iron 20.6s 5.6 s 25.8s 6 Fig. III.14
�owsurf beetle 14.6s 0.8 s 31.2s 2 Fig. III.15
ils roadster 9.3 s 1.5 s 35.3s 4 Fig. III.15
t2f car 97 18.2s 1.6 s 18.7s 3 Fig. III.19
author2 guitar 16.2s 1.6 s 26.8s 3 Fig. III.19
robbins car2 62.3s 9.5 s 64.5s 6 Fig. III.19
author1 building 32.9s 4.8 s 41.9s 4 Fig. III.19
ils speaker 16.9s 1.2 s 23.5s 3 Fig. III.19
swh vr controller 146.4s 79.1s 35 s 8 Fig. III.19
author1 bulbasaur 11.1s 3.7 s 23.2s 5 Fig. III.20
cassie hat 17.7s 1.2 s 60.3s 3 Fig. III.20
tolentino shoe 57 s 8.2 s 38.8s 5 Fig. III.20

�delity with smoothness and simplicity, our method tends to miss small details, such
as the bu�ons on top of the machine. Our smooth surface models also do not capture
well the generalized cylinder that forms the nozzle. In contrast, by assuming that the
input strokes form a clean curve network, Pan et al. can trust every curve to create
interpolating surfaces and can leverage connectivity information to detect which curves
are sharp features.

III.7.3 Limitations
Relying on geometric criteria only. We emphasize that our method relies purely
on geometric criteria to place sharp features in the �nal surface. As a consequence, our
method can miss semantically-important features if they do not contribute signi�cantly
to the shape, such as the round headlights of the car in Fig. III.2.

Sharp features not depicted by the strokes. Our algorithm assumes that all sharp
features of the intended surface occur along some of the input strokes. Fig. III.17 illustrates
a limitation of this assumption, where the artist implicitly indicated that the headlight
presents a sharp feature by sharp corners in neighboring strokes. In such cases, users

50

III.7. EVALUATION AND RESULTS

[Pan et al., 2015] [Pan et al., 2015]Curve network Curve network

Sketchified network

+ high frequency noise

Sketchified network OursOurs[Huang et al., 2019]

Ours[Huang et al., 2019] + high frequency noise Ours[Huang et al., 2019]

[Huang et al., 2019]

Fig. III.15: Our method can surface well-connected curve networks, similarly to [237]. More
importantly, it also achieves similar results from imprecise sketches that contain duplicate
strokes, gaps (middle row) or high-frequency noise (bo�om row). Our method also accounts for
disconnected parts, like the red stroke that depicts a concavity on the car, which Pan et al. [237]
ignored.

[Pan et al., 2015]Ours

Fig. III.16: Our method tends to miss small yet important details (middle) in an e�ort to produce
smooth, simple outputs robust to imprecise drawings. The method by Pan et al. [237] does not
face this challenge as they consider that all input curves are drawn precisely, and as such should
be kept in the output. Similar to Pan et al. [237], we surface the co�ee cup separately from the
co�ee machine.

51

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(a) No stroke at sharp feature (b) Adding a stroke

Fig. III.17: Our method cannot take higher-level cues into account, and will thus fail to align
with user intent if a critical sharp feature stroke is missing, as on the car headlight (a). Adding a
stroke and re-running the method successfully recovers that feature (b).

Internal strokes
Non manifold

Separate in parts
Ignore strokes

Skeletal strokes

Fig. III.18: Our current implementation does not automatically support non-manifold surfaces,
as present on the boat and blender (red strokes). Furthermore, our assumption that strokes lie on
the surface they depict is not always true, as there may be some strokes inside the outermost
depicted surface (green) or strokes that depict tubular structures (cyan). A workaround is to
manually separate the sketch into parts and surface them individually, or mark out some strokes
to be ignored by our method (second row).

52

III.8. CONCLUSION

need to draw a few additional strokes to obtain the intended surface (Fig. III.17b). While
our assumption that sharp features are explicitly represented seems to hold in our dataset,
further analysis of how people draw in 3D is needed to quantitatively evaluate this
hypothesis. In the future, more global cues such as stroke tangent continuity or sketch
symmetry could be leveraged to make surfacing be�er aligned with viewer perception.

Other types of strokes. Since we assume that all strokes lie on the intended surface,
our method cannot handle strokes that lie inside the shape, or that depict the skeleton of
a tubular structure (Fig. III.18). While we simply discarded such strokes to produce our
results (see supplemental webpage 3 for all original input sketches, with deleted strokes
highlighted in red), future work could a�empt to identify these strokes and surface them
with dedicated representations, such as generalized cylinders for skeletal stokes [348].

Non manifold con�gurations. In theory, our method could recover non-manifold
surfaces if provided with a non-manifold proxy mesh. In practice, we only surfaced
manifold shapes because we implemented our algorithm using a manifold data-structure
to represent the mesh. As a work-around, it is typically possible to manually separate the
sketch into multiple manifold pieces that can be surfaced separately (Fig. III.18, bo�om
row and co�ee cup in Fig. III.16). An exciting direction for future work would be to
perform topology analysis of the unstructured sketch to detect and process non-manifold
parts automatically.

III.8 Conclusion
A�er decades of research, a number of robust algorithms now exist to surface dense point
clouds [33]. In contrast, very few methods have been proposed to surface the sparse
stroke clouds that designers produce when sketching in VR or with sketch-based modeling
systems. Inspired by the unique characteristics of this emerging form of 3D data, we
have proposed an approach to locate smooth patches in unstructured 3D sketches, and
to optimize their geometry to produce a piecewise-smooth surface aligned with salient
strokes. �e resulting 3D meshes can bene�t numerous tasks. For instance, we used them
to occlude hidden strokes in all �gures of this chapter, which helps perceive the correct
shape from the sketch via relative depth cues [19]. Additionally, our sketch-aligned
surfaces are compatible with all downstream 3D processing and modeling tasks. �is
opens exciting avenues to integrate 3D sketching with other creation modalities such
as sculpting [7, 39, 215]. As we have demonstrated, sculpting can be used to create a
rough proxy surface, that is then automatically re�ned by our method to align with a
sketch. It is easy to further re�ne the surface by sculpting, since our method outputs a
3D polygonal mesh compatible with all 3D modeling and sculpting so�ware.

3https://ns.inria.fr/d3/Surface3DSketch/results-page/

53

https://ns.inria.fr/d3/Surface3DSketch/results-page/

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

III.9 Future work
Surfacing partial 3D sketches We cast the problem of surfacing a 3D sketch as an
o�ine task that is run only when the sketch is complete. In previous work we also
explored the opposite end of the spectrum by continuously creating surfaces while the
artist is sketching [337]. Exploring other options along this spectrum seems promising to
a�ord more �exibility in the sketching and surfacing process, and power new work�ows
that are not yet possible if we view surfacing as a disparate step to sketching. For example,
an artist might want to sketch a partial 3D sketch, then generate a surface to provide
visual or physical support for further sketching – drawing curves by projecting them on
a surface is an e�cient way to sketch 3D curves with 2D input devices, and can alleviate
freehand imprecision issues with a 3D input device [18, 19, 172]. Newly sketched strokes
could in-turn a�ect the 3D surface, by updating it wherever new strokes deviate from
the surface. Our current work cannot be easily adapted to this se�ing. While our method
can be made more e�cient to reduce computation time with more engineering e�ort, it
is not trivial how to take into account new strokes or edits on an existing stroke without
globally a�ecting the surface. Moreover, partial sketches introduce more ambiguity to
the surfacing problem since some regions may be altogether unde�ned at a given stage
of the process.

Exploring a 3D shape design space In this project, we cast the problem of obtaining
a 3D surface from a 3D sketch as a reconstruction problem. �is follows the tradition of
point-cloud surfacing methods, that posit that there exists a ground truth surface sampled
partially with sensors that the method strives to reconstruct. However, in the case of
3D sketches there is arguably no such ground truth surface to reconstruct, since a 3D
sketch is not created by a sampling process. Instead, an artist creates a 3D sketch as an
ambiguous representation of a space of possible 3D shapes that they are trying to gradually
re�ne by iterating between externalization through sketching and re�ection through
reviewing the sketch [52, 148]. Exploring the design space of possible 3D surfaces that
can be represented by a given 3D sketch could be a powerful tool for artists, by favoring
exploration of multiple possibilities instead of freezing the design to a single 3D surface.
Recent work on stochastic surface reconstruction [275] might be a valuable inspiration
to reconstruct a distribution of shapes from a given 3D sketch. Such a distribution could
be used to sample shapes or help the artist determine which areas of their sketch is most
ambiguous.

A uni�ed toolset for surface and curve modeling Previous work has shown that
3D curves can be a powerful surface modeling tool [76, 111, 226, 286, 317]. Our method
reconstructs a 3D surface from a set of 3D curves, yet we did not explore how to bind
the curves and surface together to enable such edition operations. 3D strokes are placed
strategically on the depicted surface to represent it in a sparse way, so we expect that
they could also act as powerful handles to control shape deformation. �e main challenge

54

III.9. FUTURE WORK

of our se�ing compared to previous work on surface deformation using curve handles is
the unstructured and messy nature of a 3D sketch, as previous methods focused on clean
networks of curves or supported only a few curves.

55

CHAPTER III. VR SKETCHING FOR 3D SURFACE MODELING

(a) Input sketch (b) Proxy surface (c) Result

t2f_car97

author2_guitar

robbins_car2

author1_building

ils_speaker

swh_vr_controller

Fig. III.19: Results of our method applied to a variety of 3D sketches (a). We display proxy
meshes computed with VIPSS in light gray, and the ones created manually in dark gray (b). For
each sketch, we show the segmented patches with random colors, and the final surface in blue
(c). Sketch robbins car2 ©James Robbins, used with permission.

56

III.9. FUTURE WORK

(a) Input sketch (b) Proxy surface (c) Result

author1_bulbasaur

cassie_hat

tolentino_shoe

Fig. III.20: Results of our method applied to sketches of organic shapes (a). We display proxy
meshes computed with VIPSS in light gray, and the ones created manually in dark gray (b). For
each sketch, we show the segmented patches with random colors, and the final surface in blue
(c). Sketch tolentino shoe ©Arturo Tolentino, used with permission.

57

Chapter IV

How Do People Paint In VR?

IV.1 Introduction
3D strokes can represent more than just a 3D surface. By assigning colors to strokes,
artists can use them to represent appearance of a scene, in the same way that an oil
painting can represent any scene through a complex arrangement of many colored brush
strokes. VR painting is an emerging form of 3D art that lets artists use 3D space as
their virtual canvas [140, 267, 289] to create compelling 3D paintings used as video game
assets [184], in short animated movies [109, 213], or as 3D illustrations [259]. Despite
the simplicity of its underlying representation – an arrangement of 3D strokes – VR
painting allows artists to create complex 3D scenes made of varied shapes and colors (see
Fig. IV.1).

Given the growing interest from artists in exploring the potential of VR painting as a
medium for 3D content authoring [60, 118], and the success of commercial applications for
VR painting such as�ill and OpenBrush, we see an opportunity for academic research to
study this emerging work�ow. Many studies and systems related to creating 3D content
with VR have focused on the problem of geometric accuracy when sketching 3D shapes,
for example to measure inaccuracies and explain their cause [19, 211], to investigate the
potential for novices to learn to sketch accurately [323] or to design systems that mitigate
the lack of accuracy in sketching [18, 87, 157, 210, 337, 338]. Previous work has looked

Fig. IV.1: VR painting examples. Le� to right: “Hopewell Rocks, Fundy, New Brunswick”
(©Nick Ladd), “Mescaform Hill: The Missing Five” (©Edward Madojemu), “This is fine” (©Tiantian
Xu)

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

into the potential of VR sketching for a variety of applications such as 3D design and
visual thinking [148, 185, 235], helping 2D artists create 3D artworks [129] or patient
rehabilitation a�er su�ering from a stroke [12]. Yet, none of these studies has considered
how practicing VR artists with deep experience of this medium work. By investigating
how these artists work, we can see a fuller picture of the potential of this novel artistic
medium and of the challenges that so�ware or hardware improvements might mitigate.
Studying expert users can be helpful in be�er understanding di�culties faced by all users,
and design be�er solutions inspired by ad hoc solutions. We draw inspiration from other
similar studies in other application domains (Section IV.2).

In this chapter, we report on a series of semi-structured interviews with 4 participants
who are hobbyist VR artists or professional artists with VR painting as their main medium.
We report on how artists use VR painting (Section IV.3.1), we summarize the motivations
for working with VR painting (Section IV.4), and the main challenges encountered by
participants (Section IV.5).

IV.2 Related work
VR painting practice is currently understudied in academic research. We take inspiration
from other studies of artistic practices to conduct our study on VR painting.

Previous work has studied a variety of visual design practices, such as icon design [346],
undo and redo [222], color pale�e usage [155, 285], the usage of reference imagery [131],
visual note taking [347], math formula visual design [127], educational diagrams [209],
live-coding audiovisual performances [46], visual choreography documentation [62] and
more generally how artists use and develop so�ware [191]. �ese studies led to the for-
mulation of design recommendations, and some authors also contribute the development
of a prototype or technology probe [139] based on their design recommendations. We
take inspiration from their methodology in our study design, for example by conducting
interviews with expert practitioners that have a be�er understanding of VR painting
than other populations such as novice users. We also follow the methodology of many of
these studies who prompt participants to recount their creation process. More precisely,
Maudet [214] recommends using artifacts as “focal points” in interviews with designers
to help participants recount the story of their work�ow, prompt speci�c memories about
challenges encountered, and facilitate understanding through a visual support. We adopt
this methodology for our interviews.

Most closely related to our topic of interest, researchers from the �ne arts community
have explored what VR painting can mean for painting as an artistic practice. Goodyear
and Mu [118] report on Goodyear’s personal experience working with VR painting tool
OpenBrush [140] as part of her abstract painting work, providing insights into how artists
might appropriate such tools to serve particular practices. Chi�enden [60] analyze 3D
painting through the lens of art history, explaining how VR painting relate to previous

60

IV.3. PROCEDURE

painting techniques that blurred the separation between viewer and depicted picture.
We expand their insights by taking a more focused and critical look at the interaction
design and digital representations used in current VR painting so�ware, drawing from
our experience as so�ware developers and HCI researchers.

IV.3 Procedure
We conducted semi-structured interviews and analyzed online tutorials to be�er under-
stand how artists who practice VR painting create and edit their artworks. We focus
on the commercial so�ware�ill [289], because a short survey of online communities
revealed that this particular VR application has a very active and open community of
users, with a Discord server featuring 300+ active users sharing artworks and tips on
the so�ware, a Facebook group with 20K+ members, and a YouTube channel with 62
long-format tutorials where artists share a diverse set of work�ows 1. Despite our focus
on �ill during this formative study, we surveyed other popular VR painting applica-
tions such as Open Brush and AnimVR, and con�rm that the work�ows and challenges
encountered are similar.

A�er learning informally from online tutorials and ge�ing a feel for how people work
with �ill in general (eg [183, 223, 242]), we invited 4 artists who have used �ill in
professional or personal projects extensively to participate in interviews and provide more
in-depth insights (Table IV.1). We invited participants that we saw as active members in
VR painting communities (Discord channel, Facebook group), or on art sharing platforms
(Sketchfab, Artstation, personal blogs). We invited each participant to a 1 hour video
conference call, and asked them to be prepared to discuss a recent project that they
worked on. We encouraged participants to share a particular piece or artifact by sharing
their screen or providing links to a hosting platform, and walk interviewers through
their process in creating that piece. Participants o�en showed multiple artifacts through
the course of the interview. We encouraged the participant to give a detailed account of
their work�ow, and we asked for clari�cations or more context when participants would
describe breakdowns and how they overcame those [212]. Participants received a 30CAD
gi� card. �is study was approved by the ethics boards of the University of Toronto and
Inria.

We audio-recorded and transcribed each interview, then coded the data. We used an
inductive thematic analysis approach [50]. We started our analysis without a pre-existing
coding frame and were open to emerging themes, le�ing our research questions evolve
as the analysis goes on. Our broad research questions were to understand why artists use
VR painting as opposed to other forms of 3D authoring, and how artists work with this
medium. We are interested in �nding what challenges participants face in their practice,

1Facebook group: https://www.facebook.com/groups/virtual.animation/ ; Youtube channel:
https://www.youtube.com/@VirtualAnimation

61

https://www.facebook.com/groups/virtual.animation/
https://www.youtube.com/@VirtualAnimation

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

Table IV.1: Participants information.

Participant ID Description Artworks discussed

P1 Illustrator, VR artist
Animated illustration,
background and character models
for VR animated shorts

P2 Director, VR artist,
animator

Game background scenes,
animated and print illustrations,
self-directed VR short

P3 Illustrator, animator,
developer

Self-directed VR short,
animated illustrations

P4 Product designer, artist Animated illustration,
artifacts of learning�ill

and what techniques they use to overcome them. In the following analysis, we start
by an account of the di�erent ways artists work with VR painting, then we focus on
some of the themes that emerged. �e key themes we report are chosen based on a joint
consideration of theme prevalence among participants and of how our research question
evolved, driven by our standpoint as HCI and computer graphics researchers.

IV.3.1 VR painting work�ows
In this section we report how participants work with VR painting, striving to provide a
broad view of the di�erent work�ows and techniques.

IV.3.1.1 Broader creation context

Participants used the VR painting so�ware�ill in their professional or personal projects
for a variety of end results (see Table IV.1 last column). In all projects, �ill was used as
the main so�ware for 3D modeling, but participants sometimes complement�ill with
other so�ware for later stages of the authoring process, such as Blender and Unity for
shot planning and rendering (P3), Premiere Pro for compositing and editing shots (P1),
Sketchfab and �est TV for adding visual e�ects and providing an interactive 3D viewer
(P1, P2, P4). In some projects�ill was only used as a 3D modeling tool as part of a larger
pipeline, for example P2 would model background sets and other artists were in charge
of assembling this background set with other elements to make a VR game. Conversely,
P1 used�ill end-to-end in the creation of her animated illustration, from the �rst rough
sketch to the �nal result featuring small animation loops, and hand-painted visual e�ects
that simulate a water surface – “li�le touches that just really add a sense of atmosphere”.
She then used Sketchfab as a hosting platform and renderer, to allow viewers to navigate
her scene freely. Other ways of sharing VR artworks included releasing content on
VR-speci�c platforms such as �est TV and the VR Animation Player, and rendering the

62

IV.3. PROCEDURE

scene from a �xed camera path to create a video shareable on social media.

In many cases, participants used images (P2, P3, P4) or 2D sketches done prior (P3)
as references – those can be imported in the virtual workspace. �e artwork itself is
o�en created in multiple stages: P1 used a rough 3D sketch made of thin lines to “�gure
out the sense of scale and position of the di�erent elements”, and P2 and P3 started with
creating a rough block out of their indoor scene that “helps answer a billion questions, like
spatial layout” (P3). Such temporary steps of the artwork can be organized in “layers” in
�ill, that are stroke containers. Layers in�ill do not a�ect stroke rendering order or
appearance like one might expect layers to do in 2D digital painting. �ey only allow
control over opacity of its content to make a layer semi-transparent or hide it altogether.

In the following, we focus on the work�ow for 3D content authoring, which covers 3D
shape creation and the de�nition of appearance. We leave to future work more in-depth
studies of the end-to-end authoring work�ow, or of speci�c parts such as artwork sharing.

IV.3.1.2 Authoring shape and appearance

�e traditional 3D pipeline tends to have a clear separation between the step of modeling
3D shape (Section II.1) and the step of de�ning the appearance of a 3D asset through
material and texture authoring (Section II.2). Despite some participants (P2, P3) being
familiar with this work�ow, they talked about the way they paint in VR without mention-
ing an explicit separation between shape and appearance authoring. �e way participants
described their work�ow resembled the account of a traditional painting experience, and
it is summarized in these words from P2: “you can just kind of draw in the world right?”

People create shapes in VR painting by sketching colored strokes mid-air. In �ill each
type of strokes has a particular base shape which in turn in�uences the shape of the
stroke, for example a spherical brush will yield a tubular stroke. P3 explains choosing
the shape of his brush carefully depending on the shape he is creating, using a spherical
brush to create “the core structure of the character” while using �at strokes to imply the
thin fabric of the character’s out�t. Once a stroke is created, it can be deformed, rigidly
transformed and duplicated. Strokes can be recolored by using a brush that a�ects all
parts of strokes that fall inside. All participants recounted using a process in multiple
steps, with a combination of sketching strokes, duplicating and deforming, recoloring
strokes.

�ill renders all strokes with unlit shading, meaning that the �nal color displayed is fully
determined by the color of the stroke itself (see Fig. IV.2a). How then do artists create
the illusion of light illuminating the scene? P4 explained the process in this way: “For
oil painting or traditional painting you have to paint light and that’s what you’re doing in
�ill.” Participants all had techniques to “hand-paint” light and shadows in their artwork
(see Fig. IV.2b), for example simulating the sun illuminating a clearing in the forest with

63

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

(a) Unlit render (b) Unlit render
with hand-painted lighting

(c) Lit render

Fig. IV.2: Lighting VR paintings. �ill renders strokes with unlit shading (a), so artists o�en
paint shading e�ects and shadows by hand (b), by using gradients (on the red sphere) or drawing
new strokes (shadow disk). Rendering a�ill painting with computer generated lighting that
takes into account the surface normals to compute shading reveals that the surfaces are built
out of strokes (c).

a gradient from dark to bright (P3), blending in bright yellow with objects close to the
sun (P1), or drawing simple cast shadows to simulate a light source from above (P4).

Participants were aware that this work�ow of painting shading di�ers from other 3D
authoring work�ows in which the computer renders �nal appearance while the artist
controls indirect factors such as lighting and surface material parameters. P3 was acutely
aware of the di�erence between authoring in �ill and authoring within the traditional
3D pipeline, and sought to �nd “a symbiotic way between the 2 pipelines”. He explored
combining hand-painted ambient lighting with dynamic computer generated lighting
in a rendering engine, in order to create a short animated movie with a scene that goes
through a day-night cycle. Computer generated lighting allowed him to “completely
reinvent how the scene feels and looks without having to do a lot of manual work”. He
developed custom stylized shaders and tricks to modify normals of 3D models, in order
to combat the “sausage e�ect”, caused by 3D geometry being composed of many messy
strokes (see Fig. IV.2c). P2 used a rendering engine to previsualize how the 3D scene
he modeled would look like with the lighting setup he imagined. He rendered a few
still images to be used as references, yet allowed himself to stray from the computer
generated reference to be�er serve storytelling: “I kind of cheated like for the briefcase it’s
really important that the character can click on it and see it, so I kind of made it brighter on
purpose.”

IV.4 An accessible, direct and controllable 3D authoring tool
In this section we summarize the themes related to why people like working with VR
painting to create 3D content.

64

IV.4. AN ACCESSIBLE, DIRECT AND CONTROLLABLE 3D AUTHORING TOOL

IV.4.1 Accessibility and directness
VR painting is an accessible and approachable tool, that participants described as easy to
learn. Participants appreciated how “direct” VR painting felt to them from the very start
of their learning journey (P1, P4), they describe VR painting as an embodied experience:
“I like that it’s really about to be able to just use your body to kind of manipulate objects”
(P4).

�e participants all had previous experience working with 2D digital illustration before
ge�ing into VR painting. Some transfered that knowledge to approach VR painting,
describing VR painting as “basically like a Photoshop” (P2). Participants talked about their
work�ow through analogies between tools available in 2D painting and�ill. For example
P1 recounts using a recoloring brush with color blending modes to de�ne lighting just like
how she would use multiple layers with blending modes in Procreate [146]. However, she
explains that such an analogy has limits since there isn’t such a notion of non-destructive
layering of colors in�ill, instead colors have to be “applied” to strokes.

Multiple participants (P1, P2, P3) described a positive experience in transferring from
an illustration background to learning VR painting, as it “allows [them] to use their skills
directly in 3D” (P3).

In particular, some participants mentioned a sharp contrast between their experience
with learning �ill and learning to author 3D with the more traditional 3D pipeline with
desktop applications. P4 noted it took her only a few days to start creating her “own
art” in �ill, as opposed to several months in Blender, and P3 explained that traditional
3D had “technical aspects to it that get into the way of actually executing what you want”.
Similarly, P2 explained that the rapidity of working with VR painting – critical to him in
time sensitive contexts like during a game jam – was something he felt that he could not
achieve within the traditional 3D pipeline: “in regular 3D you have to unwrap, you’ve got
to texture the thing, bring it back. In here I can just… if I want this window to be red, I can
just, you know, draw a red window.” �is fast feedback loop between idea and realization
can also favor exploration and serendipitous creation: “sometimes you’ll draw a stroke by
accident but it will work out, or I’ll start with a sketch and then I’ll build o� of that sketch”
(P2).

�ese accounts of the “directness” of painting in VR are consistent with our overarching
observations from Chapter I. Participants appreciate the possibilities for using their own
bodies in the interaction [151], and they liked transferring interaction knowledge from
their previous digital experiences [254]. Overall we can interpret their experience using
3D strokes in VR painting as requiring them to bridge less of a semantic distance to get to
“what they want” than in other experiences using other 3D data representations [138].

65

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

Fig. IV.3: Stylized shadows. In VR paintings, artists sometimes opt to simplify how shadows
look like as a stylistic choice. Le�: the character’s drop shadow is painted as a simple circle
on the ground, same for the li�le statues (©Nick Ladd). Right: the window frame casts a very
distinctive shadow on the floor, but this shadow is not cast on the painting canvases, and the
canvases, easel and table do not cast a shadow (©Zoe Roellin).

IV.4.2 Artistic control
When recounting their work�ow, especially when describing how everything in an
artwork was drawn or placed by hand which amounts to a tremendous amount of work,
participants did not mention feeling like this was a tedious task. While they recognized
the limitations and challenges of this work�ow – which we cover in more details in the
following section – they explained that having the ability to paint everything a�orded
them a lot of artistic control over the �nal result. In particular, when discussing how
shading is hand-painted in VR painting, as opposed to automatically calculated by a
computer, P3 who has deep experience of working with both explained that ultimately if
it weren’t for time budget limitations he would prefer to hand-paint shading, or at least
have a mix of both approaches: “I like to have as much control up front rather than relying
on �delity of what the computer can render. I’d rather have something that works because
it’s well art directed rather than because the computer renders it.” P2 explained how for his
indoor game environment scene, painting shadows manually allowed him to emphasize
“the style that we’re going for in the game”, by choosing deliberately to simplify the shape
of shadows, for example drawing just an ellipse for the shadow of a stool, despite the
physically accurate shape of the projected shadow being much more intricate.

Participants talked about the way they achieved certain e�ects with a sense of pride in
having found certain “tricks” (P2) or “illusions” (P1), overcoming the so�ware limitations
by coming up with new techniques. For example P1 explained faking colored glass
windows by recoloring all outside shapes to look a bit more grey, and P2 created an e�ect
of a re�ective water plane by simply duplicating the painted shapes above the water and
mirroring them. P3 talks about how he overcomes the lack of precise shape modeling
tools in�ill by using additional “hand-drawn lines to imply that there’s more detail or
more surface that there actually is”.

66

IV.5. CHALLENGES

Sometimes, participants described embracing the limitations of VR painting by making
them part of what de�nes the artwork’s unique style. P4, who set herself the challenge
to learn�ill within only 100 days of practice explained that she chose for her artwork
to “make it as simple as possible” and that she ended up being very happy about these
“minimum viable product” results. P2 described a 3D scene he created that had a visual
style reminiscent of 2D vector art by emphasizing its simplicity: “I intentionally le� it
very… almost abstract just because I think it’s something that you can’t easily do in regular
3D, so I like to embrace that sort of style instead of trying to be too realistic or too detailed.”
Similarly, P1 mentioned using deliberately freeform brush strokes that are set a bit apart
from surfaces without aiming for precise alignment as that was what made her artwork
have a recognizable style in the community. �e lack of geometric accuracy was also
seen as an interesting quality of the medium by P2: “because I’m doing it with my own
hands, it’s… more likely that mistakes will come up and the mistakes I think are part of
what make it more human and more alive”.

IV.5 Challenges
We end our analysis of the interviews by reporting prevalent themes related to challenges
that participants face in their work�ow.

Coupling of strokes and appearance Strokes in a VR painting are represented
digitally through a discretization, and colors are encoded as per-element data on this
discretization, with linear interpolation in-between elements. �erefore this discretization
de�nes how �nely variations of color can be achieved (see Fig. IV.4). For example, P1
explained that this means the direction in which �at strokes are assembled to form a
box will a�ect strongly the look of a gradient along the strokes, meaning that for a
desired gradient direction, strokes “need to be pointed in the right direction”. �is technical
detail has strong implications for the hand-painted shading technique: “all the painted
lighting has to be bound to the strokes, which means the quality of your lighting is directly
proportional to the resolution of the geometry you’re using to paint the lighting.” (P3) In
video tutorials, we have seen artists plan out how they lay their strokes carefully in order
to create hard edges between colors, and achieve a certain direction of gradient. �e
resolution of the discretization also ma�ers in order to obtain smooth gradients. �e
fact that stroke authoring has implications for how �nely appearance can be edited is
a challenge that experienced artists a�empt to overcome through careful planning of
stroke directions [242], or arti�cially increasing the resolution of strokes [183, 223].

Memory budget and performance management �ill artworks and VR paintings
in general can be shared with the public in di�erent ways (Section IV.3.1.1), but all
participants related that having the possibility to share their artwork on platforms for VR
viewing was important to them, sometimes stating that the immersive viewing experience

67

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

Fig. IV.4: Stroke layout a�ects coloring possibilities. Strokes are discretized as polylines
with per-vertex colors in�ill. Thus coloring a patch of strokes depends on stroke orientation
(black arrow): a smooth vertical gradient is easy to achieve with a patch of vertical strokes, but
hard to achieve with the same patch of strokes rotated 90 degrees.

is a de�ning part of their piece (eg immersive animated short where the spectator has to
navigate the set during the story). However, viewing artworks on VR headsets comes
with technical restrictions on the artworks, due to hosting platform limitations or headset
hardware limitations: “you need to be under a certain amount of triangles, you need to have
a certain amount of draw calls” (P2). For example, P3 mentioned a “1.5GB limit” for a 15
minutes animated short that he and his team published on Meta�est TV, which “was
kind of something [they] had to be very careful with”. �e resolution of stroke discretization
directly impacts this memory budget, which ampli�es the problem of having appearance
editing relying on degrees of freedom provided by stroke discretization: “in order to be able
to color and shade very smoothly that shape needs to be […] like super super high detailed as
far as polygons go which is something I try to avoid in�ill because otherwise�ill drawings
get really really heavy” (P1). Both P1 and P2 reported that as their experience working
with VR painting increased, they changed their drawing habits to adopt techniques that
yielded paintings with lower polygon count: “the stu� I was making when I �rst started
was way too heavy. So I have started to be a bit more conservative with the strokes, to just
kind of you know make sure I don’t waste too many strokes.” (P2) Similarly, P3 describes
some “best practices” that he and his team adopted on their animated short to respect the
memory budget, such as placing strokes strategically to support speci�c shading change
e�ects without increasing polygon count.

Editability Sometimes a VR painting needs to undergo changes, for example a character
model has to be adapted to match the environment light in multiple scenes of an animated
short movie, or a background scene must be changed to be�er re�ect a director’s vision
for the mood of the scene. Since�ill in particular provides many features for animation,
artists also might want to have dynamic elements in their artworks, such as a character
moving through the scene. In all of those situations, hand-painted shading may need to
be edited. While in particular in �ill there is a feature to “recolor” strokes, participants
reported that the recoloring work�ow was destructive, meaning that once a new color
was applied to a stroke – even with partial opacity or a color blending mode – it becomes

68

IV.5. CHALLENGES

impossible to separate again the constituent colors at a later stage. �is means that once
a particular shading is applied to the scene – eg applying an orange hue gradient to
simulate a rising sun glow – it becomes impossible to recover the initial look of the scene
in a neutral light, except if one were to recolor strokes to their original color one-by-one.
P3 explains that “trying to recolor a scene to match a di�erent tone is a lot more… not only is
it more time consuming, it’s that you end up cu�ing corners really quickly because there’s so
much to do”. As a strategy to protect her work from this destructive step of the work�ow,
P1 recounts saving duplicates of her artworks, for example keeping a duplicate of the
environment in an invisible layer before applying the recolor brush, or for characters
starting “with just a very basic color character” and only painting the light and color “as
the very last step”, so that in a di�erent lighting environment she can reuse the basic color
character. Some dynamic e�ects such as drawing the cast shadow of a moving object can
also be di�cult to achieve by hand-painting that shadow, so P2 describes a work-around
where he set up the strokes making up the shadow of a turning ceiling fan to turn in
sync with the strokes making up the fan.

Depicting 3D shape e�ectively All participants touched on the topic of how they
learned to depict 3D shape e�ectively with �ill, or on how their style and work�ow
evolved as they got more experienced with the tool. As noted in quantitative studies [19],
controlling 6 degrees-of-freedom with the hand is challenging: “it’s hard to do something
precisely in �ill, because I’m using my hand, I’m using my controller” (P4). P1 explained
she found it di�cult to represent solid surfaces with many thin strokes without things
looking “messy”: “when you start rotating things around, suddenly you could see all kind of
gaps between your strokes and so on” (P1). Finally, as reported in previous work [211, 323],
it takes time to learn to sketch in 3D: “It felt like going back to basics because you learn
�gure drawing, you get really good at it, and then you jump into VR and none of it works
because you draw something and then your head moves the camera a li�le bit and then it
doesn’t look like anything anymore” (P3). Participants also explained that some techniques
can alleviate these issues. For example P2 explained that using �ill’s “line” tool that
enables drawing axis-aligned lines precisely helps him create large �at patches that are
well-suited for architectural or interior design. He also uses a particular surface rendering
mode when painting in�ill that helps perceive where existing strokes lie in 3D space
(see Fig. IV.5), in order to facilitate alignments. P1 and P3 reported that their painting
technique evolved into a mix of 3D modeling – done in�ill by using large volumetric
strokes – and freeform stroke painting: “nowadays I have really started modeling the base
of my characters with very simple shapes […] and then just drawing in the actual lines and
details at the end” (P1).

69

CHAPTER IV. HOW DO PEOPLE PAINT IN VR?

Fig. IV.5: Stroke rendering can help increase accuracy. In�ill strokes can be rendered
with a subtle 3D grid texturing that helps perceive 3D shape (right), compared to the default
unlit shading of a stroke (le�).

IV.6 Conclusion
We contribute the �rst study of VR painting practices among experienced artists. Our
study reveals novel insights on the strengths and weaknesses of VR painting as a new
artistic medium. We are excited about future possibilities to design VR painting tools
that address the challenges that artists face today. While the majority of recent work
has focused on helping artists achieve a be�er geometric accuracy while sketching – a
goal motivated by previous experimental studies [19, 211] – we see a much wider range
of problems to tackle and hope that our study can motivate others to start addressing
those. �e next chapter of this thesis explores how to design a painting system where
appearance is decoupled from strokes shape and resolution while favoring editability.
�is project stands as a concrete example of an interesting HCI and computer graphics
research problem that arises when engaging with one of the lesser-known challenges in
VR painting.

Limitations Our study was done at a small scale. Extending this study to include more
participants – in particular participants that use a di�erent VR painting so�ware than
�ill – would surely expand the range of �ndings, and allow for more nuance in our
observations. Furthermore, we cast a wide net in terms of topics that we consider, from
the overall authoring work�ow down to the details of how people paint 3D shape. We
hope that further studies on speci�c topics of interest – for example by narrowing down
on some of the challenges we have uncovered – can help be�er characterize aspects of
VR painting, and propose precise design guidelines for future VR painting tools.

70

Chapter V

3D Layer Compositing For VR Painting

V.1 Introduction
VR painting is a novel 3D authoring work�ow that feels direct, highly controllable and
easy to learn (see Chapter IV). �is simplicity and directness contrasts with the traditional
3D authoring work�ow, where artists need to express their idea as an assemblage of
disparate representations: a complete scene is composed of 3D geometry, of a model for
how light interacts with the geometry, and of a representation of lights that a�ect visual
appearance. Many artists embrace the VR painting work�ow and take full advantage
of it by creating visuals that would be very hard to achieve with the traditional 3D
modeling work�ow, such as using many distinct brush strokes to give the artwork a
unique painterly look.

While VR paintings are inherently 3D assets, their creation work-
�ow is similar to that of traditional 2D painting (Section IV.3.1.2).
Just like in traditional oil painting, VR artists simply lay down
colored strokes on their 3D canvas, and these colors altogether
precisely de�ne the �nal painting – eg VR artist Zoe Roellin uses
a single light brown brush stroke to convey the impression of
her character’s hair strands shining in the morning sun light (see
inset). Albeit artists appreciate the level of control a�orded by this work�ow, the fact
that a 3D stroke represents simultaneously information about the hair strand’s 3D shape,
about the color of the hair itself and about how light in�uences that color, makes paintings
hard to edit a�er the fact [155, 285].

To overcome a similar hurdle, artists working with 2D digital painting tools have devel-
oped work�ows based on layer compositing [204, 258] which is a feature widely available
in digital painting so�ware [3, 4, 146]. By painting on multiple layers, 2D artists can
disentangle the �nal color of a pixel into individually editable constituents, favoring
post-hoc editability of a painting (Fig. V.1). Bitmap layers with an alpha channel can
be used as clipping masks, in order to reuse a carefully painted shape as a mask for
less precise, broader shading brush strokes, or as a target to clip and blend in a texture
image. Beyond those speci�c bene�ts, layers in digital painting are �exible interaction
primitives that artists use for ad-hoc needs that emerge and lack explicit support in
existing so�ware, such as artwork organization and history management [222].

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

+

Shadows
overlay
linear gradient

Smooth light
screen
spherical gradient

Highlights
overlay

(a) 2D artwork
with layers

(b) 3D artwork
with stacked 3D strokes

(c) 3D artwork
with recoloring brush

(d) 3D artwork
with 3D-Layers (ours)

Shadows
overlay
linear gradient

Smooth light
screen
circular gradient

Highlights
overlay

Fig. V.1: Conceptual Approaches to Layering. In 2D graphics design, artists commonly use
layers to modify object colors, for instance to add shading, shadows and highlights without
overriding the base colors of the artwork (a). In VR painting, artists can achieve similar visual
e�ects by stacking strokes close to object surfaces (b). However, since it is di�icult to paint at a
precise depth, strokes o�en inter-penetrate or leave visible gaps (b, inset). Alternatively, artists can
use the recoloring brush (c), a tool that recolors any stroke vertex it intersects. For visualization
purposes, we display the volumetric extent of the brush and we delineate its intersection with
the strokes as blue curves (c - bo�om). Recoloring vertices reveals the low resolution of the stroke
mesh (c - arrows). In our approach, users paint color edits in separate layers (d), o�ering the same
flexibility as in 2D graphics design. Our rendering algorithm computes a precise intersection
between the layers and the strokes to be recolored, avoiding the visual artifacts of existing 3D
solutions.

Despite their ubiquity in 2D digital painting, layers are currently not supported by VR
painting so�ware [140, 289]. In the 2D case, layers are semi-transparent frames that are
composited in a user-de�ned z-ordering, with each pixel from the �nal frame accumulating
color from the corresponding pixel of all layers in the stack (see Fig. V.1)). In the 3D
case, a direct parallel to this 2D case cannot be established. 3D paint strokes are 3D
geometry embedded in 3D space, so to obtain a coherent 3D scene they must be rendered
by taking into account depth-ordering – a stroke closer to the camera must occlude a
further stroke. �is ordering is completely determined by the position and shape of 3D
strokes in space, and by the position of the camera, making it incompatible with the
concept of a user-de�ned z-ordering. While it is possible to manually place strokes in
3D space such that they have the correct z-ordering from a given viewpoint (see Fig. V.1
b), it is challenging to achieve that for multiple viewpoints without creating gaps or
inter-penetrating strokes (Fig. V.1 b, inset).

Existing methods to paint on 3D geometry leverage the idea of working in the 2D
texture space de�ned by the surface of a 3D shape, in order to propose an author-
ing experience closer to that of 2D digital painting. But painting in texture space
is not trivial both from a technical perspective and from an authoring perspective.

72

V.2. RELATED WORK

First, de�ning how the 3D surface maps to 2D texture space with-
out introducing awkward seams and deformations is a challenging
research problem [115, 279], that is made even harder in the case of
VR paintings where the surface is composed of many overlapping
strokes (see inset). Secondly, painting in texture space is also hard
from the user’s perspective. Directly painting on the 3D surface and using the inverse
mapping to apply paint onto the texture is an e�ective solution in many cases [125].
However, it can be tedious when using a 2D input device that paints on the surface via
a raycast projection due to the need to hunt for a disoccluded view [108, 234, 304], and
those di�culties are heightened when using a 3D input device such as a VR controller
due to the di�culty of aligning a stroke to a curved surface while freehand sketching
[19, 22].

We propose a design for 3D-Layers to provide similar bene�ts to artists as the use of 2D
digital layers, and help alleviate some of the challenges encountered when painting in VR
(Section V.3). We approach the problem of designing 3D-Layers from two perspectives:
on one hand we describe 3D-Layers from an interaction perspective by de�ning how a
user can interact with them and use them as part of their creation work�ow ; on the other
hand we describe 3D-Layers from a technical perspective by de�ning how to e�ciently
render 3D-Layers within a 3D painting so�ware.

Our main contribution is the design of 3D-Layers as a novel representation of shape and
appearance in 3D paintings, that helps make color edits in VR paintings more convenient,
favor reuse of content and editability (Fig. V.1). We build a proof-of-concept application
as a test bed for 3D-Layers (Section V.4). We demonstrate the �exibility of 3D-Layers
in supporting a range of appearance editing operations by demonstrating 2 di�erent
work�ows (Section V.6).

�e project is still in progress at the time of writing of this thesis, and we plan to conclude
it by inviting 6 experienced VR artists to use our prototype application during a user
study (Section V.7).

V.2 Related work
We provide an overview of VR painting research and commercial tools in Section II.1.2,
and of existing methods for appearance editing via painting in Section II.2. In this section,
we �rst mention speci�c research and commercial tools for VR painting to explain how
they relate to our work, then we give an overview of research related to layers in 2D
digital painting.

73

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

V.2.1 VR painting tools
Layers Many commercial tools for VR painting [140, 228, 287, 289] have a “layer” panel.
Layers in all existing VR painting tools to our knowledge are not layers in the way we
think about them in this chapter. In existing tools, layers are merely stroke containers.
�eir visibility can be turned on or o� in order to temporarily hide a group of strokes
without deleting them. In some so�ware (eg [287, 289]), layer opacity can be adjusted
on a range from transparent to fully opaque. Adjusting opacity can be useful to make
strokes from a rough sketch partly faded, in order to conserve a visual reference while
focusing on a new version of the artwork. Toggling a layer opacity on or o� is used by
artists to preserve “checkpoints” of parts of their artwork, to explore di�erent possibilities
or to ensure easy backtracking. In�ill, layers are also used by artists to separate their
artwork into semantically meaningful parts (eg a character’s head, torso, arms and legs
can be in separate layers), in order to facilitate further selection, batch modi�cation or
animation of strokes. In this chapter, we consider layers to be stroke containers, but
beyond that, we enable layers to control how the strokes they contain are rendered – eg
whether a stroke acts as a 3D shape or only as a coloring e�ect on other strokes.

Recoloring brush Another closely related feature in commercial VR painting so�ware
is the ability to recolor existing strokes using a “recoloring brush” [140, 289]. �is feature
allows artists to edit stroke colors, and the recoloring brush can control which color
mix mode is used when mixing the new color with previous stroke colors. �is feature
gives some level of color editability and helps artists reason in terms of color mixing
like in 2D digital painting (see Section IV.4). However, recoloring operates at the level
of per-vertex colors, meaning that its success is dependent on the resolution of stroke
discretization (see Fig. V.1) ; and it is a destructive operation, meaning that once a color is
applied, it becomes impossible to recover again the base colors. Our design of 3D-Layers
takes inspiration from the recoloring brush and overcomes its limitations by “reifying”
recoloring commands as brush strokes [32]. �ose brush strokes have a resolution that is
independent of the stroke they color, and the user can edit them further at any point.

3D painting systems Previous VR or MR (mixed reality) painting systems consider
strokes as tubes or ribbons of a single opaque color [18, 87, 157, 182, 260, 267]. In contrast,
our prototype for 3D-Layers allows artists to precisely recolor strokes. �e work of
Kim et al. [170] is closely related to ours. Motivated by the observation that current VR
painting so�ware does not provide su�cient amount of control to artists over stroke
coloring and color mixing, they implement a VR painting app that uses volumetric strokes
to �ll in 3D voxels with colors. Voxels can be recolored at any point, making it easier
to recolor precisely – as long as the voxel grid is �ne enough. We share the same goal,
but di�er from their work in representation choice: we represent strokes as 3D surface
meshes, making it possible to easily integrate our technique with existing VR painting
tools. Furthermore, we explore the use of stacks of layers.

74

V.3. CHALLENGES OF DEPICTING SHAPE AND APPEARANCE IN VR PAINTING

While VR systems consider brush strokes as solid 3D shapes to be rendered as opaque
surfaces, another line of work proposes to instead preserve the painterly aesthetic of 2D
digital art by merging 2D and 3D rendering techniques: Overcoat [268] enables artists
to paint with a 2D tablet on and near a 3D surface, by embedding their strokes in a
volumetric canvas that surrounds this surface. �e brush strokes can lie o�-surface,
and they are rendered as screen-space splats, which allows for a rough stylized look.
Subsequent work has studied how to render the brush strokes with coherent ordering,
since depth-order and stroke-order – the order in which strokes are drawn – are two
relevant but potentially con�icting ways to order stroke fragments for compositing [28].
We take inspiration from the idea of 3D painting systems such as Overcoat, to achieve
a painterly look of strokes by replacing traditional 3D rendering rules with variants
inspired by 2D digital painting rendering. However, our solution considers the case of
VR painting, where using 3D shapes as brush strokes enables a variety of work�ows such
as quickly modeling rough volumes with large volumetric strokes (see Section IV.3.1.2).
We bring 2D rendering concepts such as layering and stroke-order rendering to the VR
painting context.

V.2.2 Layers in 2D digital painting
Layers are a staple feature of 2D digital painting so�ware (eg [4, 146]), and artists have
adopted them in their work�ow for a variety of manual rendering tasks such as using
blending modes to paint shadows and highlights, using masks to paint on top of an
existing layer while preserving its outer shape, applying gradients and applying image
textures [258]. Organizing an artwork in multiple layers is also useful for non-destructive
color editing operations, and past work has focused on how to perform this decomposition
automatically [11, 92, 204, 305, 306]. Layers can be used for other ad-hoc operations that
are not well supported in digital painting so�ware, such as selective undo and history
preservation [222]. We show that this breadth of applications of layers in 2D digital art
can transfer to VR painting, as demonstrated by our example applications (Section V.6).

V.3 Challenges of depicting shape and appearance in VR
painting

In this section we give a focused summary of the challenges that participants reported
concerning depicting shape and appearance in existing VR painting systems. Chapter IV
details the methodology of our formative study and provides the full analysis.

Spatial resolution of colors In existing VR painting tools such as�ill [289], a stroke
is a tubular 3D surface with color encoded on a discretization of the surface – ie the
surface is a polygonal mesh with per-vertex colors. �e �nite and typically low resolution
of this discretization limits how �nely appearance can be de�ned, and makes it dependent

75

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

on how strokes are oriented or arranged with respect to each other (see Fig. IV.4). Artists
need to place strokes to de�ne a 3D surface, and at the same timemake sure this placement
gives su�cient degrees of freedom to achieve a desired color variation along the surface.

Lack of editability Artists o�en need to create assets that adapt to di�erent lighting
conditions, or wish to explore multiple color keys for their piece. However current VR
painting tools “bake” color edition operations to strokes, for example�ill’s recolor brush
changes stroke vertex colors to be a blend of the previous color with the new one. �is
makes global color editing operations overly complex since they need to be translated
into many local operations, discourages exploration of di�erent possibilities and prevents
achieving complex color or light animation e�ects.

Accuracy Precise alignment of a stroke along a curved surface is hard to achieve when
sketching freehand. �is makes it di�cult to create strokes on an existing surface, which
o�en arises when one wants to edit the surface color – eg decal writing, pa�erns, drawing
a sharp highlight.

Design goals Based on these observations from our formative study, we de�ne the
following design goals for 3D-Layers:

• G1. Decouple color editing from underlying shapes: make color edition
independent of shape resolution and of how strokes are arranged.

• G2. Non-destructive color mixing: enable easy backtracking or global edits of
the scene colors.

• G3. Permissive edition: relax requirement for exact 3D positioning when painting
coloring strokes.

Our key insight is to di�erentiate strokes that a�ect shape from strokes that a�ect color
in the �nal painting. In practice, this entails the following design choices:

• We let the user organize their strokes into these two categories by pu�ing strokes
either in substrate layers or in appearance layers. Substrate layers de�ne the
geometry of the scene. Appearance layers are organized in stacks, with always
a substrate layer at the bo�om of the stack. Any appearance layer above a given
substrate acts on the color of the substrate. Each appearance layer can be edited
independently of other layers in the stack (G2).

• Appearance strokes act on the substrate by coloring the intersection of the stroke
with the substrate (see Fig. V.2 “Colors” layer). �is operation is fully independent

76

V.4. PAINTING WITH 3D-LAYERS

of the substrate resolution (G1). We introduce a tolerance threshold (see Fig. V.2
“Decals” layer) to allow permissive intersections and reduce the need for accurate
stroke placement (G3).

• Despite our separation of strokes into those that de�ne shape and those that merely
act as color modi�ers, in-�ne they are all strokes and can serve either purpose
interchangeably. �is makes it possible to reuse strokes created as shapes as color
modi�ers, alleviating the need to carefully redraw complex shapes when a duplicate
can su�ce (G3).

(a) No tolerance, d = 0 (b) With tolerance, d > 0

Decals
Normal mode – 100%
Tolerance > 0

Shadows
Multiply mode – 70%

Colors
Normal mode – 100%

Fig. V.2: Appearance strokes only recolor the substrate strokes they intersect. But thin strokes
need to be placed very close to the substrate to intersect it (a). We allow users to increase the
intersection tolerance 𝑑 of an appearance layer to alleviate the need for precise stroke placement
(b).

V.4 Painting with 3D-Layers
We propose 3D-Layers, a layering system for 3D paintings that exposes layer objects
that artists can use to organize strokes, in order to help decouple shape and appearance
editing, favor post-hoc editability of a VR painting, and alleviate the need for accuracy
in painting. We implement 3D-Layers in a prototype VR painting application. In the

77

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

(a) Substrate layer (b) New strokes in appearance layer (c) Final result

Fig. V.3: Appearance layer. Starting from a 3D painting (a) defined as a substrate layer, an
artist can paint brush strokes in an appearance layer (b), so that those brush strokes act on the
color of the substrate by recoloring it inside the new strokes (c).

following section, we present the novel features that 3D-Layers enable by describing an
interaction scenario. We delay discussion of implementation details to Section V.5.

Ana is a VR artist working on a 3D illustration of a path going through a forest. Ana starts
by de�ning the 3D geometry of her scene. She uses many colored brush strokes and alternates
between painting, modifying her strokes, and inspecting the scene. In this phase she focuses
mainly on how the 3D shapes look, once she is happy with that, she starts using 3D-Layers
to re�ne the colors of the scene and explore di�erent lighting scenarios, as she is not sure yet
what the mood of the scene should be like.

V.4.1 Authoring shape and color with layers
Ana decides to paint sun light si�ing through the forest canopy. She creates a new layer that
is applied on top of the whole scene, picks a light pale yellow color and starts painting large
brush strokes to represent beams of light coming through the trees and intersecting parts of
the path and forest ground.

Editing the color of brush strokes in the scene is an essential ability to quickly explore
and de�ne lighting e�ects. 3D-Layers enable artists to do this by creating new colored
strokes on an appearance layer that will act on the color of strokes located on the
substrate layer of the layer stack (see Fig. V.3). Ana can recolor large volumetric regions
of the scene with a few large brush strokes. When she paints in the appearance layer,
the substrate layer is colored at its intersection with strokes from the appearance layer
(Fig. V.3 c).

She wants to add some hand-drawn texture details on the trees. In order to make sure her
strokes only a�ect the tree, she creates an appearance layer on top of a new stack with the
tree trunk strokes as a substrate.

To allow more localized color edits, layers can be organized in multiple stacks that apply
to di�erent subsets of strokes in the scene. �is prevents undesirable leaking of a broad

78

V.4. PAINTING WITH 3D-LAYERS

(a) Stack for the tree trunks (b) Final result

Fig. V.4: Appearance layerwith Threshold> 0. An appearance layer can be applied selectively
to a subset of strokes in the scene by defining stacks. For example here the artist puts only
strokes forming the tree trunk (dark brown) in the substrate layer of this stack (a). By increasing
the tolerance threshold and drawing a few light brown strokes (a), the artist can quickly create a
bark e�ect. Note that the final result (b) always renders the light brown strokes on top of the
substrate strokes, despite small depth imprecisions (see insets).

coloring operation onto nearby strokes that the artist does not want to color in the same
way. �is is convenient for per-object shading painting, which should not a�ect nearby
objects.

She draws loose freehand strokes near the tree trunk to create a stylized bark texture.

Sometimes the user needs to paint thin strokes “on top” of the existing surface. For that
scenario, the user can increase the tolerance threshold for an appearance layer, which
will apply the color of strokes from the appearance layer to the substrate as long as those
strokes lie close to the substrate within a threshold (see Fig. V.4).

Ana wants to create some color variations on the tree tops. She selects the strokes forming
the tree top shape, copies them and pastes them onto an appearance layer, then applies a
small position o�set. �is creates the impression of light hi�ing the tree tops, and makes
their shape easier to read.

Strokes are the basic primitive used in layers for both shape and color de�nition, regardless
of layer type – substrate or appearance – all layers are in-�ne stroke containers. In practice,
this means that it is possible to transfer strokes from one type of layer to another, so
artists can reuse strokes created earlier to de�ne shape when they later want to de�ne
color (see Fig. V.5). �is helps artists get more out of thoughtfully painted shapes. A rim
light e�ect or simple toon-like shading on a complex shape can be achieved by copying
and pasting the shape to a top layer, removing the need to carefully retrace the existing
shape.

79

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

(a) Substrate layer (b) Duplicate strokes and offset (c) Final result

Fig. V.5: Reusing substrate strokes for appearance editing. 3D strokes of a uniform color
can be hard to parse visually (a). By copying the tree top strokes onto an appearance layer and
o�seting them slightly (yellow arrows, (b)), we can quickly achieve a toon-like shading (c).

V.4.2 Non-destructive coloring and e�ects
Ana explores the mood of the scene by coloring the whole scene with a large purple stroke in
an appearance layer. She sets the color blend mode to “Overlay”, in order to let the appearance
layer a�ect the substrate colors without fully replacing them.

�ere can be multiple appearance layers stacked onto a substrate layer, in which case
all appearance layers are blended in a user-de�ned z-order to obtain the �nal color.
Artists can choose a color blend mode for each appearance layer, to achieve complex color
modi�cation e�ects (see Fig. V.6 b and c). For example se�ing a layer to screen mode and
painting with a light color can simulate the e�ect of painting the zones a�ected with a
lighter shade of paint than the original shade. �is way of creating a highlight or shadow
e�ect is non-destructive: it allows the artist to change the color of strokes in any other
layer below and preserve the shading e�ect, and conversely to change the color of the
e�ect at a later time (Fig. V.6 e).

She applies a spherical gradient on the appearance layer with the purple stroke that makes
the e�ect fade out closer to the viewer.

Layers can also be modi�ed with layer masks that a�ect the opacity of the layer, by
se�ing opacity at each point in 3D space to a value sampled from a spatial gradient
or sampled on a pre-de�ned volumetric function (see Fig. V.6 d). Layer masks enable
creating both smooth gradients and high-frequency variations of color independently of
stroke orientation, or the resolution of stroke geometry.

80

V.5. IMPLEMENTATION

(a) Substrate layer (b) Normal blend (c) Overlay blend (d) Gradient (e) Exploring variants

Fig. V.6: Color blend modes and gradients. Starting from the substrate layer (a), painting
a large purple stroke in an appearance layer has the e�ect to color all substrate strokes when
using the “normal” color blend mode (b). Other color blend modes such as “overlay” allow quick
modifications of all colors in the scene via blending (c). The artist can control the appearance
layer’s opacity with a 3D gradient (d). It is easy to explore variations of the scene by changing
the color of the stroke to yellow and tweaking the 3D gradient parameters (e).

V.5 Implementation
We implement the proposed design for 3D-Layers as part of a prototype VR painting
application. Strokes in appearance layers a�ect the scene by acting on the appearance
of their substrate. To make this possible in practice, our main technical challenge is to
convert 3D strokes from appearance layers into a color modi�cation of substrate strokes.
As showcased in the interaction scenario, this conversion must happen in real-time upon
stroke creation and modi�cation.

Strokes are represented as discretized 3D surfaces, for which many geometric approaches
have been developed. Computing mesh booleans [58] can be useful to �nd the intersection
of a large stroke with the substrate ; or polyline to mesh projection can help ensure that a
thin stroke lies just in front of the substrate [22]. Instead of implementing two disparate
solutions based on geometric operations, we propose to avoid altogether processing the
discretized surfaces by working at the rendering stage, an approach that is also used for
rendering and slicing CSG models [339].

Concretely, we implement coloring operations as custom rendering passes in a pro-
grammable rasterization pipeline. �is choice enables us to achieve the real-time painting
and rendering performance required of an interactive VR application for paintings of
up to many hundreds of strokes (eg the desk diorama scene in Fig. V.10 has 432 in-
dividual strokes). It also allows 3D-Layers to support any kind of 3D geometry that
can be rasterized, not limiting ourselves to strokes de�ned as polylines nor to triangles
meshes. Working on a 2D bu�er also simpli�es supporting stroke-wise and layer-wise
color blending operations.

In an upcoming publication of this work, we plan to include a more systematic benchmark
of our rendering algorithm performance depending on the number of strokes and the
number of layers in a scene. Furthermore, we will explore the potential of our rendering
method to rasterize di�erent kinds of primitives, such as point clouds.

81

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

In the following section we explain how strokes in appearance layers are rendered, then
we show that we can deal with color blending and gradients by implementing custom
rendering passes too. Finally, we give a brief overview of the authoring interface for our
prototype application.

Rendering a layer stack For each stack, we �rst render the substrate layer. �e
substrate layer is rendered in a standard way, by writing directly color and depth from
the strokes to the main framebu�er, and performing standard depth testing. Strokes from
substrate layer are ordered based on depth. Additionally we write in the stencil bu�er an
identi�er of the current stack, in order to use it later as a pixel-wise mask that ensures
that only appearance layers from the stack can act on the color of the substrate. �en
we loop through all appearance layers and render them in layer order. Since appearance
layers only act on the appearance of the substrate and do not generate geometry in the
3D scene, ordering of appearance layers is independent of depth ordering and is purely
de�ned by layer order. We render all strokes in a single appearance layer to a blank
layer-wise framebu�er ; strokes are alpha-composited in stroke drawing order.

Rendering strokes in an appearance layer Each stroke from an appearance layer
is rendered based on stencil and depth tests. First, a stencil test checks whether the
value in the stencil bu�er matches the stack identi�er of the layer. Secondly, we prevent
intra-stroke fragment overlap by writing and reading a 1-bit mask in the stencil bu�er.
�is enables achieving inter-stroke alpha blending with semi-transparent strokes without
encountering intra-stroke blending (see Fig. V.7). �is 1-bit mask in the stencil bu�er is
cleared in-between strokes rendering. Other tests vary depending on the layer’s coloring
mode and are described in the following two paragraphs.

Coloring the intersection with the substrate We simulate coloring the substrate at
the intersection between a coloring stroke and a substrate stroke. We achieve this e�ect
in a spirit similar to shadow volumes [68] by taking the screen-space intersection of
fragments that pass the depth test and fragments that fail the depth test with the substrate.
�is can be formulated as stencil write and test operations in two render passes, and
uses only 1 bit of the stencil bu�er, leaving the other bits that carry stack information
untouched.

Coloring a permissive intersection Since it is di�cult to paint strokes precisely near
a surface, we achieve tolerance to depth imprecision by implementing a custom depth
test in the fragment shader, which tests whether a layer fragment is within a depth range
𝑑 of the substrate fragment.

Color blending and layer modi�ers Once all strokes of an appearance layer have
been rendered to the layer-wise framebu�er, we apply layer modi�ers that will a�ect

82

V.5. IMPLEMENTATION

(a) Rendering all fragments (b) Rendering maximum
one fragment per stroke per pixel

Fig. V.7: We support semi-transparent strokes in appearance layers, that are composited in
stroke-order within a layer. Doing so naively can cause intra-stroke fragment blending (a) when
a stroke winds over itself and creates self-overlaps. We prevent this by marking pixels already
covered by a stroke fragment in the stencil bu�er to obtain correct inter-stroke blending with no
intra-stroke blending (b).

left hand

right hand
(paint brush)

right hand
(UI cursor)

(a) VR UI with hand-held 3D menu (b) Layer panel and visualisation

Fig. V.8: We implement 3D-Layers in a VR painting system (a) that exposes the layers’ structure
via menu panels (b). To help users navigate in layers, we implement a transient highlighting
visualisation upon hovering the layer’s name (b). Here we show the right-handed user interface.

opacity of the framebu�er content. We compute the opacity value by sampling a 3D
function at the 3D position corresponding to each fragment. �is 3D function can be
procedural, such as a linear or spherical gradient, or it can be a prede�ned 3D texture.
Finally, the shader copies the layer-wise framebu�er to the main framebu�er. �e �nal
color is computed by applying a color blending operation – multiply, screen, overlay.

Overall VR painting system Our prototype implements features similar to commer-
cial VR painting so�ware, such as stroke creation via mid-air controller gesture, selections
of strokes, rigid transformation, duplication, recoloring or deletion of a selection, nav-
igation in the canvas, undo/redo. We strive to follow design conventions from �ill –
eg bu�on mappings – since we aim to evaluate our prototype among expert �ill users.
By leveraging participants’ “interaction knowledge” we hope to facilitate discovery and
learning of features in our prototype interface [254]. We implement basic layer organi-
zation and navigation features, such as 2D panels listing all layers in a stack with the

83

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

possibility to reorder layers (Fig. V.8 a) ; visualization of the content of a layer in-situ with
a transient highlighting upon hovering a layer bu�on (Fig. V.8 b) ; the possibility to move
selected content to another layer via a drag and drop interaction. We support importing
�ill paintings into our system, which enables users to re-work with 3D-Layers some of
their past �ill pieces. Finally, we instrument the prototype to log all actions performed
by the user during a painting session, and allow users to save and reload their session.

V.6 Work�ows
We demonstrate the potential of 3D-Layers by creating 2 scenes in which we show a
variety of complex e�ects that would be di�cult to create with current VR painting tools.
We focus on the creation of a particular e�ect in each example so we do not explain the
complete creation work�ow from scratch. Note that all of the examples we have made
are started o� in�ill, to bene�t from the larger set of 3D stroke edition features, and
then imported to our 3D-Layers prototype. In all examples we o�en refer to a stack of
layers by designating it via the object present in the substrate layer of the stack. We
assume that those substrate layers are pre-created for the sake of simplicity.

V.6.1 Flying over the clouds
We create a VR painting of a plane �ying over the clouds and the �elds below, inspired
by a 2D marker illustration by Priya Mistry.

Stylized shading We reproduce the stylized shading from the illustration by using
appearance layers with fully opaque strokes. For the plane we quickly create a basic
shading e�ect by copying strokes from the plane substrate layer to an appearance layer,
and slightly o�seting them to achieve a stylized shading e�ect (see Fig. V.9 b).

Shadows We create the cast shadows of the plane and of the trail on the ground by
copying strokes from those objects and pasting them in an appearance layer on the
ground stack. We set a non-zero tolerance in order to simulate a cast shadow (Fig. V.9 c).
In this se�ing, the cast shadows are 3D objects too, so we can easily animate the plane
moving forward and apply the same translation to the shadows (see Fig. V.9 d, e).

V.6.2 Day and night desk diorama
We create a stylized indoor scene of an o�ce room with a desk, inspired by the dioramas
from artist Viktoriia Nikitina. We propose two variations of the same scene in two
lighting conditions: in the day time version the o�ce is lit by directional sun light coming
through the main window, while in the night time version the o�ce is lit by a small
desk lamp. We start by creating the day time version, then explain how we create the
variation.

84

V.6. WORKFLOWS

(d) First frame

(a) Substrate (b) Plane highlights (c) Cast shadows

(e) Last frame

Highlights
Normal mode – 100%

Cast shadows
Multiply mode – 60%
Tolerance > 0

Fig. V.9: In this example, we duplicated the substrate strokes of the airplane and shi�ed them
toward the sun to create a large highlight (a,b). We also used duplication to create shadows of
the airplane on the clouds and ground (c). Finally, we created a simple animation of the airplane
and its shadow by translating the airplane strokes along with their duplicates (d,e).

Hand-authored shadows We create stylized shading and in the same way as in the
previous painting. For cast shadows of the o�ce chair and desk, we purposefully simplify
them to look like geometric shapes. Hand-authoring of shadows gives us direct control
over how each shadow should look. To get the characteristic shape of the window frame
grid on the light beam that hits the ground, we use a duplication of the actual window
frame to an appearance layer above the layer responsible for the light beam (Fig. V.10 b).

Creating a variation Since all color changes are isolated on layers, creating the night
time variation (Fig. V.10 c) can be done by hiding or deleting layers that are not useful
anymore (eg, the beam of sun light on the �oor). Because coloring operations are encoded
as strokes, changing the desk lamp appearance from o� to on is simply a ma�er of
changing the color of the stroke inside the desk lamp from dark grey to light yellow. We
also grab and move around the cast shadows from objects on the desk to be�er match
the new light source.

85

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

(a) Initial scene (b) Day version (c) Night version

Fig. V.10: Creating variations of lighting on the same scene is facilitated by layers. We first
paint the scene as if it were lit by direct sun light (b), then decide to see how the scene looks like
in a night time se�ing (c). Both variations feature stylized shading and cast shadows.

V.7 User evaluation
At the time of writing of this thesis, we have not yet performed the user evaluation part
of the project. In this section, we describe the goals of our user study, the protocol we
plan to follow as well as the analysis we plan to run following the study.

V.7.1 Goals
We propose a design for 3D-Layers, a new primitive in the VR painting work�ow that
enables artists to use 3D strokes as representations for both 3D shape and 3D appearance.
In Section V.6, we demonstrate how as expert users we are able to reproduce a variety of
e�ects from stylized illustrations and 3D artworks using our prototype implementation
of 3D-Layers. �e main goal of our user study is to evaluate our proposed design among
professional and hobbyist VR artists, to test the following hypotheses:

• H1: Usability. People familiar with VR painting can transition easily to using
3D-Layers as part of their painting work�ow.

• H2: Simplifying shape and color authoring. 3D-Layers make the painting work-
�ow simpler by decoupling shape authoring and color authoring, while supporting
both with the same 3D stroke painting interaction.

86

V.7. USER EVALUATION

• H3: Supporting exploration. 3D-Layers support exploration of multiple out-
comes by facilitating non-destructive coloring operations.

�e secondary goal of our user study is to use our prototype as a technology probe [139].
We designed our prototype for 3D-Layers to be open-ended and ambiguous – a layer
is merely a container for 3D geometry that applies pre-de�ned rendering rules to its
content. Furthermore, we note that layers in 2D digital painting so�ware and grouping
primitives in 3D modeling are o�en used for ad-hoc purposes such as versioning and
managing visual clu�er during focused tasks. We hope that 3D-Layers can also be used
for unforeseen tasks beyond shape and appearance creation, inspire users to try new
work�ows or trigger discussions about their needs for use cases not covered with our
prototype.

V.7.2 Protocol
Participants We recruit 6 participants that have a minimum of 1 year experience
working with VR painting, and at least a beginner level of working with�ill painting
tools. Participants are invited for a two-hour study, and compensated for their time.

Overview We run the study remotely by sending an executable of our prototype to
participants – each participant is expected to have access to a VR headset by their own
means for the duration of the study. �e participant connects to an experimenter via a
video call. �ey are invited to answer a short demographics questionnaire, then they
watch a video tutorial explaining the main functionalities of our prototype – both the
basic painting functionalities and the speci�c features we implemented around 3D-Layers.
�e participant completes a �rst task for an approximate duration of 30 minutes, then
they are allowed a 5 minutes break and are asked to answer a questionnaire about the
usability of our prototype. �e participant is then prompted to start the second task,
which can last up to 1 hour. Since this task is open-ended, the participant is free to take
breaks whenever they wish, and we encourage them to do so every 15 minutes. During
both tasks, the participant is encouraged to think-aloud and speci�cally voice anything
that they �nd confusing. An experimenter is available to answer questions or repeat
tutorial instructions upon prompting. Our prototype application logs all user actions
during painting sessions, and saves �nal paintings. An experimenter also notes down
any observed confusion or frustration, in order to cater the �nal interview questions
to speci�c events from the study. A�er the second task, we conduct a semi-structured
interview with each participant.

Starter paintings Our challenge in the user study is to have participants interact with
the prototype in tasks that are representative of real artist work�ows, while keeping the
study relatively short and focused on the novel features we provide. Since our prototype

87

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

Fig. V.11: Guided task scene. In the guided task, we ask participants to work on the forest
scene (le�), in order to approximately match the look of a target (middle). Once this is done they
have to make changes to make the scene appear to be happening at dawn, for example (right).

lacks some of the painting and modeling features that a mature so�ware like �ill might
have, we alleviate the need for advanced modeling features by bootstrapping all tasks by
providing a “starter painting” that each task is based on. A starter painting is a simple
blockout of the �nal painting, that is neutral in terms of lighting conditions. We ask
participants in advance whether they would like to use one of their own�ill painting as
a starter painting for the open-ended creation task. If they wish to do so, we coordinate
in advance with them in order to import their artwork in our prototype.

Task 1: guided task Participants are given the starter painting for the forest scene
(Fig. V.11 le�). We also give a target prompt that they must reproduce approximately
(Fig. V.11 middle). �is target is given in the form of a picture frame that we import in
our VR prototype, so that participants can see it while they paint. When participants are
happy with their result, they are asked to edit the painting to match a new prompt that
is given in the form of a text prompt from an hypothetic client: “I would like the scene to
look more like it’s happening at dawn.” We encourage participants to �nish both tasks
within 30 minutes.

Task 2: open-ended creation task Participants start this task with a starter painting
that is either their own painting or by choosing a painting among a few provided default
starter painting. Participants are encouraged to paint using our prototype to improve or
edit the starter scene however they prefer within a maximum of 1 hour.

V.7.3 Analysis
We plan to include both a quantitative analysis of usage logs, as well as a qualitative
analysis of participant thoughts and feedback.

In the user study, we do not explicitly compare our system against a baseline. However,
since our prototype consists of an augmentation of a standard VR painting user interface
by the adding the possibility to work with 3D-Layers, we note that it is in fact possible

88

V.8. CONCLUSION

to use our prototype in a way that completely ignores the features related to 3D-Layers.
In practice, this can be done simply by painting all strokes in a single substrate layer.
�erefore, our analysis focuses on looking at how each participant uses the prototype
itself. We expect to �nd pa�erns in usage that enable us to test our initial hypotheses.

For example, we plan to analyze how much participants painted in appearance layers as
opposed to in substrate layers. �is can show whether participants are able to use both,
which provides evidence towards testing hypothesis H1. Furthermore, we argue that
if participants choose to paint strokes in appearance layers, it can be an indicator that
layers are useful in simplifying the authoring work�ow – hypothesis H2. We also log
stroke duplication actions, which we can quantify across participants and tasks. We can
further isolate stroke duplications with a layer switch – eg reusing a substrate stroke in an
appearance layer. A signi�cant amount of duplicated strokes means that the duplication
feature – combined with 3D-Layers capabilities – contributes to diminishing the e�ort
required in repainting strokes (H2). Finally, the second part of task 1 – editing the
painting to match a prompt – aims speci�cally to probe how well our prototype supports
edits and exploration of multiple options (H3).

We plan to analyze transcripts of the post-study interviews to collect more �ne-grained
feedback on how participants felt about using 3D-Layers, and to report any limitations
that participants encountered.

V.8 Conclusion
VR painting is a novel medium for 3D content authoring, that plots an alternative path
to current industry-standard authoring pipelines. Investigating novel digital representa-
tions for 3D shape and appearance that be�er match this authoring work�ow has the
potential to bridge the feature and capability gap between this emerging medium and
well-established authoring pipelines. We hope this can help push VR painting to a new
level of adoption by artists and foster the emergence of artistic styles not previously
achievable with industry-standard pipelines based on surface modeling, texturing and
material editing. In this chapter, we demonstrate that taking inspiration from established
interaction paradigms in another authoring work�ow – in our case 2D bitmap layers in
digital painting – is a way to design new digital representations of content that artists
easily relate to based on past experience. We augment the VR painting work�ow by
simplifying the shape and appearance authoring process, allowing reuse of content, and
supporting exploration of possibilities. We will deploy our prototype among 6 expe-
rienced VR artists to get insights into how 3D-Layers impacts their work�ow. In the
meantime, preliminary pilot studies and extensive use of our prototype by myself to
create the paintings from this chapter yielded promising results in the potential and
usability of our design.

89

CHAPTER V. 3D LAYER COMPOSITING FOR VR PAINTING

V.9 Future work
Exploring the lighting authoring spectrum With 3D-Layers, we embraced a design
where lighting e�ects – shading, cast shadows, atmospheric ambience – are all hand-
authored. �is is in line with one of the work�ows we have observed among experienced
VR artists (Section IV.3.1.2). Such hand-painted lighting is appreciated by the artists
we interviewed because it a�ords a high level of control over the �nal result, enabling
artists to infuse art direction choices and their personal style. On the other end of the
lighting authoring spectrum, shading and shadows are de�ned programmatically by
specifying environment and material parameters for each 3D shape. A rendering engine
interprets the whole scene and generates images based on programs that de�ne rules
on how material and shape react to light from the environment. Such automatically
computed lighting is very powerful to quickly explore a variety of visual results by tuning
a small number of semantically meaningful parameters. Going forward, we would like to
explore more lighting authoring work�ows that sit somewhere in the middle of these
two extremes, to design authoring tools that combine the expressiveness of hand-painted
lighting with the �exibility and power of programmatic lighting. In particular, such an
authoring tool could be based on converting appearance editing operations performed
by hand-painting into a programmatic representation that can be modi�ed by adjusting
meaningful parameters [230], animated by interpolation [244], or applied to a di�erent
3D shape [103]. We plan to investigate how such ideas �t in the 3D-Layers framework,
for example �nding how hand-painted shading e�ects can be mapped from one substrate
layer to another, how to “link” edits of appearance layers via common properties [328],
or how to programmatically modify strokes of a hand-drawn appearance layer to match
a desired change in lighting setup.

Layer navigation user interface in 3D Our prototype VR application features a
basic 2D panel user interface to navigate layers, select a layer or adjust layer parameters.
However, previous work on 2D selection has shown that the task of selecting a given
layer in a large stack of layers can be hard [281]. Preliminary tests with our prototype
con�rm their observations and moreso, we think selecting a target layer – eg �nding
which layer acts on the color of a given 3D point – might be even harder than in the 2D
case. Some challenging factors include our multi-stack organization, the large potential
amount of overlapping strokes at a single point in 3D space, and the fact that VR editing
is done in a 3D UI. In a 3D UI, performing a selection task while staying aware of the
larger visual context of the piece – described as a “divided a�ention problem” [126] – is
even more challenging than in the 2D case because the visual context occupies the full
viewport at all time. �erefore a selection modal window or panel in 3D space has to
be designed and placed thoughtfully so as to be informative without occluding content.
We hope to take inspiration from existing research in 2D layer navigation [251, 281, 321]
and VR user interface layout optimization [56, 97] to improve our user interface design
for 3D-Layers. More broadly, we hope such work can help design interactions for 3D

90

V.9. FUTURE WORK

selection tasks in VR that support complex yet realistic scenarios in 3D authoring tasks,
such as the presence of many shapes that occlude each other.

Digital representations for VR painting We decided to base our design of 3D-Layers
on strokes that are represented digitally as polygonal meshes with per-vertex colors,
and we de�ne strokes in substrate layers as being fully opaque surfaces. In the future,
we wish to explore how novel representations of 3D shape and appearance based on
volumetric �elds or on point clouds can be used in VR painting. Previous work has shown
the potential of casting VR painting as editing voxels in a volumetric canvas [170] or
as a series of edits of a signed distance �eld [98]. Using point cloud spla�ing is key in
the rendering engine of Dreams to achieve a unique painterly look [98]. State-of-the-
art real-time rendering techniques now make it possible to render large clouds of 3D
colored gaussians, that can represent well semi-transparent surfaces [168]. Adopting
a representation such as 3D Gaussians for VR painting can open new possibilities in
terms of editing operations – 3D points can be freely grabbed and moved or deleted
without needing to manage mesh topology ; and new possibilities in terms of aesthetic
appearance – semi-transparency and color mixing across objects can enable new visual
styles such as the equivalent of a painterly watercolor look in 3D. We are excited about
possibilities to adapt this rendering technique originally designed to render realistic
3D scenes captured in the real world and consider it instead as the backbone for a VR
painting tool. We see potential research questions in pursuing that, such as how to design
creation and edition operations inspired from 3D painting and direct manipulation ; and
how to create painterly splats in 3D, for example using 2D or volumetric textures, or
applying procedural 3D e�ects.

91

Chapter VI

3D Scene-Aware Hand-Drawn Animation on
Videos

VI.1 Introduction
We have shown in previous chapters that by le�ing artists work with 3D strokes as
a digital representation, we can explore new authoring work�ows for 3D shape and
appearance. In this chapter, we show how 3D strokes can enable new work�ows for
hand-drawn animation. In particular, we study the creation of video doodles.

Video doodles are an emerging mixed media art that combines video content with hand-
drawn animations to produce unique and memorable video clips. Adding animated
drawings and annotations to videos is an e�ective way to emphasize actions and motions
of characters in the scene, to create visual explanatory material for educational purposes,
or simply to make mundane videos more fun, personalized and a�ractive.

Artists typically create video doodles by drawing 2D animations frame-by-frame, using
the video as an underlay. �e main di�culty faced by artists following this manual
work�ow is to make the drawn content interact convincingly with the video content. Let
us consider the example of adding a few animated “doodles” to a tramway video (see
Fig. VI.1). When drawing a face over the tram, the artist must make sure that the eyes
and mouth follow the tram as it moves across the frame. However, simply translating
the corresponding doodles may not be enough, as their 2D scale, skew and orientation
need to change to re�ect the deformations caused by perspective projection as the tram
comes closer to the camera and makes a turn. Even when doodling a static background
element, such as the rainbow bridge across the rails, camera motion can yield non-trivial
trajectories in the image plane, which the doodles must follow to appear �xed to the
scene. Other di�culties arise in the presence of occlusions, which greatly contribute to
the perception of 3D layout. For example, the tram should occlude part of the bridge to
give the impression that it passes below it. To summarize, e�ective video doodles require
the hand-drawn content to be scene-aware, meaning that they appear as if they were
embedded in and synchronized with the content of the 3D scene captured in the video.

While computer vision methods can assist in tackling this challenge, existing solutions
fall short in terms of accuracy, control, and accessibility to novice users. Professional
video editing so�ware o�ers a plethora of tracking algorithms to insert content that

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Fig. VI.1: Video doodles combine hand-drawn animations with video footage. Our interactive
system eases the creation of this mixed media art by le�ing users place planar canvases in the
scene which are then tracked in 3D. In this example, the inserted rainbow bridge exhibits correct
perspective and occlusions, and the character’s face and arms follow the tram as it runs towards
the camera.

follows video motion [6, 43, 106]. But these algorithms come with numerous parameters
to tweak, and are prone to errors and dri� in the presence of occlusion or in areas that
lack reliable image features. Furthermore, tracking algorithms o�er limited support for
3D motion estimation and are not su�cient to simulate occlusions between the inserted
drawings and the video content. Artists reproduce such e�ects by decomposing the video
into several layers using keyframed binary masks and rotoscoping.

In this chapter, we start yet again with the observation that current representations
of content that artists work with are not well suited to the task at end. Despite the
�nal artifact being a succession of 2D images, working in the 2D image plane to create
animated doodles that move in the 3D scene space introduces a high semantic distance
[138] since artists must in fact envision how the intended 3D motion projects to the
image plane.

An alternative and perhaps more useful representation of the video is to see it as the
capture of a 3D scene with an additional time dimension. Computer vision methods can
interpret the video as such by estimating the camera poses and the – partial – geometry of
this scene [37, 178, 274, 344]. Such a reconstruction can be used as a starting point for a 3D
modeling and animation work�ow, to insert virtual objects into the scene and re-render
the video. De�ning 3D motions of doodles can be done in 3D space, and the re-rendered
frames will have accurate perspective and occlusions. Unfortunately, introducing 3D
animation into the video editing work�ow is not much of an improvement in directness
for most users, due to the added articulatory distance [138] introduced when performing
3D manipulation in 2D user interfaces.

Instead, we design an interface where users can sketch and manipulate doodles in 2D as
if in a traditional 2D animation tool, yet behind the scenes our algorithm for positioning
and animating doodles leverages knowledge of the captured 3D scene. Animated doodles
are composed of strokes, and we place those strokes in the 3D scene by embedding
them onto planar 3D canvases that can be positioned and animated in 3D. Our system
takes as input casually-captured videos, which we preprocess with recent computer

94

VI.2. RELATED WORK

Fig. VI.2: At the core of our interactive system is a novel tracking algorithm that deduces the
3D position and orientation of a planar canvas over an RGBD video given a few keyframes (green
denotes a position keyframe, red denotes a position and orientation keyframe). Note how the
canvas rotates to align with the direction of the trajectory and gets occluded by the body and
the poles. Users create scene-aware doodles by drawing over the canvas in a simple 2D interface.

vision methods to obtain per-frame cameras [274], optical �ow [309], and dense depth
maps [178]. We leverage this geometric information to anchor these canvases to 3D
points in the scene. Our system automatically renders the doodles with convincing
perspective and occlusion e�ects (Fig. VI.2). We further augment the canvases with a
dedicated tracking algorithm, such that the 3D position and orientation of the canvases
follow the arbitrary moving objects they are anchored to. Importantly, we let users
control this algorithm by keyframing the canvas position and orientation in image-space,
e�ectively hiding most of the complexity of the underlying 3D representation. Our
optimization then solves for the canvas 3D trajectory and orientation that best follows
the scene motion while being constrained by the keyframes. Combined together, our
technical and user interface contributions enable even novices to turn their videos into
convincing video doodles for a variety of applications, ranging from fun posts on social
media to engaging illustrative tutorials.

We published supplementarymaterials online, the reader can refer to them at the following
URL: https://ns.inria.fr/d3/VideoDoodles/video_doodles_supplemental_webpage.

VI.2 Related work
We �rst discuss professional so�ware for video editing as well as research work that
aims at augmenting video editing by leveraging 3D geometry and motion estimation. We
then discuss methods for point tracking, along with the user control they o�er, as such
tracking is at the core of our VideoDoodles system.

Professional video editing so�ware. VFX artists and professional motion designers
can choose from a rich array of powerful tools to insert animated virtual objects in
captured scenes [6, 37, 43, 106, 262]. In particular, 3D camera estimation [6, 37] and object
tracking [106, 167] are now mature technologies that accommodate many special e�ects,
although these professional tools have a steep learning curve and sometimes require
planning the shot at the time of capture – e.g. by placing markers for be�er tracking.

95

https://ns.inria.fr/d3/VideoDoodles/video_doodles_supplemental_webpage

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Planar tracking [43] is closest to our goal but is limited to tracking planes present in the
scene, while our scene-aware canvases can move and orient di�erently from the surface
of objects they are anchored to.

Leveraging 3D geometry. Automatic 3D computer vision methods hold the potential
of bringing advanced editing tools to casual users, including re-rendering photos and
videos with di�erent camera properties [174, 202], stabilizing complex camera trajectories
[176], creating 2.5D parallax e�ects [177]. Closer to our target application are systems
that leverage 3D pose and geometry estimation for stylizing moving objects [290] or for
drawing over their surface [163, 253]. But these systems do not allow drawing away from
existing surfaces, which is important to produce a variety of e�ects, as in Fig. VI.1 where
the bridge is drawn above the ground, and the arms are drawn around the tram.

A large body of multi-view 3D reconstruction algorithms, including Structure-From-
Motion [274] and SLAM [221], can be used to �nd reliable sparse 3D scene points and
camera poses, but these methods are designed only to reconstruct static components
of videos. Furthermore, sparse reconstruction methods could support some features of
our approach, but occlusion requires per-pixel geometry, which these methods do not
produce. Recent work has focused on estimating a consistent dense depth representation
from videos with dynamic elements [178, 207, 344]. �ese methods were applied to
virtual object insertion, but their demos were created by loading the 3D reconstruction
in professional 3D rendering and compositing so�ware such as Blender or Nuke. Our
approach uses the video depth reconstructed by these methods to track, orient and render
drawing canvases in the scene, allowing users to insert scene-aware doodles with a simple
2D user interface.

Inserting virtual objects into captured scenes is also key to augmented reality applications
[16, 88, 314]. In such applications, users typically place virtual objects in the scene
through in-situ direct interactions [188], by placing tracking targets on objects [198],
or by selecting pre-de�ned targets – e.g. detected planar surfaces [16]. Our system is
designed to be used as a post-processing video editing tool rather than as an in-situ
augmented reality tool. �is positioning allows us to o�er more precise and expressive,
keyframe-controlled trajectories for the inserted doodles.

Leveraging scene motion. Our approach draws inspiration from prior work that
leverages motion tracking to augment videos with hand-drawn annotations and with
direct navigation along motion trajectories [86, 116, 117, 227]. Subsequent work by Suzuki
et al. [302] allows the insertion of responsive sketches that follow or react to tracked
motion. We extend this family of work by enabling more direct user control over the
tracking results through keyframing of both position and orientation of drawing canvases,
and by accounting for the 3D geometry of the scene over which the doodles are drawn.

96

VI.3. CHALLENGES IN VIDEO DOODLES AUTHORING

In human-computer interaction, many approaches leverage human pose estimation and
tracking [55] to o�er dedicated visual e�ects and visualizations [217, 266, 342]. PoseTween
[201] is a system for animating drawings over human action videos which relies on human
pose for 2D interpolation of user-provided keyframes. In contrast to these domain-speci�c
solutions, our approach tracks 3D trajectories of arbitrary objects and supports 3D e�ects,
including perspective transformations and occlusions of the inserted doodles.

Tracking arbitrary points in videos. While tracking bounding boxes [128], segmen-
tation masks [229], planar regions [197], or semantic keypoints for objects of a known
class [330] has been studied thoroughly, the more general problem of tracking arbitrary
surface points across a video has received surprisingly li�le a�ention, as stressed by the
recent TAP-Vid benchmark for long-range point tracking [83]. Aiming at helping novices
to create cartoon animations, Live Sketch [295] guides a point tracker using keyframing to
extract motion from a video clip and transfer that motion to a drawing. �eir algorithm
follows prior work that casts user-guided point tracking as an optimization where the
point trajectory corresponds to the shortest path in a directed graph formed by the
video pixels [13, 51]. �is formulation was also used by Doersch et al. [83] to annotate
ground-truth trajectories for the TAP-Vid benchmark. We extend this formulation to the
case of 3D point tracking by accounting for the depth and camera pose at each frame.
Furthermore, we leverage the resulting trajectory to also orient the 3D canvas according
to the direction of the moving object. Finally, rotoscoping algorithms track curves along
contours in a video, guided by user-provided keyframes [8, 194]. �ese algorithms rely
heavily on the smoothness and contrast of image contours, while we focus on tracking
points that may lie in feature-less regions.

VI.3 Challenges in video doodles authoring
We investigated current video doodling practice by surveying 20 online tutorials (T1-
20, see complete list in supplemental materials) and by discussing the most common
techniques with two professional motion designers (P1 and P2) having 17 and 15 years of
experience with 2Dmotion graphics tools (Adobe A�er E�ects, Adobe Character Animator),
and animating with code (Processing, CSS).

2D animationwork�ow. �emajority of tutorials we found [T1-13] describe a process
akin to traditional 2D animation. �e artist imports the video in an animation so�ware
and proceeds to draw on one or multiple overlaid layers, for every frame of the video. To
streamline this work�ow, artists can copy and transform the drawings from one frame
to the next, or can rely on smooth interpolation of the drawn strokes between sparse
keyframes [T11,12]. �is is a di�cult process that requires signi�cant manual tweaking:
“ [It’d be] probably a lot of changing stu� on a per frame basis to make sure it catches up

97

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Step 1. Position the canvas in 1 frame

Step 1. Position the canvas in 1 frame Step 2. Inspect automatic trajectory & add keyframes

Step 2. Orient the canvas

Step 3. Draw animation frames

before

further

closer

St
at

ic
 c

an
va

s
D

yn
am

ic
 c

an
va

s

In video perspective

Fronto-parallel drawing panel

Fig. VI.3: Main features of our user interface. The user can place a static (top) and dynamic
(bo�om) canvases in the scene by dragging their centers (green cross). Canvases can be moved
closer or further away from the camera, and can be oriented using a gauge figure. Dynamic
canvases are placed in one or more keyframes, from which our system deduces a 3D trajectory
(time is color-coded with a jet ramp). The user can then draw doodles in a dedicated panel where
the canvas is rectified to be fronto-parallel, alleviating the need to draw in perspective.

properly, you’d need to just be like, on this frame, you’re here, and change the drawing. ”
(P2)

Dealing with occlusions requires either erasing occluded parts of the doodles [T2], or
creating binary masks that follow the occluding shape across the video [T12,13]. Another
major challenge resides in synchronizing the drawings with events in the video. Artists
achieve such synchronization by keeping the video visible as an underlay to provide visual
context, and by taking notes on the precise timing of key events to plan the animation
[T1].

Motion and camera tracking. Artists rely on experience and intuition to draw doodles
such that they appear to have the correct motion and perspective in the scene, which can
be challenging even for simple camera motions: “ Honestly that’s a trial and error process.
It’s me saying OK, let me try this position keyframe and see if [this] looks interesting like
this and if not, I’ll just keep on doing it until I get something that I feel looks right. ” (P1)

To ease this task, artists are faced with diverse tracking tools to pick from.One-point
tracking [T14,20] is easy to set up but does not take orientation or perspective changes
into account, whereas 3D camera tracking [T16] is well suited to place static elements
in the scene but cannot track moving objects. When using these algorithms, artists
o�en correct the inferred trajectories by deleting erroneous parts and replacing them
with interpolated keyframes [T15], by providing corrective keyframes to the algorithm
[T17-20], or by tuning tracking parameters [T17-19]. “ If at a certain point I move too fast

98

VI.4. USER WORKFLOW

or something happens, it’s blurry and the tracking goes o� and then it’s all over the place,
this li�le tracker. So then I have to do some manual edits and put it back and just make sure
it works OK. And yeah, it’s just a li�le bit cumbersome. ” (P1)

Due to these challenges, both professional designers we interviewed judged that it would
take them several hours to create a video doodle of a few seconds using the tools they
are familiar with.

Design goals. Based on the above observations, we de�ne the following design goals
for our interactive VideoDoodles system:

G1. Scene-aware doodling: Maintain a 2D animation work�ow, yet streamline the
creation of perspective and occlusion e�ects.

G2. Flexible motion tracking: Support the tracking of both the moving camera and
moving objects in the scene.

G3. User control: O�er control on the motion and timing of the doodles using the
established interaction paradigm of keyframing.

VI.4 User work�ow
Our system follows the principles of mixed-initiative user interfaces [134] as it leverages
3D computer vision to o�er signi�cant value-added automation, combined with simple
2D interaction mechanisms to enable amateurs to e�ciently guide and re�ne the end
result. We �rst describe a typical interactive session with this system, illustrated in
Fig. VI.3. We provide a recording of this session in the accompanying video, along with
additional animated results. We detail the algorithms behind our system in Section VI.5.

Input. Our system takes as input a video clip representing a single camera shot. In a
preprocess, we augment this input with per-frame camera pose, depth map and optical
�ow (Section VI.5.1).

Planar canvases. We ful�ll our �rst design goal (G1) by embedding the doodles into
planar 3D canvases that are placed in the scene via 3D rigid transformations. On the
one hand, users can easily draw strokes on planar canvases using a 2D interface. On the
other hand, we can render these canvases with correct perspective and occlusions in all
video frames thanks to the estimated camera poses and depth maps. While this simple
mental model cannot represent non-planar curves, advanced animation e�ects can be
achieved by animating the strokes within the canvas, as in traditional 2D animation.
Many sketch-based modeling systems rely on similar canvases to li� 2D strokes to 3D
[23, 36, 54, 85, 188, 196].

99

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Placing a canvas. Our interface allows users to place static or dynamic canvases in
the video. Static canvases have a �xed position and orientation in the scene, and as such
only react to camera motion (G2). Users place static canvases by dragging and rotating
them over one of the video frames, and by optionally adjusting their scale relative to the
scene. Our system automatically sets the center of the canvas such that it lies at the same
depth as the underlying surface. Users can over-write this default depth using a slider.

Dynamic canvases follow moving objects in the scene (G2). To obtain such tracking,
users position and orient the canvas in at least one keyframe. Our system then infers a
3D trajectory that follows the scene point under the center of the canvas across the video,
and it orients the canvas relatively to the direction of that trajectory. If needed, users
can re�ne the result by adjusting the position and orientation of the canvas in additional
keyframes (G3). By default, users only need to specify the 2D position of the canvas in
each keyframe, and our algorithm takes care of deducing the depth that yields the best
tracking in 3D. As with static canvases, users can over-write the inferred depth using a
depth slider. Since our system embeds the canvas in 3D, the canvas automatically appears
bigger or smaller as it moves in depth, without requiring an explicit keyframing of scale
by the user.

Drawing on a canvas. Canvases can undergo signi�cant foreshortening depending
on their 3D orientation, and prior studies have shown that even experienced artists
struggle to draw accurately over slanted surfaces [270]. Our interface avoids drawing
in perspective by providing a secondary drawing panel, where the canvas is displayed
under an orthographic, fronto-parallel view (G1). However, drawing on a blank canvas
would make it di�cult for users to align and synchronize their doodles with the video
content. Our interface provides the necessary contextual cues by rectifying the portion
of the video covered by the canvas and by displaying it as an underlay in the drawing
panel. We help users �nd a suitable frame to draw onto by reporting the amount of
foreshortening of the canvas for each frame of the trajectory, less foreshortened canvases
yielding less distortion of the video a�er recti�cation. Furthermore, our interface directly
shows occlusion e�ects as strokes are drawn to help users assess the 3D insertion of
their doodles. Finally, we provide a basic frame-by-frame 2D animation tool within the
drawing panel, which allows users to create simple loops that are repeated along the
video. �is tool also includes a simple onion skinning feature – displaying previous and
next frames as semi-transparent overlays – to facilitate drawing animated sequences.

VI.5 Algorithmic Components
At the core of our system is a tracking algorithm that leverages camera and scene motion,
depth estimation, and user-provided keyframes to �nd the 3D trajectory of a scene-aware
canvas.

100

VI.5. ALGORITHMIC COMPONENTS

t
(a) Shortest path in video volume (b) Raw trajectory (c) Poisson integration

Fig. VI.4: Schematic illustration of our tracking algorithm. We extract an initial trajectory as
the least-cost path in the directed graph connecting each keyframed pixel to similar pixels in
consecutive frames (a). This trajectory o�en ji�ers over the object to track due to occlusions, lack
of visual features, and our use of a low-resolution graph (b). We recover a stable trajectory by
integrating the scene flow sampled along the initial trajectory at full resolution (c, red arrows).

VI.5.1 Pre-computing depth and motion
Our method is built upon 3D video reconstruction; given a set of input frames, per-
frame camera poses and world-aligned depth maps are computed. We use our own
re-implementation of Robust Consistent Video Depth Estimation [178]. �is approach �rst
estimates camera pose and a projection matrix for every frame using COLMAP [274]. It
then uses a deep single-image depth predictor to compute scale and shi� invariant depth
maps, and solves for a geometric optimization that aligns these depth maps into consistent
world coordinates, yielding a dense, temporally consistent geometric reconstruction. �is
approach internally uses optical �ow [309] computed between consecutive frames, which
we also save for later use.

Equipped with the camera matrix and depth map for each frame 𝑡 , we compute for every
pixel 𝑝𝑡𝑖 its 3D position 𝑃 𝑡𝑖 by unprojection. Similarly, we li� the optical �ow vectors 𝑣𝑡𝑖 to
3D to obtain scene �ow vectors 𝑉 𝑡𝑖 .

VI.5.2 Keyframe-based tracking
Given one or more user-speci�ed canvas keyframes (consisting of a position and orienta-
tion), our goal is to recover a trajectory that

• Makes the canvas follow the scene point it is a�ached to, such that users do not
have to reproduce that 3D motion by hand.

• Interpolates between keyframes, such that users have full control and can (option-
ally) deviate from motion tracking if desired.

We cast this problem as a series of optimizations, where the variables are the 3D positions
and orientations of the canvas in each frame, the keyframes are expressed as hard
constraints, and the motion tracking is expressed as so� objectives to allow for correction
by the user. We �rst detail how our approach tracks 3D positions, and then explain how
we extend it to additionally track 3D orientation.

101

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Tracking 3D positions. Our method builds upon related keyframe-based 2D tracking
algorithms that search for trajectories with coherent appearance and motion within the
space-time video volume (Fig. VI.4a) [13, 51, 83, 295]. �ese methods build a directed
graph that connects each pixel in frame 𝑡 to every pixel in frame 𝑡 + 1, and assigns each
edge a weight that is proportional to the di�erence in appearance and position between
the two pixels [13, 295], or to the agreement with pre-computed optical �ow motion
vectors [83]. Frames with a keyframe have only one node in this graph, corresponding to
the pixel speci�ed by the user to be the center of the canvas, which forces the trajectory
to adhere exactly to the constraints. All nodes at the �rst frame and last frame are
connected to a super-source and sink node respectively, and the trajectory is computed
as the shortest path from source to sink.

We extend this family of algorithms to leverage the 3D information we extracted during
preprocessing, and to generate a 3D trajectory. Speci�cally, we encourage the scene-space
trajectory to align with the scene �ow by expressing the edge weight between pixels in
consecutive frames as

𝑤

(
𝑝𝑡𝑖 → 𝑝𝑡+1𝑗

)
=

(𝑃 𝑡+1𝑗 − 𝑃 𝑡𝑖
)
−𝑉 𝑡𝑖

2 . (VI.1)

Computing this weight as a 3D distance prevents the trajectory to jump between objects
that lie close together in image space yet are far apart in depth. We improve the robustness
of this formulation by removing nodes (pixels) that are too close to motion or depth
discontinuities, as detected by computing the agreement between forwards and backwards
optical �ow for the former, and by computing the gradient of the depth map for the la�er.
�is safeguard further reduces the risk of crossing object boundaries.

Building the graph over the entire video volume would be prohibitive. We drastically
reduce complexity in two ways. First, we trim a large part of the graph by augmenting
each pixel with an appearance vector 𝑎𝑡𝑖 – which we compute as a set of deep visual
features [149] – and by only retaining, for every frame, the 10% pixels most similar to
the keyframes in appearance. �is trimming also helps the tracking algorithm to focus
on the region of interest. Second, we reduce the size of the graph by working at the
resolution of the deep visual feature maps, where one pixel corresponds to a patch of
10 × 10 pixels in the original video. With these se�ings, building the graph and �nding a
shortest path with Dijkstra’s algorithm for 80 frames of a 1200 × 674 video takes around
3 seconds on a 2.4GHz Intel i5 MacBook Pro with 16GB of memory.

Recovering stable, high-resolution trajectories. Prior methods directly output the
nodes of the shortest path as the tracking trajectory [13, 51, 83, 295]. However, this
initial discrete trajectory o�en su�ers from ji�er and dri� over featureless surfaces or in
the presence of occlusions, which are exacerbated when working with a low-resolution
graph (see Fig. VI.5). We correct for such instability by observing that large portions of
objects o�en move coherently, such that neighboring pixels have similar motion vectors.

102

VI.5. ALGORITHMIC COMPONENTS

(a) 1 keyframe at clip start (b) Trajectory after occluder

Initial trajectory
Stable trajectory

Fig. VI.5: E�ect of Poisson integration. Given a single keyframe as input (a), the shortest-path
algorithm yields an initial trajectory that dri�s over the bicycle as its gets occluded by the
foreground plant (b, red). Since the entire bicycle undergoes the same translation, integrating
the scene flow vectors sampled along the initial trajectory removes the dri�, resulting in a stable
trajectory that runs behind the occluder (b, light blue).

Following this intuition, we sample the scene �ow along the initial trajectory to get an
estimate of the trajectory’s derivatives {𝑉 1, . . . , 𝑉𝑇 }. We then reconstruct a stable, high
resolution trajectory by solving for the continuous 3D positions P = {𝑃1, . . . , 𝑃𝑇 } ∈ R3×𝑇
of the canvas that satisfy these derivatives, which corresponds to a Poisson problemwhere
the user-provided keyframed pixels {𝑝𝑘} act as boundary constraints (Fig. VI.4b,c). We
formulate these constraints via the camera projection operatorΠ𝑘 , such that the trajectory
passes through 3D points 𝑃𝑘 that reproject exactly on keyframed pixels. We further
regularize the problem by encouraging the trajectory to run close to the unprojected
keyframed pixels {𝑃𝑘}, yielding:

min
P

∑︁
𝑡

(𝑃 𝑡+1 − 𝑃 𝑡) −𝑉 𝑡

2 + 𝜆depth∑︁
𝑘

𝑃𝑘 − 𝑃𝑘

2 ,
such that 𝑝𝑘 = Π𝑘 (𝑃𝑘).

(VI.2)

In cases where the user also speci�es the depth of a keyframe via the depth slider, we
directly enforce that the trajectory passes through the resulting 3D point by se�ing the
constraint to 𝑃𝑘 = 𝑃𝑘 . Such constraints are particularly useful in scenarios where the
user wants to anchor a canvas to the hidden side of an object, yet wants the canvas to
follow the overall motion of that object (e.g. the le� arm of the �amingo in Fig. VI.12).
Our Poisson formulation reconciles the initial trajectory, which by de�nition of the graph
nodes only passes through visible points of the object, with the user-speci�ed depth
values.

Tracking 3D orientations. Users can also control the orientation of a dynamic canvas
along its trajectory by specifying a rotation matrix in one or more keyframes {𝑅𝑘} ∈
𝑆𝑂 (3)𝐾 , from which our system deduces a sequence of rotation matrices {𝑅1, . . . , 𝑅𝑇 } ∈
𝑆𝑂 (3)𝑇 , one for each frame of the trajectory.

Following our second design goal (G2), we want the orientation of the canvas to follow
the orientation of the moving object it is tracking, as illustrated in Fig. VI.6. Let us �rst

103

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

(a) 1 keyframe (b) Constant (c) Optimized

Fig. VI.6: In this example, the user orients the canvas to be perpendicular to the motion
trajectory in one keyframe (a). Keeping this orientation constant in scene space produces an
implausible result as the trajectory turns to follow the tracks (b). Our optimization rotates the
canvas to preserve its orientation relative to the trajectory (c).

consider the restricted case where the user orients the canvas perpendicularly to the
trajectory of the object. Let us further assume that the canvas normal is given by the
�rst axis of the orthogonal frame encoded by the canvas rotation matrix, denoted as 𝑅𝑡 |𝑋 .
Given the normalized scene �ow vector𝑉 𝑡 at each frame 𝑡 , we can encourage the canvas’
normal to align with the trajectory by minimizing | |𝑅𝑡 |𝑋 −𝑉 𝑡 | |2.

𝑉 𝑡

𝑅𝑡 |𝑋
𝑅★

However, we also want to give users the freedom to choose the rel-
ative orientation of the canvas with respect to the moving object, for
instance to make the doodle parallel rather than perpendicular to the
trajectory. We achieve this behavior by introducing an (unknown)
rotation matrix 𝑅★ that transforms the canvas relatively to the motion
trajectory, yielding:

min
{𝑅𝑡 ,𝑅★}

∑︁
𝑡

| | (𝑅𝑡𝑅★) |𝑋 −𝑉 𝑡 | |2 + 𝜆smooth
∑︁
𝑡

| |𝑅𝑡+1 − 𝑅𝑡 | |2 ,

such that 𝑅𝑘 = 𝑅𝑘 .
(VI.3)

�e �rst term encourages the canvas to align with the tangent of the trajectory, up to
the relative orientation 𝑅★. �e second term prevents the canvas to twist unnecessarily
as it travels along the trajectory [294]. Finally, the constraint ensures that the canvas
perfectly respects the keyframed orientations.

While the smoothness term brings robustness to noise in the scene �ow, it tends to damp
the rotation of the canvas around sharp turns of the trajectory. We address this issue by
spli�ing the trajectory in the presence of abrupt turns (which we detect as local minima
in velocity, i.e., when |𝑉 𝑡 | < 0.2 ×max(|𝑉 𝑡 |)) and by assigning a di�erent matrix 𝑅★ to
each segment. A sudden change of direction in the trajectory is then captured by an
instantaneous change of 𝑅★ rather than by progressive changes of 𝑅𝑡 .

Our formulation bears resemblance with algorithms for interpolating orthogonal frames
along 3D curves [45, 294], although such methods do not include the additional rotation
matrix 𝑅★, which is key to o�er users control on canvas orientation in our context.

104

VI.6. RESULTS AND EVALUATION

Similarly to these prior methods, we solve our optimization over the manifold 𝑆𝑂 (3)𝑇
of rotation matrices using the Riemannian Trust Region algorithm implemented in the
Pymanopt library [311], with parameters described by Boumal [45]. Following their
recommendations, we initialize orientations with a spherical linear interpolation of the
keyframe quaternions. While solving the small linear system in Equation VI.2 is very fast,
�nding a local minimum of Equation VI.3 can take up to a dozen of seconds, depending
on the number of frames and segments (e.g., 1.5” for 1 segment of 80 frames in Fig. VI.6,
vs. 9” for 3 segments and 143 frames in Fig. VI.3).

Parameter setting. We used a �xed set of parameters for all our results. A weak
regularization on canvas depth 𝜆depth = 0.01 mainly serves when the user does not
provide depth keyframes. In contrast, a high regularization on orientation smoothness
𝜆smooth = 10 prevents the canvas to align with every li�le turn in the trajectory.

VI.6 Results and evaluation
Fig. VI.12 showcases a variety of video doodles we created with our system based on
clips from the DAVIS datasets [243, 247], or captured by us. �ese results cover various
application scenarios, ranging from humorous augmentations of casual videos (Flamingo
cocktail party, BMX), to informative or instructive (Climbing, Tennis), and other forms of
annotations and highlights (Travel vlog, Swinging). Importantly, these results exhibit
numerous occlusions between real and drawn content (text in the Travel vlog, legs of the
�amingo, frame of the swing), as well as complex trajectories, both in terms of position
(Climbing, Comics parkour) and orientation (Swinging). We strongly encourage readers
to look at the corresponding videos in supplemental materials.

We �rst evaluate our tracking algorithm quantitatively on a recent benchmark. We then
evaluate our interface qualitatively by asking novice and professional users to create
video doodles.

VI.6.1 Tracking accuracy
In the absence of a benchmark for 3D point tracking, we evaluate the accuracy of our
algorithm on the recent TAP-Vid benchmark [83], which provides a set of ground truth
2D trajectories (called tracks) and occlusion �ags for the task of tracking arbitrary points
in videos. Since our primary contribution is the design of an interactive system for video
doodling, the goal of this evaluation is not to claim improvement over fundamental
tracking algorithms, but rather to demonstrate that the tailored algorithm we designed
to support our user interface is on par with recent algorithms developed for a similar –
albeit not identical – task.

Our approach requires a 3D reconstruction, but current algorithms for camera calibration
from a single monocular video can fail when there is not enough camera motion, or

105

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

Unprojected GT
[O] Ours
[T] TAP-Net

2 keyframes

[O] AJ = 47%

[O] AJ = 53%

[O] AJ = 22%

[O] AJ = 42%

[O] AJ = 47%

[T] AJ = 13%

[T] AJ = 40%

[T] AJ = 35% [T] AJ = 39%

missed subtle wheel motion

jitter
jitter

lost track due
to occlusion

Fig. VI.7: Visual comparison of our tracking trajectories against TAP-Net [83]. For visualization
purposes, we compensate for camera motion by rendering 3D trajectories projected onto the
first frame of the video clip. Since the ground truth and TAP-Net trajectories are provided as
2D image-space points, we unproject them to 3D using the same cameras and depth maps as
used by our method. Our method produces 3D trajectories that are more precise (higher Average
Jaccard, AJ) and smoother than TAP-Net (top row). While our method can lose track of a point
due to occlusion (bo�om le�), adding a keyframe o�en su�ices to resolve such issues (inset).
Both our method and TAP-Net struggle to recover subtle composed motions, such as the rotation
of the car’s wheel (bo�om, right).

too many dynamic objects. We therefore restrict our evaluation to a subset of the TAP-
Vid-DAVIS dataset consisting only of those videos whose 3D reconstruction succeeded,
yielding 24 (out of 30) annotated videos for a total of 575 tracks of 62 frames on average.

Single keyframe First, we evaluate the performance of our algorithm in the case where
only one keyframe is speci�ed. Following the strided se�ing of TAP-Vid, we sampled
each track every 5 frames to obtain a set of query keyframes, then ran our algorithm
for each of these queries to obtain multiple predictions. �e �nal metric is computed
as an average over all queries for all tracks and all videos. Since our algorithm outputs
a 3D trajectory, we project each point to 2D using the cameras and test for occlusion
by checking if the point lies outside the image frame, or if the 3D point lies behind the
depth map. Table VI.1 summarizes the outcome of this evaluation using the metrics
recommended by Doersch et al. [83] – average Jaccard, average position accuracy of
visible points, and binary occlusion accuracy (higher is be�er). Our method outperforms
the state-of-the-art TAP-Net method proposed by Doersch et al. [83] on the two �rst
metrics, and it achieves comparable accuracy on occlusion. We also include the scores
of the initial trajectory produced by the shortest-path algorithm (Ours w/o Poisson),
highlighting the bene�t of including the Poisson integration step in our method. Finally,
we provide the scores obtained by our method when �xing the keyframe to be the �rst

106

VI.6. RESULTS AND EVALUATION

Table VI.1: Evaluation of our tracking algorithm on 24 videos of the TAP-Vid DAVIS benchmark
with a single keyframe (1kf). Adding an extra keyframe (2kf) yields a significant improvement in
all metrics (higher is be�er). We report the results of TAP-Net [83] computed on the 24-videos
subset for which we obtained a successful 3D reconstruction.

Method Avg Jaccard (↑) < 𝛿𝑥𝑎𝑣𝑔 (↑) Occlusion (↑)
TAP-Net (1kf, strided) 37.2% 52.7% 80.2%
Ours (1kf, strided) 40.8% 59.2% 80.6%
Ours (1kf, strided, w/o Poisson) 18.3% 31.6% 75.1%
Ours (1kf, �rst) 31.6% 50.9% 75.2%
Ours (2kf) 45.5% 67.3% 78.3%

visible ground-truth 2D position of each track (Ours 1kf, �rst), as this se�ing is closer
to the way users would interact with our system. As noted by Doersch et al. [83], this
keyframe selection strategy yields lower performance.

Multiple keyframes Since we designed our algorithm with interactive control in mind
(G3), we now evaluate how adding keyframes improves the resulting trajectory. �e last
row of Table VI.1 (Ours 2kf) reveals that positioning one keyframe at the start of the
visible trajectory, and another keyframe at the end, su�ces to improve the quality of the
track signi�cantly. We additionally ran an experiment where we progressively increased

Keyframes

Av
g

Ja
cc

ar
d

0

0.4

0.6

0.8

0.2

1

1 2 3 4 5 6 7 8 9 10

the number of keyframes for each of the 25 tracks of one repre-
sentative video (50 frames total), adding each new keyframe as
the midpoint of the two most distant existing keyframes. �e
inset shows that the tracking accuracy quickly increases with
additional keyframes, and eventually saturates as keyframes get
close together.

�alitative comparison Fig. VI.7 provides a visual comparison between a few of
our tracks and the ones predicted by TAP-Net, along with the corresponding ground
truth. We include additional video comparisons as supplemental materials. Overall, the
tracks produced by our method exhibit less ji�er than the ones predicted by TAP-Net
– a property that is essential to achieve convincing video doodles. We also stress that
TAP-Net only supports a single query point per track, while our method allows users to
correct tracking failures due to occlusion or dri� by adding keyframes. Moreover, while
TAP-Net predicts occlusion at a single 2D pixel, our 3D trajectories enable depth testing
against a predicted dense depth map to render occlusions over the entire planar canvas.

107

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

VI.6.2 User study
We conducted a study with 7 participants, 5 being novices while the other 2 being
the professional motion graphics designers we interviewed during our formative study
(Section VI.3). �e �ve novices participated in-person by drawing on a Wacom Cintiq
16 tablet, whereas the two professionals participated remotely using only a mouse or
trackpad. Participants were �rst introduced to our system via a short video tutorial, and
were then given two tasks:

Task 1 - Goal-directed (10 minutes). Participants are shown an
example video doodle that they have to reproduce, shown in
inset. �is task was designed so that users could experience
all the main features of our system, and was inspired by the
goals of online tutorials (see T3 in supplemental materials).

Task 2 - Open-ended (30 minutes). Participants are asked to create two novel video doodles
by choosing among 15 short video clips (3” duration on average).

Finally, participants answered a questionnaire about the di�erent features of our system.
While we conducted this study with a small group of participants, the collected material
represents 4.5 hours of interactionwith our system, corresponding to a total of 49 canvases.
In the following section, we detail important insights we gained from this data, including
typical usage of the system’s features, unexpected user behavior, and suggestions for
improvement. We provide all 21 video doodles as supplemental materials to illustrate the
type of e�ects that users of our system could create a�er only a few minutes of practice.

Everyone can create video doodles with our system – fast. Fig. VI.11 provides a
gallery of results created by the participants during the open-ended task, along with their
completion time. Creating the moderately complex video doodle of Task 1 only took
10’30” on average (sd = 03’07”). Creating a video doodle from scratch – including time
to brainstorm and experiment ideas – took an average of 14’00” (sd = 07’05’). Both of
the professional participants emphasized the speed with which they could create video
doodles with our system: “ I feel like we just raced through all those di�erent things because
it was so easy and quick to use. If I’m working in A�er E�ects, I have to spend a lot more
time worrying about the tracking, or about whether the canvas is going behind this thing or
this other thing. Here it just happened automatically and it worked how I thought it should.”
(P1)

Furthermore, all participants were highly satis�ed with the video doodles they created
(score of 4.7 on a 5-point Likert scale). Many participants were enthusiastic at the idea of
using our prototype with videos that they would capture themselves.

Automating tracking and 3D rendering frees up time for doodling. By analyzing
usage logs, we �nd that participants spend around half of their time doodling and creating

108

VI.6. RESULTS AND EVALUATION

P5 - Task 1 (12’30’’)

P7 - Task 2: motorized swan (18’03’’)

P4 - Task 2: car race (09’38’’)

P2 - Task 1 (10’16’’) Keyframing Drawing Playback/Idle

Fig. VI.8: Timelines of performed operations. In this visualization, di�erent hues (green, red,
blue) depict di�erent canvases, and brightness di�erentiates keyframing a canvas (dark colors)
from drawing on a canvas (light colors). Participants roughly spent as much time keyframing as
drawing, and sometimes alternate between the two operations (P4).

compelling frame-by-frame animations (see Fig. VI.8 for a temporal breakdown of typical
sessions). On average, 49% of a session was dedicated to drawing (sd = 17%, min/max =
24/89%, measured as the time spent with the drawing panel open). Even novices picked
up quickly the concept of frame-by-frame animation, and all succeeded in creating such
animation clips. On average, participants drew 3.3 (sd = 1.8) frames per canvas, with
6.0 (sd = 9.2) strokes per frame. We also observe that participants sometimes alternate
phases of drawing with keyframing to adjust the trajectory of a canvas a�er drawing on
it, which happened in 19 out of the 49 canvases created over all video doodles.

�ese observations suggest that we achieved our design goalsG1 andG2 – by decoupling
2D drawing from 3D in-scene embedding and tracking, users are able to focus on the
creative task of doodling: “ What I found myself spending more time on was redoing the
drawings to make them laser or like add more stu�. Since the ”hard part” – the tracking – is
being taken care of, I could focus on drawing the shapes that I want. ” (P2)

Nevertheless, some participants would have liked to be able to draw directly over the
video in complement to the recti�ed drawing panel, or have the option to vary the brush
shape and texture, two features that we did not implement in our prototype.

Combining tracking with keyframing keeps users in control All participants
quickly grasped the concept of keyframing to control the position and orientation of
the canvases. �ey used an average of 3.3 (sd = 3.0) position keyframes and 2.5 (sd =
1.8) orientation keyframes per dynamic canvas. Making the canvas track a particular
object required 1 or 2 position keyframes in the majority of cases. Out of the 26 dynamic
canvases, only 6 canvases required 5 keyframes or more. �is extra work was needed
when the tracked object gets occluded along its trajectory (P1 - swing, P2 - dancer’s
hand), or when the desired trajectory does not strictly follows a single point of a moving
object (e.g., P5 - lama where the backpack �rst follows the lama’s �ank, then its rear).

�e e�ort that participants put into perfecting their results with more keyframes shows

109

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

(a) Desired orientation (b) With 1 keyframe (c) Adding keyframes

Fig. VI.9: Limitation. The dancer rotates on herself as she jumps. Given a single keyframe, our
tracking algorithm follows the upward motion of the body, but not its rotation (a-b). The user
can achieve the desired e�ect by keyframing the canvas rotation (c).

that the interface gave them a sense of agency in the tracking task, in accordance with our
design goal G3: “ Overall I felt like I was in control, and that it was making smart automatic
decisions for me. ” (P1) “ Adjusting the plane with the keyframes was super simple, and it’s
great that you can adjust things to make them perfect. You get the [automatic] trajectory
and that does most of the work for you, but then you can tweak it. ” (P2)

Still, expert users value the more advanced features available in professional so�ware:
“With A�er E�ects tracking tool, there are so many more options that you have, so I feel like I
have more control over the tracking at a pixel level, since I can zoom in and make it perfect.”
(P1) One of the experts also reported having di�culty positioning the canvas in depth at
�rst, which suggests possible improvement in visualizing or controlling depth.

Working around limitations. Our choice of embedding strokes in planar canvases
prevents the creation of non-planar doodles. Several participants found creative solutions
to work around this limitation, such as placing two orthogonal canvases to depict sections
of the cloud of steam (Fig. VI.11, P6 - train), or drawing di�erent doodles to depict the
side and back views of a backpack on the lama, taking care of switching between these
doodles to match the viewpoint in the video (Fig. VI.11, P5 - lama).

VI.6.3 Limitations.
Our tracking algorithm assumes that the object to track is oriented towards its dominant
motion trajectory. Fig VI.9(a,b) illustrates a case where this assumption does not hold, as
the dancer rotates on herself as she moves across the scene. While our algorithm does not
capture this in-plane rotation, the user can reproduce it by adding keyframes (Fig VI.9c).
Orientation tracking might be improved by extending our user-guided point tracking
approach to track multiple nearby points simultaneously. Our algorithm also tends to lose
track of objects when they are too thin, or when they become too occluded. Prior methods
proposed to use skip edges to deal with occlusions as part of the shortest path optimization
[295], but this mechanism increases the complexity of the graph signi�cantly. In our

110

VI.6. RESULTS AND EVALUATION

(b) Erroneous occlusions(a) Drawing context foreshortening

Fronto-parallel drawing panel

In video perspective

Fig. VI.10: Limitations. When the canvas is highly foreshortened, the video context appears
with strong distortions in the fronto-parallel drawing panel (a). We rely on existing video depth
estimation methods to handle occlusions. While most of the silhoue�e of this dancer is well
captured, erroneous depth yield wrong occlusions in small regions around her arms (b).

experience, most issues caused by occlusion can be resolved by adding a few keyframes.
Be�er tracking of thin objects could be achieved by increasing the resolution of the
graph, potentially relying on a multi-scale strategy to keep the problem tractable, as
has been suggested by Bian et al. [35]. While we focused on general point tracking for
maximum �exibility, integrating domain-speci�c algorithms (e.g. body pose tracking
[123], or hand trajectory prediction [203]) within our keyframe-based interface could
improve robustness for speci�c use cases.

While we provide context in the drawing panel by rectifying the underlying video with a
homography, strong distortion appears when the canvas is too foreshortened (Fig. VI.10a).
Future work could explore the use of more advanced novel-view-synthesis techniques,
possibly by leveraging the depth maps and multiple views of the scene we have access to.

Finally, our system relies on the depth map provided by Robust Consistent Video Depth
Estimation to render occlusions automatically. While this solution o�en su�ces for
doodles made of sparse strokes, errors around the silhoue�e of the occluder can appear
on densely painted doodles (Fig. VI.10b). Users can fall-back to existing masking tools
to handle such cases, although a more integrated solution would consist in providing
sparse user corrections to the depth estimation algorithm to re�ne its result.

111

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

P1 - hike P2 - dancer

P3 - angel & devil child P4 - car race

P5 - lama P5 - squirrel friend

P6 - train (Task 1) P6 - unicorn jump

P7 - motorbike race P7 - motorized swan

Fig. VI.11: Video doodles created with our system by participants of our user study. Participants
created static doodles (text in P1 - hike, finishing line in P7 - motorbike race) as well as dynamic
doodles (P3 - angel & devil child, P5 - squirrel friend). Several of these doodles get occluded by
real objects (poles in P4 - car race, face on the tree in P5 - squirrel friend), and are synchronized
with specific video events (yellow sparkles when P2’s dancer touches the ground, water splash
when P6’s horse ends its jump.)

Climbing tutorial Tennis match augmentation

Travel vlog Flamingo cocktail party

Comics parkour Climbing jump highlights

BMX run highlights Swinging highlights

Fig. VI.12: Additional video doodles created with our system.

112

VI.7. CONCLUSION

VI.7 Conclusion
Recent progress in computer vision and recording devices makes 3D reconstruction
readily available from casually-captured videos, a trend that is likely to grow with the
democratization of depth sensors and on-camera SLAM systems. In this chapter, we
showed how depth and motion information can be leveraged to ease the creation of video
doodles, a popular media that mixes videos with hand-drawn animations. Depth and
estimated cameras allow us to embed hand-drawn doodles in 3D with correct perspective
and occlusion e�ects, while our novel controllable tracking method allows artists to easily
control how the doodles move along with objects in the scene. A user study and resulting
artifacts demonstrate the e�ectiveness of our interface and our keyframe-based tracking
algorithm to create a wide-range of 3D e�ects.

VI.8 Future Work
3D doodles We focused on the creation of video doodles composed of planar doodles
and as such do not support 3D freeform strokes, for instance to draw a swirling ribbon
around an object. Future work could explore the de�nition of non-planar canvases based
on parametric shapes [144], height �elds [18], extruded contours [231] or planar canvases
with user-de�ned depth [171]. Another promising idea consists of tackling the problem
of “li�ing” strokes drawn in the 2D image plane to 3D space, following some priors
on how strokes are drawn on and around existing 3D surfaces in the captured scene
[179, 196]. Our particular se�ing o�ers an additional challenge caused by the partial
and noisy nature of the information we have about scene geometry. However, we could
leverage the interactive se�ing to let users give more information by drawing 3D strokes
at di�erent frames – corresponding to di�erent views. Another avenue for future work
is to explore animation e�ects inspired by work in 3D animation, such as enriching the
simple 3D rigid transformation animations we currently have with generated secondary
motion [324, 340].

Synchronization and interaction between real content and doodles In the tutori-
als we surveyed, we noted that a key challenge was about timing a hand-drawn animation
to coincide with temporal events in the captured video. Our current system helps users
sketch doodles that are spatially aligned to a single frame but does not explicitly provide
support to time the doodle animation with respect to the video. Analyzing the video’s
visual rhythm [71] or key events [296] can help provide the user more insight about the
frequency they need to match in an animation loop, similar to how we saw experienced
editors analyze manually a video to note down the duration of a speci�c motion [T1].
Another possibility is to provide a system to create procedural animations of doodles, to
enable interactions and synchronization between the doodle animation and the video
content to be programmatically de�ned. �is can help support triggering animations
following video events [343], or to imbue a doodle with physical properties such as

113

CHAPTER VI. 3D SCENE-AWARE HAND-DRAWN ANIMATION ON VIDEOS

colliding with 3D scene objects [329].

Content authoring applications and computer vision In this chapter we showcase
one example of leveraging computer vision and deep learning techniques as part of a
content authoring tool designed to be accessible to novices. We are at a time of fast-paced
progress in all areas of computer vision – eg in the year following the completion of
this project, many new methods have already been published to tackle the problems of
arbitrary point tracking in videos [250, 320], and of high-quality video ma�ing [199]. �e
progress in quality of results in all computer vision tasks can be harnessed to improve
image and video editing applications and in �ne enable people to create visual e�ects
that they could not have achieved before without extensive training and time resources.
However, we believe that designing applications to make computer vision outputs useful
to people in a particular authoring scenario is an interesting challenge in itself – and
we hope that this chapter is enough evidence to convince the reader. Computer vision
excels at automating tasks and giving answers to well-de�ned questions – eg, where is
that point in every single frame of the video? – but an authoring process is more than
giving commands to a black box that executes them. So�ware for creative applications
needs to support humans in exploring ideas, and provide a sense of joy, playfulness and
pride in the creation process [283]. Designing such so�ware for other video and motion
editing tasks such as multi-viewpoint broadcasting, or sports and scienti�c visualizations,
constitutes a promising area of future research.

Least-e�ort computer vision Video doodles are an example of an application that
can work with relatively low quality 3D reconstruction of 3D scenes – an approximate
2.5D reconstruction of the scene via cameras and depth maps is enough. We rely on the
original video frames for rendering the new frames, based on the premise that the person
capturing the video has already chosen an appropriate camera path – forgoing the need
to reconstruct a 3D scene in which free viewpoint navigation is possible. Even though
the depth maps we use are sometimes erroneous, our choice to focus on an application
with an appealing non-photorealistic style – colorful doodles – make small errors less
noticeable to viewers. Despite the ever-increasing capabilities of computer visionmethods,
we believe that re�ecting on how to purposefully leverage lower quality methods can
constitute an interesting avenue for future work. Given the scienti�c consensus on the
urgent need to move away from endless resource consumption, questioning whether one
really needs the highest quality results or most advanced methods for a particular task is
an essential step forward [224, 278]. While we arrive at this observation serendipitously
in this research project, we hope that future work can consider “least-e�ort computer
vision” as a �rst-class design principle. Rethinking applications such as VideoDoodles
in a “post-growth” perspective [278] raises interesting technical challenges, such as
avoiding reliance on the availability of new hardware – in our case depth sensors – and

114

VI.8. FUTURE WORK

designing systems that can run locally on consumer devices, as opposed to requiring
enterprise-scale compute clusters [169].

115

Chapter VII

Conclusion

We started o� this thesis by proposing 3D sketching as a way for people to express their
goals within a 3D authoring system. We have seen three particular examples of how
choosing 3D strokes as a representation can help bridge the gap between a person’s
goals and a 3D authoring system, for 3D shape, appearance and animation authoring.
To conclude, I summarize our contributions and discuss future research perspectives
inspired by the successes, struggles and limitations of the research projects presented in
this thesis.

VII.1 Contributions
We showed that 3D strokes can be used for 3D surfacemodeling by proposing an algorithm
to obtain a 3D surface from a sparse 3D sketch. We take into account the fact that 3D
strokes encode not only a sampling of the depicted surface, but also indicate where
sharp features are located on this surface. �is enables us to obtain a piecewise-smooth
surface that be�er conveys the shape depicted by a sketch than globally smooth surfaces
produced by previous methods. We show that it is possible to process 3D sketches that
are messy, imprecise and lack connectivity – properties that o�en arise in the context of
sketching freehand in VR.

VR artists also use 3D strokes to directly depict appearance, in a process similar to
traditional oil painting where many colored strokes are arranged to render a picture of a
scene. �rough interviews with 4 VR artists, we give novel insights into this work�ow
that combines elements of manual rendering with 3D modeling aspects. We report that
artists value using VR painting because it is an approachable 3D authoring tool that feels
direct and gives a high level of control over the �nal result. We also highlight 4 challenges
faced by artists in their current work�ows. We hope this analysis serves as grounds for
future inquiries about this emerging artistic practice.

Building on these �ndings, we set out to use 3D strokes as a way to author both 3D
shape and appearance, while allowing to edit one independently from the other. While
in current VR painting so�ware, 3D shape and appearance are both encoded on a single
stroke, we enable artists to assign di�erent roles to strokes: strokes either act as 3D shapes
or act as color modi�ers on shape strokes. We achieve this by introducing “3D-Layers”,
an abstraction inspired by bitmap layers in 2D digital painting. We show that this design

CHAPTER VII. CONCLUSION

enables us to reproduce compelling hand-painted shading e�ects. �is project is still in
progress at the current time, we hope to further test our design in a user study.

Finally, we show how 3D strokes can serve to do hand-drawn animation on top of videos –
what we call video doodles. Hand-drawn animation is usually done by drawing 2D strokes,
yet for video doodles the animation must appear to be embedded in and synchronized
with the content of the dynamic 3D scene captured in video. We show that considering
how to animate 3D strokes in a partial reconstruction of the 3D scene helps us simplify
animation control. In our system, users can create complex motions for doodles with few
2D keyframing interactions. Our 3D-aware algorithms take care of achieving consistent
motions and occlusions, by leveraging state-of-the-art computer vision techniques.

VII.2 Research perspectives
VII.2.1 Designing be�er tools for artists
In this thesis, we show how to use 3D strokes as a representation that artists interact with
to create 3D shape (Chapter III), appearance (Chapter V) and animations (Chapter VI). We
have demonstrated in each instance that 3D strokes are a valid choice of representation
to achieve speci�c goals that we posit artists have, such as creating a plausible 3D surface
from a 3D sketch, or painting a 3D scene. While we demonstrate that our systems work
for these purposes and enable artists to generate appealing results, our evaluation is
o�en content with verifying success of the system for one such speci�c goal, without
considering how our system inevitably frames and constrains the authoring process. �is
approach to designing and evaluating creativity support tools might limit our ability to
propose designs that truly “empower” artists [192], as it does not account for the value
of le�ing artists �nd and develop idiosyncratic work�ows that can support unique and
personal outcomes [191].

As computer graphics researchers, our work puts a strong emphasis on artifacts – the
�nal results of the authoring process, as their visual quality and appeal constitute one
of the pillars of evaluation of our scienti�c contribution. �is focus on the �nal artifact
of creation leads us to design authoring tools that support a “hylomorphic model of
creation” [145], in which we consider that artists have a “preconceived form” in mind to
be realized, and that the creation process is merely about expressing this intent. With
that assumption, we disregard how much the very process of creation impacts artistic
intent and the �nal result [214]. For example, automatically creating a 3D surface from a
3D sketch of a car generates appealing visual artifacts. Yet a skilled 3D industrial designer
going through the process of modeling each surface patch manually by using the 3D
sketch as reference might discover important opportunities for improvement of the shape,
and in �ne arrive at a wholly di�erent �nal artifact.

However, computer graphics research can provide the technical solutions necessary to

118

VII.2. RESEARCH PERSPECTIVES

Fig. VII.1: Sketch Furniture Performance Design. Designers of FRONT studio record 3D
sketches of furniture drawn mid-air (le�), then materialize the sketches as functional furniture
(middle and right). ©FRONT [107]

design tools for artists that support the creation process as a whole. Contributions in
real-time shape edition and visualization can favor quick exploration of possibilities
[218, 239] ; novel digital representations for color can make experimenting with color
pale�es more playful [285] ; building bridges between programmatic control [152] or
large learnt latent spaces [284] and direct manipulation can help artists develop their
own unique set of tools. In the future, I am excited to continue my exploration of how
to design, develop and evaluate authoring tools that support personal and particular
work�ows, and that “users appropriate for ends unforeseen” [192]. �is might be achieved
through close collaboration with artists throughout the research process [191], which is
something I hope to pursue in future research.

VII.2.2 3D sketching for computational fabrication
We have shown in this thesis that 3D strokes are a valuable representation of digital 3D
shape and appearance because they allow interactions that feel direct and expressive. 3D
strokes can help humans manipulate digital material ; can 3D strokes also become part of
the interface between humans and fabrication machines?

In 2005, designers of FRONT studio exhibited a performance in which they record 3D
sketches of chairs and tables that they draw with a tracked hand-held device mid-air. �e
resulting strokes were then “materialized” as life-sized functional furniture using additive
manufacturing (Fig. VII.1). In the future, I am interested in exploring this question, raised
by FRONT almost 20 years ago in their performance: “is it possible to let a �rst sketch
become an object, to design directly onto space?” [107]

Computer controlled tools and machines are o�en considered as black box systems that
take a 3D shape as input and are tasked with producing the shape as closely as possible.
However, hiding away the fabrication process prevents artists from engaging with how
a machine works and how material interacts with it, which can hinder exploration
or development of new work�ows and in turn, hamper creation of novel designs and
aesthetics [191]. A recent line of work in computational fabrication looks instead at the
control of machines at the level of the toolpath, for example allowing a 3D printed clay

119

CHAPTER VII. CONCLUSION

vase to be de�ned by the path that the clay extruder takes through 3D space [47]. With
programmatic control over how the machine moves through space while depositing or
carving material, makers can control how material used for fabrication reacts to the
process, for example how gravity and the deposition motion a�ects clay coils [47], how
drawing speed a�ects ink bleeding in paper [105], or how the deposition orientation of
plastic �lament a�ects surface re�ectivity [59] or material properties [158].

Previous work shows tremendous potential in building tools that let engineers and
cra�speople control machine toolpaths. In the future, I would like to explore how to
provide control over machine toolpaths through direct manipulation. Researchers have
explored this topic in the past, by integrating machine command capabilities into design
so�ware [105], linking live input sources with machine control [325], and by combining
manual toolpath control with computational assistance [249, 256, 350]. I believe that here
again, 3D sketching could be part of the design for a toolpath control tool that feels direct
and expressive.

VII.2.3 Digital content authoring within a material context
Authoring 3D content in-context is a topic we have touched on in Chapter VI, where the
video footage serves as the context. In this scenario, we consider the geometric context in
which the animated doodles are added and help people make their animation match this
context. �e geometric context can be very useful for 3D design, for example to create
hand-held products that �t well with particular hand poses [173], to prototype furniture
that �ts in a given space [196], or to design augmented reality experiences that adapt
to the surroundings [188]. Geometric context is also critical to consider in the scenario
mentioned above of computational fabrication, as the physical object must �t its context,
if we want it to be useful [297].

In future research, I want to explore how material context can impact and constrain the
digital 3D authoring work�ow, when designing for physical fabrication. By material
context, I mean to encompass material aspects of fabrication that are speci�c to the local
context in which fabrication happens: what machines are available to a person? what
manual skills do they have? what material resources do they have access to? Taking
into account material context means considering not only the �nal artifact and its 3D
shape as an objective for design, but also the wider ecosystem in which fabrication takes
place, which introduces an array of exciting new challenges. Supporting 3D object design
while taking into account material context can mean exploring a design space formed by
multiple con�icting objectives other than shape [345] ; enabling and encouraging people
to design with material usually considered waste [14, 81, 186, 319] ; or incorporating
considerations about resources scarcity as part of the design process [276, 327].

120

Bibliography

[1] Fatemeh Abbasinejad, Pushkar Joshi, and Nina Amenta, 2011. “Surface patches from
unorganized space curves”. In Computer Graphics Forum, vol. 30. Cited pages 27 and 28.

[2] Rinat Abdrashitov, Alec Jacobson, and Karan Singh, 2019. “A system for e�cient 3D printed
stop-motion face animation”. ACM Transactions on Graphics (TOG), vol. 39, no. 1, pages 1–11.
Cited page 21.

[3] Adobe, 1987. “Illustrator”. https://www.adobe.com/products/illustrator.html.
Cited page 71.

[4] Adobe, 1990. “Photoshop”. https://www.adobe.com/products/photoshop.html.
Cited pages 71 and 75.

[5] Adobe, 2007. “Substance 3d painter”. https://www.adobe.com/products/

substance3d-painter.html. Cited page 20.

[6] Adobe, 2022. “A�er e�ects”. https://www.adobe.com/products/aftereffects.

html. Cited pages 94 and 95.

[7] Adobe, 2023. “Medium”. https://www.adobe.com/products/medium.html. Cited
pages 12, 42, and 53.

[8] Aseem Agarwala, Aaron Hertzmann, David H Salesin, and Steven M Seitz, 2004. “Keyframe-
based tracking for rotoscoping and animation”. ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 23, no. 3. Cited pages 23 and 97.

[9] Maneesh Agrawala, Andrew C Beers, and Marc Levoy, 1995. “3D painting on scanned
surfaces”. In Proceedings of the 1995 symposium on Interactive 3D graphics, pages 145–�. Cited
page 20.

[10] Sung Joon Ahn, W. Rauh, Hyung Suck Cho, and H.-J. Warnecke, 2002. “Orthogonal
distance ��ing of implicit curves and surfaces”. IEEE Transactions on Pa�ern Analysis and Machine
Intelligence, vol. 24, no. 5. Cited page 37.

[11] Yağız Aksoy, Tunç Ozan Aydın, Aljoša Smolić, and Marc Pollefeys, 2017. “Unmixing-
based so� color segmentation for image manipulation”. ACM Trans. Graph., vol. 36, no. 2, pages
19:1–19:19. Cited page 75.

[12] Marylyn Alex, Burkhard C Wünsche, and Danielle Lo�ridge, 2021. “Virtual reality art-
making for stroke rehabilitation: Field study and technology probe”. International Journal of
Human-Computer Studies, vol. 145, page 102,481. Cited page 60.

[13] Brian Amberg and �omas Ve�er, 2011. “GraphTrack: Fast and globally optimal tracking
in videos”. In Proc. IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR). Cited
pages 97 and 102.

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/substance3d-painter.html
https://www.adobe.com/products/substance3d-painter.html
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/medium.html

BIBLIOGRAPHY

[14] Felix Amtsberg, Yijiang Huang, DJ Marshall, Kevin Moreno Gata, and Caitlin Mueller,
2020. “Structural up-cycling: matching digital and natural geometry”. Advances in Architectural
Geometry. Cited page 120.

[15] Baptiste Angles, Marco Tarini, Brian Wyvill, Loı̈c Barthe, and Andrea Tagliasacchi, 2017.
“Sketch-based implicit blending”. ACM Transactions on Graphics (TOG), vol. 36, no. 6, pages 1–13.
Cited page 13.

[16] Apple, 2022. “Arkit”. https://developer.apple.com/augmented-reality/arkit/.
Cited page 96.

[17] Apple, 2023. “Vision pro”. https://www.apple.com/apple-vision-pro/. Cited page
1.

[18] Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan Singh,
2018. “SymbiosisSketch: Combining 2D & 3D sketching for designing detailed 3D objects in situ”.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–15.
Cited pages 17, 54, 59, 74, and 113.

[19] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh, and
George W Fitzmaurice, 2017. “Experimental evaluation of sketching on surfaces in VR”. In CHI,
vol. 17, pages 5643–5654. Cited pages 4, 16, 28, 35, 53, 54, 59, 69, 70, and 73.

[20] Rahul Arora, Rubaiat Habib Kazi, Danny M Kaufman, Wilmot Li, and Karan Singh, 2019.
“MagicalHands: Mid-air hand gestures for animating in VR”. In Proceedings of the 32nd annual
ACM symposium on user interface so�ware and technology, pages 463–477. Cited pages 22 and 23.

[21] Rahul Arora, Mayra Donaji Barrera Machuca, Philipp Wacker, Daniel Keefe, and Jo-
hann Habakuk Israel, 2023. “Introduction to 3D sketching”. In Interactive Sketch-based Interfaces
and Modelling for Design, pages 151–177. River Publishers. Cited page 16.

[22] Rahul Arora and Karan Singh, 2021. “Mid-air drawing of curves on 3D surfaces in virtual
reality”. ACM Transactions on Graphics (TOG), vol. 40, no. 3, pages 1–17. Cited pages 20, 21, 73,
and 81.

[23] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh, 2008. “ILoveSketch: as-natural-as-
possible sketching system for creating 3D curve models”. In Proceedings of the 21st annual ACM
symposium on User interface so�ware and technology, pages 151–160. Cited pages 14, 27, 28, 46,
and 99.

[24] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh, 2009. “EverybodyLovesSketch:
3D sketching for a broader audience”. In Proceedings of the 22nd annual ACM symposium on User
interface so�ware and technology, pages 59–68. Cited page 14.

[25] Andreas Bærentzen, Jeppe Revall Frisvad, and Karan Singh, 2019. “Signi�er-based immersive
and interactive 3Dmodeling”. In Proceedings of the 25th ACM Symposium on Virtual Reality So�ware
and Technology, pages 1–5. Cited pages 11 and 12.

[26] Ravin Balakrishnan, George Fitzmaurice, Gordon Kurtenbach, and William Buxton, 1999.
“Digital tape drawing”. In Proceedings of the 12th annual ACM symposium on User interface so�ware
and technology, pages 161–169. Cited page 17.

122

https://developer.apple.com/augmented-reality/arkit/
https://www.apple.com/apple-vision-pro/

BIBLIOGRAPHY

[27] Seungbae Bang and Sung-Hee Lee, 2018. “Spline interface for intuitive skinning weight
editing”. ACM Transactions on Graphics (TOG), vol. 37, no. 5, pages 1–14. Cited page 21.

[28] Ilya Baran, Johannes Schmid, �omas Siegrist, Markus Gross, and Robert W Sumner, 2011.
“Mixed-order compositing for 3D paintings”. In Proceedings of the 2011 SIGGRAPH Asia Conference,
pages 1–6. Cited pages 21 and 75.

[29] Connelly Barnes, David E Jacobs, Jason Sanders, Dan B Goldman, Szymon Rusinkiewicz,
Adam Finkelstein, and Maneesh Agrawala, 2008. “Video puppetry: a performative interface for
cutout animation”. In ACM SIGGRAPH Asia 2008 papers, pages 1–9. Cited page 23.

[30] Erhan Batuhan Arisoy, Gunay Orbay, and Levent Burak Kara, 2012. “Free form surface
skinning of 3d curve clouds for conceptual shape design”. Journal of computing and information
science in engineering, vol. 12, no. 3. Cited page 30.

[31] Jean-Philippe Bauchet and Florent Lafarge, 2020. “Kinetic shape reconstruction”. ACM
Transactions on Graphics, vol. 39, no. 5. Cited page 39.

[32] Michel Beaudouin-Lafon and Wendy E Mackay, 2000. “Rei�cation, polymorphism and
reuse: three principles for designing visual interfaces”. In Proceedings of the working conference on
Advanced visual interfaces, pages 102–109. Cited page 74.

[33] Ma�hew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud,
Joshua A Levine, Andrei Sharf, and Claudio T Silva, 2017. “A survey of surface reconstruction
from point clouds”. In Computer Graphics Forum, vol. 36. Cited pages 29 and 53.

[34] Mikhail Bessmeltsev, Caoyu Wang, Alla She�er, and Karan Singh, 2012. “Design-driven
quadrangulation of closed 3d curves”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia),
vol. 31, no. 6. Cited pages 27 and 28.

[35] Zhangxing Bian, Allan Jabri, Alexei A. Efros, and Andrew Owens, June 2022. “Learning
pixel trajectories with multiscale contrastive random walks”. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pa�ern Recognition (CVPR). Cited page 111.

[36] Blender, 2022. “Blender grease pencil”. https://www.blender.org/features/

story-artist/. Cited pages 21 and 99.

[37] Blender, 2022. “Blender motion tracking”. https://docs.blender.org/manual/en/
latest/movie_clip/tracking/index.html. Cited pages 94 and 95.

[38] Blender, 2023. “Blender modeling”. https://www.blender.org/features/modeling/
#tools. Cited pages 11, 12, and 42.

[39] Blender, 2023. “Blender sculpting”. https://www.blender.org/features/

sculpting/. Cited pages 12 and 53.

[40] Blender, 2023. “Blender uv tools”. https://docs.blender.org/manual/en/latest/
modeling/meshes/editing/uv.html. Cited pages 19 and 20.

[41] Jules Bloomenthal and Chandrajit Bajaj, 1997. Introduction to implicit surfaces. Morgan
Kaufmann. Cited page 13.

123

https://www.blender.org/features/story-artist/
https://www.blender.org/features/story-artist/
https://docs.blender.org/manual/en/latest/movie_clip/tracking/index.html
https://docs.blender.org/manual/en/latest/movie_clip/tracking/index.html
https://www.blender.org/features/modeling/##tools
https://www.blender.org/features/modeling/##tools
https://www.blender.org/features/sculpting/
https://www.blender.org/features/sculpting/
https://docs.blender.org/manual/en/latest/modeling/meshes/editing/uv.html
https://docs.blender.org/manual/en/latest/modeling/meshes/editing/uv.html

BIBLIOGRAPHY

[42] Alexandra Bonnici, Alican Akman, Gabriel Calleja, Kenneth P Camilleri, Patrick Fehling,
Alfredo Ferreira, Florian Hermuth, Johann Habakuk Israel, Tom Landwehr, Juncheng Liu, et al.,
2019. “Sketch-based interaction and modeling: where do we stand?” AI EDAM, vol. 33, no. 4,
pages 370–388. Cited page 14.

[43] BorisFX, 2022. “Mocha pro”. https://borisfx.com/products/mocha-pro/. Cited
pages 94, 95, and 96.

[44] Mario Botsch and Olga Sorkine, 2007. “On linear variational surface deformation methods”.
IEEE transactions on visualization and computer graphics, vol. 14, no. 1, pages 213–230. Cited page
12.

[45] Nicolas Boumal, 2013. “Interpolation and regression of rotation matrices”. In International
Conference on Geometric Science of Information, pages 345–352. Springer. Cited pages 104 and 105.

[46] Samuelle Bourgault and Jennifer Jacobs, 2023. “Preserving hand-drawn qualities in audio-
visual performance through sketch-based interaction”. Journal of Computer Languages, vol. 74,
page 101,186. Cited page 60.

[47] Samuelle Bourgault, Pilar Wiley, Avi Farber, and Jennifer Jacobs, 2023. “CoilCAM: Enabling
parametric design for clay 3D printing through an action-oriented toolpath programming system”.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–16.
Cited page 120.

[48] Yuri Boykov, Olga Veksler, and Ramin Zabih, 2001. “Fast approximate energy minimization
via graph cuts”. IEEE Transactions on pa�ern analysis and machine intelligence, vol. 23, no. 11.
Cited pages 35, 36, and 43.

[49] Yuri Y. Boykov and Marie-Pierre Jolly, 2001. “Interactive graph cuts for optimal boundary
and region segmentation of objects in n-d images”. In IEEE International Conference on Computer
Vision. Cited page 34.

[50] Virginia Braun and Victoria Clarke, 2006. “Using thematic analysis in psychology”. �ali-
tative research in psychology, vol. 3, no. 2, pages 77–101. Cited page 61.

[51] Aeron Buchanan and Andrew Fitzgibbon, 2006. “Interactive feature tracking using kd trees
and dynamic programming”. In Proc. IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR). Cited pages 97 and 102.

[52] Bill Buxton, 2010. Sketching user experiences: ge�ing the design right and the right design.
Morgan kaufmann. Cited pages 11 and 54.

[53] W Buxton, 1995. “Touch, gesture & marking. chapter 7 in rm baecker, j. grudin, w. buxton
and s. greenberg, s.(eds.). readings in human computer interaction: Toward the year 2000”. Cited
page 3.

[54] Mental Canvas, 2022. “Mental canvas application”. https://mentalcanvas.com/. Cited
page 99.

[55] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, 2019. “OpenPose: Realtime
multi-person 2d pose estimation using part a�nity �elds”. IEEE Transactions on Pa�ern Analysis

124

https://borisfx.com/products/mocha-pro/
https://mentalcanvas.com/

BIBLIOGRAPHY

and Machine Intelligence. Cited page 97.

[56] Yifei Cheng, Yukang Yan, Xin Yi, Yuanchun Shi, and David Lindlbauer, 2021. “Semanticadapt:
Optimization-based adaptation of mixed reality layouts leveraging virtual-physical semantic
connections”. In �e 34th Annual ACM Symposium on User Interface So�ware and Technology,
pages 282–297. Cited page 90.

[57] Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco A�ene, 2020. “Fast and
robust mesh arrangements using �oating-point arithmetic”. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia), vol. 39, no. 6. Cited page 39.

[58] Gianmarco Cherchi, Fabio Pellacini, Marco A�ene, and Marco Livesu, 2022. “Interactive
and robust mesh booleans”. ACM Transactions on Graphics (TOG), vol. 41, no. 6, pages 1–14. Cited
page 81.

[59] Xavier Chermain, Cédric Zanni, Jonàs Martı́nez, Pierre-Alexandre Hugron, and Sylvain
Lefebvre, Jul. 2023. “Orientable Dense Cyclic In�ll for Anisotropic Appearance Fabrication”. ACM
Transactions on Graphics, vol. 42, no. 4, page 13. URL: https://hal.science/hal-04129173,
doi:10.1145/3592412. Cited page 120.

[60] Tara Chi�enden, 2018. “Tilt brush painting: Chronotopic adventures in a physical-virtual
threshold”. Journal of contemporary painting, vol. 4, no. 2, pages 381–403. Cited pages 59 and 60.

[61] Byungkuk Choi, Haekwang Eom, Benjamin Mouscadet, Stephen Cullingford, Kurt Ma,
Stefanie Gassel, Suzi Kim, Andrew Mo�at, Millicent Maier, Marco Revelant, et al., 2022. “Ani-
matomy: An animator-centric, anatomically inspired system for 3D facial modeling, animation
and transfer”. In SIGGRAPH Asia 2022 Conference Papers, pages 1–9. Cited page 21.

[62] Marianela Ciol� Felice, Sarah Fdili Alaoui, and Wendy E Mackay, 2018. “Knotation: ex-
ploring and documenting choreographic processes”. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–12. Cited page 60.

[63] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun, 2004. “Variational shape ap-
proximation”. In ACM Transactions on Graphics (Proc. SIGGRAPH), pages 905–914. Cited page
30.

[64] Adèle Colas, Wouter van Toll, Katja Zibrek, Ludovic Hoyet, A-H Olivier, and Julien Pe�ré,
2022. “Interaction �elds: Intuitive sketch-based steering behaviors for crowd simulation”. In
Computer Graphics Forum, vol. 41, pages 521–534. Wiley Online Library. Cited page 21.

[65] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam
Finkelstein, �omas Funkhouser, and Szymon Rusinkiewicz, aug 2008. “Where do people draw
lines?” ACM Trans. Graph., vol. 27, no. 3. doi:10.1145/1360612.1360687. Cited pages 14
and 26.

[66] Jacopo Colò, 2021. “Penzil”. https://www.penzil.app/. Cited page 46.

[67] Sabine Coquillart, 1990. “Extended free-form deformation: A sculpturing tool for 3D
geometric modeling”. In Proceedings of the 17th annual conference on Computer graphics and
interactive techniques, pages 187–196. Cited page 12.

125

https://hal.science/hal-04129173
https://doi.org/10.1145/3592412
https://doi.org/10.1145/1360612.1360687
https://www.penzil.app/

BIBLIOGRAPHY

[68] Franklin C Crow, 1977. “Shadow algorithms for computer graphics”. ACM Siggraph, vol. 11,
no. 2, pages 242–248. Cited page 82.

[69] Carolina Cruz-Neira, Daniel J Sandin, �omas A DeFanti, Robert V Kenyon, and John C
Hart, 1992. “�e CAVE: audio visual experience automatic virtual environment”. Communications
of the ACM, vol. 35, no. 6, pages 64–73. Cited page 16.

[70] Eric Daniels, 1999. “Deep canvas in Disney’s Tarzan”. In ACM SIGGRAPH 99 Conference
Abstracts and Applications, SIGGRAPH ’99, page 200. Association for Computing Machinery, New
York, NY, USA. doi:10.1145/311625.312010. Cited page 20.

[71] Abe Davis and Maneesh Agrawala, 2018. “Visual rhythm and beat”. ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pages 1–11. Cited page 113.

[72] Richard C Davis, Brien Colwell, and James A Landay, 2008. “K-sketch: a’kinetic’sketch pad
for novice animators”. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 413–422. Cited page 22.

[73] Bruno De Araujo and Joaquim Jorge, 2003. “Blobmaker: Free-form modelling with varia-
tional implicit surfaces”. In Proceedings of, vol. 12, pages 17–26. Cited page 15.

[74] Bruno R De Araújo, Géry Casiez, Joaquim A Jorge, and Martin Hachet, 2013. “Mockup
builder: 3d modeling on and above the surface”. Computers & Graphics, vol. 37, no. 3, pages
165–178. Cited page 17.

[75] Fernando De Goes and Doug L James, 2017. “Regularized kelvinlets: sculpting brushes
based on fundamental solutions of elasticity”. ACM Transactions on Graphics (TOG), vol. 36, no. 4,
pages 1–11. Cited pages 12 and 13.

[76] Fernando De Goes, William She�er, and Kurt Fleischer, 2022. “Character articulation
through pro�le curves”. ACM Transactions on Graphics (TOG), vol. 41, no. 4, pages 1–14. Cited
pages 13, 21, and 54.

[77] Chris De Paoli and Karan Singh, 2015. “SecondSkin: sketch-based construction of layered
3D models”. ACM Transactions on Graphics (TOG), vol. 34, no. 4, pages 1–10. Cited page 14.

[78] David DeBry, Jonathan Gibbs, Devorah DeLeon Pe�y, and Nate Robins, 2002. “Painting
and rendering textures on unparameterized models”. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages 763–768. Cited page 19.

[79] Michael F Deering, 1995. “HoloSketch: a virtual reality sketching/animation tool”. ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 2, no. 3, pages 220–238. Cited page 16.

[80] Andrew Delong, Anton Osokin, Hossam N Isack, and Yuri Boykov, 2012. “Fast approximate
energy minimization with label costs”. International journal of computer vision, vol. 96, no. 1. Cited
page 35.

[81] Kristin N Dew, Samantha Shorey, and Daniela Rosner, 2018. “Making within limits: Towards
salvage fabrication”. In Proceedings of the 2018 Workshop on Computing within Limits, pages 1–11.
Cited page 120.

[82] Manfredo P Do Carmo, 2016. Di�erential geometry of curves and surfaces: revised and

126

https://doi.org/10.1145/311625.312010

BIBLIOGRAPHY

updated second edition. Courier Dover Publications. Cited page 18.

[83] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens Continente, Kucas Smaira,
Yusuf Aytar, Joao Carreira, Andrew Zisserman, and Yi Yang, 2022. “TAP-Vid: A benchmark for
tracking any point in a video”. In NeurIPS Datasets Track. Cited pages 97, 102, 105, 106, and 107.

[84] Julie Dorsey, Holly Rushmeier, and François Sillion, 2010. Digital modeling of material
appearance. Elsevier. Cited pages 9 and 18.

[85] Julie Dorsey, Songhua Xu, Gabe Smedresman, Holly Rushmeier, and Leonard McMillan,
2007. “�e mental canvas: A tool for conceptual architectural design and analysis”. In 15th Paci�c
Conference on Computer Graphics and Applications (PG’07), pages 201–210. IEEE. Cited pages 14,
21, and 99.

[86] Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz, Derek Nowrouzezahrai, Ravin
Balakrishnan, and Karan Singh, 2008. “Video browsing by direct manipulation”. In Proc. ACM
SIGCHI Conference on Human Factors in Computing Systems. Cited pages 22 and 96.

[87] Tobias Drey, Jan Gugenheimer, Julian Karlbauer, Maximilian Milo, and Enrico Rukzio, 2020.
“VRSketchIn: Exploring the design space of pen and tablet interaction for 3D sketching in virtual
reality”. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages
1–14. ACM, New York, NY, USA. Cited pages 17, 59, and 74.

[88] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian,
Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno Cruces, et al., 2020. “DepthLab: Real-time 3D
interaction with depth maps for mobile augmented reality”. In Proc. ACM Symposium on User
Interface So�ware and Technology (UIST). Cited page 96.

[89] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus,
Armando Solar-Lezama, and Wojciech Matusik, 2018. “Inversecsg: Automatic conversion of 3d
models to csg trees”. ACM Transactions on Graphics (TOG), vol. 37, no. 6, pages 1–16. Cited page
13.

[90] Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju, 2021. “Boundary-sampled halfspaces:
a new representation for constructive solid modeling”. ACM Transactions on Graphics (TOG),
vol. 40, no. 4, pages 1–15. Cited page 13.

[91] Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju, 2021. “Boundary-sampled halfspaces:
A new representation for constructive solid modeling”. ACM Transactions on Graphics (Proc.
SIGGRAPH), vol. 40, no. 4. Cited page 39.

[92] Zheng-Jun Du, Liang-Fu Kang, Jianchao Tan, Yotam Gingold, and Kun Xu, 2023. “Image
vectorization and editing via linear gradient layer decomposition”. ACM Transactions on Graphics
(TOG), vol. 42, no. 4, pages 1–13. Cited page 75.

[93] Marek Dvorožňák, Saman Sepehri Nejad, Ondřej Jamriška, Alec Jacobson, Ladislav Kavan,
and Daniel Sýkora, 2018. “Seamless reconstruction of part-based high-relief models from hand-
drawn images”. In Proceedings of International Symposium on Sketch-Based Interfaces and Modeling.
Cited page 29.

[94] Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-Hornung,

127

BIBLIOGRAPHY

and David Salesin, 2020. “Monster Mash: A single-view approach to casual 3D modeling and
animation”. ACM Transactions on Graphics, vol. 39, no. 6. Cited pages 15 and 29.

[95] Hesham Elsayed, Mayra Donaji Barrera Machuca, Christian Schaarschmidt, Karola Marky,
Florian Müller, Jan Riemann, Andrii Matviienko, Martin Schmitz, Martin Weigel, and Max
Mühlhäuser, 2020. “VRsketchpen: unconstrained haptic assistance for sketching in virtual 3d envi-
ronments”. In Proceedings of the 26th ACM Symposium on Virtual Reality So�ware and Technology,
pages 1–11. Cited page 17.

[96] ephtracy, 2021. “Magicacsg”. https://ephtracy.github.io/index.html?page=

magicacsg. Cited page 13.

[97] João Marcelo Evangelista Belo, Mathias N. Lystbæk, Anna Maria Feit, Ken Pfeu�er, Peter
Kán, An�i Oulasvirta, and Kaj Grønbæk, 2022. “AUIT – the adaptive user interfaces toolkit for
designing xr applications”. UIST ’22. Association for Computing Machinery, New York, NY, USA.
doi:10.1145/3526113.3545651. Cited page 90.

[98] Alex Evans, 2015. “Learning from failure: a survey of promising, unconventional and mostly
abandoned renderers for ‘dreams ps4’, a geometrically dense, painterly ugc game”. Advances in
Real-Time Rendering in Games. MediaMolecule, SIGGRAPH, vol. 2. Cited page 91.

[99] Melvin Even, Pierre Bénard, and Pascal Barla, 2023. “Non-linear rough 2D animation using
transient embeddings”. In Computer Graphics Forum, vol. 42, pages 411–425. Wiley Online Library.
Cited page 23.

[100] Ricardo Fabbri and Benjamin B. Kimia, 2010. “3D curve sketch: Flexible curve-based stereo
reconstruction and calibration”. In IEEE Conference on Computer Vision and Pa�ern Recognition.
Cited page 30.

[101] Andreas Rene Fender, �omas Roberts, Ti�any Luong, and Christian Holz, 2023. “In-
�nitePaint: Painting in virtual reality with passive haptics using wet brushes and a physical proxy
canvas”. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages
1–13. Cited page 17.

[102] Jakub Fišer, Paul Asente, and Daniel Sỳkora, 2015. “Shipshape: a drawing beauti�cation
assistant”. In Proceedings of the workshop on Sketch-Based Interfaces and Modeling, pages 49–57.
Eurographics Association, Geneve, Switzerland. Cited page 17.

[103] Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente, Jingwan Lu, and
Daniel Sỳkora, 2016. “Stylit: illumination-guided example-based stylization of 3d renderings”.
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pages 1–11. Cited page 90.

[104] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva, 2005. “Robust moving least-
squares ��ing with sharp features”. ACM Transactions on Graphics, vol. 24, no. 3. Cited page
29.

[105] Frikk Fossdal, Rogardt Heldal, and Nadya Peek, 2021. “Interactive digital fabrication
machine control directly within a CAD environment”. In Proceedings of the 6th Annual ACM
Symposium on Computational Fabrication, pages 1–15. Cited page 120.

[106] Foundry, 2022. “Nuke”. https://www.foundry.com/products/nuke-family/nuke.

128

https://ephtracy.github.io/index.html?page=magicacsg
https://ephtracy.github.io/index.html?page=magicacsg
https://doi.org/10.1145/3526113.3545651
https://www.foundry.com/products/nuke-family/nuke

BIBLIOGRAPHY

Cited pages 94 and 95.

[107] Front, 2007. “Sketch furniture”. http://www.frontdesign.se/

sketch-furniture-performance-design-project. Cited pages 4 and 119.

[108] Chi-Wing Fu, Jiazhi Xia, and Ying He, 2010. “Layerpaint: A multi-layer interactive 3D
painting interface”. In Proceedings of the sigchi conference on human factors in computing systems,
pages 811–820. Cited pages 20 and 73.

[109] Goro Fujita, 2023. “Beyond the fence”. https://quill.art/stories_beyond_the_

fence.html. Cited page 59.

[110] Masaki Fujita and Suguru Saito, 2017. “Hand-drawn animation with self-shaped canvas”.
In ACM SIGGRAPH 2017 Posters, pages 1–2. Cited page 23.

[111] Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or, 2009. “iWIRES: An analyze-
and-edit approach to shape manipulation”. In ACM SIGGRAPH 2009 papers, pages 1–10. Cited
pages 13 and 54.

[112] Tinsley AGalyean and John F Hughes, 1991. “Sculpting: An interactive volumetric modeling
technique”. ACM SIGGRAPH Computer Graphics, vol. 25, no. 4, pages 267–274. Cited page 4.

[113] Michael Garland and Paul S Heckbert, 1997. “Surface simpli�cation using quadric error
metrics”. In Annual conference on computer graphics and interactive techniques (SIGGRAPH), pages
209–216. Cited page 43.

[114] Yotam Gingold, Takeo Igarashi, and Denis Zorin, 2009. “Structured annotations for 2D-
to-3D modeling”. ACM Transactions on Graphics (TOG), vol. 28, no. 5, page 148. doi:http:

//doi.acm.org/10.1145/1618452.1618494. Cited page 15.

[115] Yotam I. Gingold, Philip L. Davidson, Je�erson Y. Han, and Denis Zorin, 2006. “A direct
texture placement and editing interface”. In Proceedings of the 19th Annual ACM Symposium
on User Interface So�ware and Technology, UIST ’06, page 23–32. Association for Computing
Machinery, New York, NY, USA. doi:10.1145/1166253.1166259. Cited pages 19 and 73.

[116] Dan B Goldman, Brian Curless, David Salesin, and Steven M Seitz, 2006. “Schematic story-
boarding for video visualization and editing”. ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 25, no. 3. Cited page 96.

[117] Dan B Goldman, Chris Gonterman, Brian Curless, David Salesin, and Steven M Seitz, 2008.
“Video object annotation, navigation, and composition”. In Proc. ACM symposium on User Interface
So�ware and Technology (UIST), pages 3–12. Cited pages 22 and 96.

[118] Alison Goodyear and Mu Mu, 2019. “Abstract painting practice: Expanding in a virtual
world”. InACM International Conference on Interactive Experiences for TV and Online Video (TVX’19).
Cited pages 59 and 60.

[119] Giorgio Gori, Alla She�er, Nicholas Vining, Enrique Rosales, Nathan Carr, and Tao Ju, 2017.
“Flowrep: Descriptive curve networks for free-form design shapes”. ACM Transaction on Graphics
(Proc. SIGGRAPH), vol. 36, no. 4. Cited page 49.

[120] Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla She�er, and Adrien Bousseau, nov

129

http://www.frontdesign.se/sketch-furniture-performance-design-project
http://www.frontdesign.se/sketch-furniture-performance-design-project
https://quill.art/stories_beyond_the_fence.html
https://quill.art/stories_beyond_the_fence.html
https://doi.org/http://doi.acm.org/10.1145/1618452.1618494
https://doi.org/http://doi.acm.org/10.1145/1618452.1618494
https://doi.org/10.1145/1166253.1166259

BIBLIOGRAPHY

2020. “Li�ing freehand concept sketches into 3D”. ACM Trans. Graph., vol. 39, no. 6. doi:

10.1145/3414685.3417851. Cited pages 14 and 25.

[121] Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Ho�ijzer, Sylvia Pont, Fredo Durand, and
Adrien Bousseau, 2019. “Opensketch: A richly-annotated dataset of product design sketches”.
ACM Transactions on Graphics (TOG), vol. 38, no. 6, page 232. Cited pages 14 and 26.

[122] Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani, 2015. “Space-time
sketching of character animation”. ACM Transactions on Graphics (ToG), vol. 34, no. 4, pages 1–10.
Cited page 22.

[123] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos, 2018. “Densepose: Dense human
pose estimation in the wild”. In Proceedings of the IEEE Conference on Computer Vision and Pa�ern
Recognition, pages 7297–7306. Cited page 111.

[124] Felix Hähnlein, Yulia Gryaditskaya, Alla She�er, and Adrien Bousseau, 2022. “Symmetry-
driven 3D reconstruction from concept sketches”. In ACM SIGGRAPH 2022 Conference Proceedings,
pages 1–8. Cited pages 14 and 15.

[125] Pat Hanrahan and Paul Haeberli, 1990. “Direct WYSIWYG painting and texturing on 3D
shapes”. ACM SIGGRAPH computer graphics, vol. 24, no. 4, pages 215–223. Cited pages 20, 21,
and 73.

[126] Beverly L Harrison, Hiroshi Ishii, Kim J Vicente, andWilliam AS Buxton, 1995. “Transparent
layered user interfaces: An evaluation of a display design to enhance focused and divided a�ention”.
In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 317–324.
Cited page 90.

[127] Andrew Head, Amber Xie, and Marti A Hearst, 2022. “Math augmentation: How authors
enhance the readability of formulas using novel visual design practices”. In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems, pages 1–18. Cited page 60.

[128] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista, 2014. “High-speed tracking
with kernelized correlation �lters”. IEEE Transactions on Pa�ern Analysis and Machine Intelligence,
vol. 37, no. 3, pages 583–596. Cited page 97.

[129] Laura M Herman and Stefanie Hutka, 2019. “Virtual artistry: Virtual reality translations of
two-dimensional creativity”. In Proceedings of the 2019 on Creativity and Cognition, pages 612–618.
Cited page 60.

[130] Florian Hoenig and Andrea Interguglielmi, 2022. “Unbound”. https://www.unbound.io/.
Cited page 13.

[131] Josh Holinaty, Alec Jacobson, and Fanny Chevalier, 2021. “Supporting reference imagery
for digital drawing”. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2434–2442. Cited page 60.

[132] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle, 1992.
“Surface reconstruction from unorganized points”. In Annual conference on computer graphics and
interactive techniques (SIGGRAPH), pages 71–78. Cited pages 27, 29, and 43.

130

https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3414685.3417851
https://www.unbound.io/

BIBLIOGRAPHY

[133] Alexander Hornung and Leif Kobbelt, 2006. “Robust reconstruction of watertight 3D
models from non-uniformly sampled point clouds without normal information”. In Symposium on
geometry processing, pages 41–50. Cited page 29.

[134] Eric Horvitz, 1999. “Principles of mixed-initiative user interfaces”. In Proc. ACM SIGCHI
conference on Human Factors in Computing Systems. Cited page 99.

[135] PC Hsu and C Lee, 2003. “Field functions for blending range controls on so� objects”. In
Computer Graphics Forum, vol. 22, pages 233–242. Wiley Online Library. Cited page 13.

[136] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang, 2013. “Edge-aware
point set resampling”. ACM Transactions on Graphics, vol. 32. Cited page 29.

[137] Zhiyang Huang, Nathan Carr, and Tao Ju, 2019. “Variational implicit point set surfaces”.
ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 38, no. 4. Cited pages 27, 29, 31, 41, 42,
and 48.

[138] Edwin L Hutchins, James D Hollan, and Donald A Norman, 1985. “Direct manipulation
interfaces”. Human–computer interaction, vol. 1, no. 4, pages 311–338. Cited pages 1, 2, 65, and 94.

[139] Hilary Hutchinson, Wendy Mackay, Bo Westerlund, Benjamin B Bederson, Allison Druin,
Catherine Plaisant, Michel Beaudouin-Lafon, Stéphane Conversy, Helen Evans, Heiko Hansen,
et al., 2003. “Technology probes: inspiring design for and with families”. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 17–24. Cited pages 60 and 87.

[140] Icosa, 2020. “Open brush”. https://openbrush.app/. Cited pages 16, 21, 28, 30, 59, 60,
72, and 74.

[141] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka, 2007. “Inter-
active beauti�cation: a technique for rapid geometric design”. In ACM SIGGRAPH 2007 courses,
pages 18–es. ACM, New York, NY, USA. Cited page 17.

[142] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka, 2006. “Teddy: a sketching interface
for 3D freeform design”. In ACM SIGGRAPH 2006 Courses, pages 11–es. Cited pages 15 and 16.

[143] Takeo Igarashi, Tomer Moscovich, and John F Hughes, 2005. “As-rigid-as-possible shape
manipulation”. ACM transactions on Graphics (TOG), vol. 24, no. 3, pages 1134–1141. Cited page
23.

[144] Riwano Ikeda and Issei Fujishiro, 2021. “SpiCa: Stereoscopic e�ect design with 3D po�ery
wheel-type transparent canvas”. In ACM SIGGRAPH Asia 2021 Technical Communications. Cited
pages 21 and 113.

[145] Tim Ingold, 2010. “�e textility of making”. Cambridge journal of economics, vol. 34, no. 1,
pages 91–102. Cited page 118.

[146] Savage Interactive, 2011. “Procreate”. https://procreate.com/. Cited pages 65, 71,
and 75.

[147] Hossam Isack and Yuri Boykov, 2012. “Energy-based geometric multi-model ��ing”.
International journal of computer vision, vol. 97, no. 2, pages 123–147. Cited pages 27, 32, 35, 36,
and 39.

131

https://openbrush.app/
https://procreate.com/

BIBLIOGRAPHY

[148] Johann Habakuk Israel, Eva Wiese, Magdalena Mateescu, Christian Zöllner, and Rainer
Stark, 2009. “Investigating three-dimensional sketching for early conceptual design —- results
from expert discussions and user studies”. Computers & Graphics, vol. 33, no. 4, pages 462–473.
Cited pages 16, 25, 54, and 60.

[149] Allan Jabri, Andrew Owens, and Alexei A Efros, 2020. “Space-time correspondence as a
contrastive random walk”. Advances in Neural Information Processing Systems. Cited page 102.

[150] Bret Jackson and Daniel F Keefe, 2016. “Li�-o�: Using reference imagery and freehand
sketching to create 3D models in VR”. IEEE transactions on visualization and computer graphics,
vol. 22, no. 4, pages 1442–1451. Cited page 17.

[151] Robert JK Jacob, Audrey Girouard, Leanne M Hirsh�eld, Michael S Horn, Orit Shaer,
Erin Treacy Solovey, and Jamie Zigelbaum, 2008. “Reality-based interaction: a framework for
post-WIMP interfaces”. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 201–210. Cited pages 12 and 65.

[152] Jennifer Jacobs, Joel R Brandt, Radomı́r Meĕh, andMitchel Resnick, 2018. “Dynamic brushes:
Extending manual drawing practices with artist-centric programming tools”. In Extended Abstracts
of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–4. Cited page 119.

[153] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine, 2011. “Bounded biharmonic
weights for real-time deformation.” ACM Trans. Graph., vol. 30, no. 4, page 78. Cited pages 12
and 13.

[154] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung, Nov. 2015.
“Instant �eld-aligned meshes”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 34, no. 6.
Cited page 42.

[155] Ghita Jalal, Nolwenn Maudet, and Wendy E Mackay, 2015. “Color portraits: From color
picking to interacting with color”. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 4207–4216. Cited pages 60 and 71.

[156] Philipp Jenke, Michael Wand, Wolfgang Straßer, and A AKA, 2008. “Patch-graph recon-
struction for piecewise smooth surfaces”. In VMV, pages 3–12. Citeseer. Cited page 29.

[157] Ying Jiang, Congyi Zhang, Hongbo Fu, Alberto Cannavò, Fabrizio Lamberti, Y K Henry
Lau, and Wenping Wang, 2021. “HandPainter - 3D sketching in VR with hand-based physical
proxy”. In ACM Conference on Human Factors in Computing Systems (CHI). ACM, New York, NY,
USA. Cited pages 17, 59, and 74.

[158] David Jourdan, Pierre-Alexandre Hugron, Camille Schreck, Jonàs Martı́nez, and Sylvain
Lefebvre, Dec. 2023. “Shrink &Morph: 3D-printed self-shaping shells actuated by a shape memory
e�ect”. ACM Trans. Graph., vol. 42, no. 6. doi:10.1145/3618386. Cited page 120.

[159] Amaury Jung, Stefanie Hahmann, Damien Rohmer, Antoine Begault, Laurence Boissieux,
and Marie-Paule Cani, 2015. “Sketching folds: Developable surfaces from non-planar silhoue�es”.
Acm Transactions on Graphics (TOG), vol. 34, no. 5, pages 1–12. Cited page 15.

[160] Robert D Kalnins, Lee Markosian, Barbara J Meier, Michael A Kowalski, Joseph C Lee,
Philip L Davidson, Ma�hew Webb, John F Hughes, and Adam Finkelstein, 2002. “WYSIWYG NPR:

132

https://doi.org/10.1145/3618386

BIBLIOGRAPHY

Drawing strokes directly on 3D models”. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 755–762. Cited page 21.

[161] Levent Burak Kara and Kenji Shimada, 2007. “Sketch-based 3D-shape creation for industrial
styling design”. IEEE Computer Graphics and Applications, vol. 27, no. 1, pages 60–71. Cited page
14.

[162] Olga Karpenko, John F Hughes, and Ramesh Raskar, 2002. “Free-form sketching with
variational implicit surfaces”. In Computer Graphics Forum, vol. 21, pages 585–594. Wiley Online
Library. Cited page 15.

[163] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel, 2021. “Layered neural atlases for
consistent video editing”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 40, no. 6,
pages 1–12. Cited page 96.

[164] Michael Kazhdan, Ma�hew Bolitho, and Hugues Hoppe, 2006. “Poisson surface reconstruc-
tion”. In Proceedings of the fourth Eurographics symposium on Geometry processing, vol. 7. Cited
pages 27 and 29.

[165] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George Fitz-
maurice, 2014. “Draco: Bringing life to illustrations with kinetic textures”. In Proc. ACM SIGCHI
Conference on Human Factors in Computing Systems. Cited page 23.

[166] Daniel Keefe, Robert Zeleznik, and David Laidlaw, 2007. “Drawing on air: Input techniques
for controlled 3D line illustration”. IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 5, pages 1067–1081. Cited page 17.

[167] KenTools, 2022. “Geotracker”. https://keentools.io/products/

geotracker-for-after-effects. Cited page 95.

[168] Bernhard Kerbl, Georgios Kopanas, �omas Leimkühler, and George Dre�akis, Jul. 2023.
“3D Gaussian Spla�ing for Real-Time Radiance Field Rendering”. ACM Transactions on Graphics,
vol. 42, no. 4, pages 1–14. URL: https://inria.hal.science/hal-04088161, doi:10.1145/
3592433. Cited page 91.

[169] Os Keyes, Josephine Hoy, and Margaret Drouhard, 2019. “Human-computer insurrection:
Notes on an anarchist HCI”. In Proceedings of the 2019 CHI conference on human factors in computing
systems, pages 1–13. Cited page 115.

[170] Yeojin Kim, Byungmoon Kim, and Young J Kim, 2018. “Dynamic deep octree for high-
resolution volumetric painting in virtual reality”. In Computer Graphics Forum, vol. 37, pages
179–190. Wiley Online Library. Cited pages 74 and 91.

[171] Yongjin Kim, Holger Winnemöller, and Seungyong Lee, 2013. “WYSIWYG stereo painting”.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages
169–176. Cited page 113.

[172] Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae, 2018. “Agile 3D
sketching with air sca�olding”. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 1–12. Cited pages 14, 15, and 54.

133

https://keentools.io/products/geotracker-for-after-effects
https://keentools.io/products/geotracker-for-after-effects
https://inria.hal.science/hal-04088161
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3592433

BIBLIOGRAPHY

[173] Yongkwan Kim and Seok-Hyung Bae, 2016. “SketchingWithHands: 3D sketching handheld
products with �rst-person hand posture”. In ACM Symposium on User Interface So�ware and
Technology (UIST). Cited pages 14, 27, 46, and 120.

[174] Felix Klose, Oliver Wang, Jean-Charles Bazin, Marcus Magnor, and Alexander Sorkine-
Hornung, 2015. “Sampling based scene-space video processing”. ACM Transactions on Graphics
(Proc. SIGGRAPH), vol. 34, no. 4, pages 1–11. Cited page 96.

[175] Sebastian Koch, Albert Matveev, Zhongshi Jiang, FrancisWilliams, Alexey Artemov, Evgeny
Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo, 2019. “Abc: A big cad model dataset for
geometric deep learning”. In IEEE Conference on Computer Vision and Pa�ern Recognition. Cited
page 49.

[176] Johannes Kopf, Michael F. Cohen, and Richard Szeliski, 2014. “First-person hyper-lapse
videos”. ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 33, no. 4. Cited page 96.

[177] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean �igley, Francis Ge, Yangming Chong,
Josh Pa�erson, Jan-Michael Frahm, Shu Wu, Ma�hew Yu, et al., 2020. “One shot 3D photography”.
ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 39, no. 4. Cited page 96.

[178] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang, 2021. “Robust consistent video depth
estimation”. In Proc. IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR). Cited
pages 94, 95, 96, and 101.

[179] Vojtěch Krs, Ersin Yumer, Nathan Carr, Bedrich Benes, and Radomı́r Měch, 2017. “Skippy:
Single view 3D curve interactive modeling”. ACM Transactions on Graphics (TOG), vol. 36, no. 4,
pages 1–12. Cited pages 14 and 113.

[180] Wolfgang Kruger, C-A Bohn, Bernd Frohlich, Heinrich Schuth, Wolfgang Strauss, and
Gerold Wesche, 1995. “�e responsive workbench: A virtual work environment”. Computer,
vol. 28, no. 7, pages 42–48. Cited page 16.

[181] Sarah Anne Kushner, Paul H Dietz, and Alec Jacobson, 2022. “Interactive 3D zoetrope with
a strobing �ashlight”. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface
So�ware and Technology, pages 1–3. Cited page 21.

[182] Kin Chung Kwan and Hongbo Fu, 2019. “Mobi3Dsketch: 3D sketching in mobile ar”. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–11. Cited
pages 17 and 74.

[183] Nick Ladd, 2019. “Advanced quill tutorial - lathes and smooth shapes”. https://www.
youtube.com/watch?v=FO_GM2Lb1Dw. Cited pages 61 and 67.

[184] Nick Ladd, 2023. “Retropolis 2: Never say goodbye”. https://store.steampowered.
com/app/2293440/Retropolis_2_Never_Say_Goodbye/. Cited page 59.

[185] Simon Laing and Mark Apperley, 2020. “�e relevance of virtual reality to communication
design”. Design Studies, vol. 71, page 100,965. Cited page 60.

[186] Maria Larsson, Hironori Yoshida, and Takeo Igarashi, 2019. “Human-in-the-loop fabrication
of 3D surfaces with natural tree branches”. In Proceedings of the 3rd Annual ACM Symposium on

134

https://www.youtube.com/watch?v=FO_GM2Lb1Dw
https://www.youtube.com/watch?v=FO_GM2Lb1Dw
https://store.steampowered.com/app/2293440/Retropolis_2_Never_Say_Goodbye/
https://store.steampowered.com/app/2293440/Retropolis_2_Never_Say_Goodbye/

BIBLIOGRAPHY

Computational Fabrication, pages 1–12. Cited page 120.

[187] Jérémy Laviole and Martin Hachet, 2012. “PapARt: interactive 3D graphics and multi-touch
augmented paper for artistic creation”. In 2012 IEEE symposium on 3D user interfaces (3DUI), pages
3–6. IEEE. Cited page 17.

[188] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente, 2020. “Pronto: Rapid
augmented reality video prototyping using sketches and enaction”. In Proc. ACM SIGCHI Conference
on Human Factors in Computing Systems, pages 1–13. Cited pages 23, 96, 99, and 120.

[189] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla She�er, and Wenping Wang, 2017. “Bends-
ketch: Modeling freeform surfaces through 2D sketching”. ACM Transactions on Graphics (TOG),
vol. 36, no. 4, pages 1–14. Cited pages 15, 16, and 29.

[190] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla She�er, and Wenping Wang, 2018. “Robust
�ow-guided neural prediction for sketch-based freeform surface modeling”. ACM Transactions on
Graphics (TOG), vol. 37, no. 6, pages 1–12. Cited page 15.

[191] Jingyi Li, Sonia Hashim, and Jennifer Jacobs, 2021. “What we can learn from visual artists
about so�ware development”. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1–14. Cited pages 10, 60, 118, and 119.

[192] Jingyi Li, Eric Rawn, Jacob Ritchie, Jasper Tran O’Leary, and Sean Follmer, 2023. “Beyond
the artifact: Power as a lens for creativity support tools”. Cited pages 118 and 119.

[193] Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla She�er, 2018.
“OptCuts: Joint optimization of surface cuts and parameterization”. ACM Transactions on Graphics
(TOG), vol. 37, no. 6, pages 1–13. Cited page 19.

[194] Wenbin Li, Fabio Viola, Jonathan Starck, Gabriel J Brostow, and Neill DF Campbell, 2016.
“Roto++ accelerating professional rotoscoping using shape manifolds”. ACM Transactions on
Graphics (Proc. SIGGRAPH), vol. 35, no. 4. Cited page 97.

[195] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf, Daniel Cohen-Or, and Niloy J
Mitra, 2011. “Glob�t: Consistently ��ing primitives by discovering global relations”. In ACM
Transactions on Graphics (Proc. SIGGRAPH). Cited page 30.

[196] Yuwei Li, Xi Luo, Youyi Zheng, Pengfei Xu, and Hongbo Fu, 2017. “SweepCanvas: Sketch-
based 3D prototyping on an RGB-D image”. In Proceedings of the 30th Annual ACM Symposium on
User Interface So�ware and Technology, pages 387–399. Cited pages 14, 15, 99, 113, and 120.

[197] Pengpeng Liang, Yifan Wu, Hu Lu, Liming Wang, Chunyuan Liao, and Haibin Ling, 2018.
“Planar object tracking in the wild: A benchmark”. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE. Cited page 97.

[198] Jian Liao, Adnan Karim, Shivesh Singh Jadon, Rubaiat Habib Kazi, and Ryo Suzuki, 2022.
“RealityTalk: Real-time speech-driven augmented presentation for AR live storytelling”. In Proc.
ACM Symposium on User Interface So�ware and Technology (UIST). Cited page 96.

[199] Geng Lin, Chen Gao, Jia-Bin Huang, Changil Kim, Yipeng Wang, Ma�hias Zwicker, and
Ayush Saraf, October 2023. “Omnima�eRF: Robust omnima�e with 3d background modeling”. In

135

BIBLIOGRAPHY

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Cited page 114.

[200] Markus Lipp, Peter Wonka, and Pascal Müller, 2014. “PushPull++”. ACM Transactions on
Graphics (TOG), vol. 33, no. 4, pages 1–9. Cited pages 11 and 12.

[201] Jingyuan Liu, Hongbo Fu, and Chiew-Lan Tai, 2020. “PoseTween: Pose-driven tween
animation”. In Proc. ACM Symposium on User Interface So�ware and Technology (UIST). Cited
pages 22 and 97.

[202] Sean J Liu, Maneesh Agrawala, Stephen DiVerdi, and Aaron Hertzmann, 2022. “ZoomShop:
Depth-aware editing of photographic composition”. In Computer Graphics Forum, vol. 41, pages
57–70. Wiley Online Library. Cited page 96.

[203] Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xiaolong Wang, 2022. “Joint hand
motion and interaction hotspots prediction from egocentric videos”. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pa�ern Recognition, pages 3282–3292. Cited page 111.

[204] Jorge Lopez-Moreno, Popov Stefan, Adrien Bousseau, Maneesh Agrawala, and George
Dre�akis, 2013. “Depicting stylized materials with vector shade trees”. ACM Transactions on
Graphics, vol. 32, no. 4. Cited pages 71 and 75.

[205] Ling Luo, Pinaki Nath Chowdhury, Tao Xiang, Yi-Zhe Song, and Yulia Gryaditskaya, 2023.
“3D VR sketch guided 3D shape prototyping and exploration”. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9267–9276. Cited page 18.

[206] Ling Luo, Yulia Gryaditskaya, Tao Xiang, and Yi-Zhe Song, 2022. “Structure-aware 3D VR
sketch to 3D shape retrieval”. In 2022 International Conference on 3D Vision (3DV), pages 383–392.
IEEE. Cited page 18.

[207] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf, 2020. “Con-
sistent video depth estimation”. ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 39, no. 4,
pages 71–1. Cited page 96.

[208] Zhongjin Luo, Jie Zhou, Heming Zhu, Dong Du, Xiaoguang Han, and Hongbo Fu, 2021.
“SimpModeling: Sketching implicit �eld to guide mesh modeling for 3D animalmorphic head
design”. In �e 34th Annual ACM Symposium on User Interface So�ware and Technology, UIST
’21, page 854–863. Association for Computing Machinery, New York, NY, USA. doi:10.1145/
3472749.3474791. Cited pages 15 and 16.

[209] Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua Sunshine, 2020. “How
domain experts create conceptual diagrams and implications for tool design”. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–14. Cited page 60.

[210] Mayra D Barrera Machuca, Paul Asente, Wolfgang Stuerzlinger, Jingwan Lu, and Byung-
moon Kim, 2018. “Multiplanes: Assisted freehand VR sketching”. In Proceedings of the Symposium
on Spatial User Interaction, pages 36–47. ACM, New York, NY, USA. Cited pages 17, 28, and 59.

[211] Mayra Donaji Barrera Machuca, Wolfgang Stuerzlinger, and Paul Asente, 2019. “�e e�ect
of spatial ability on immersive 3D drawing”. In Proceedings of the ACM Conference on Creativity &
Cognition (C&C’19). h�ps://doi. org/10.1145/3325480.3325489. Cited pages 4, 16, 28, 59, 69, and 70.

136

https://doi.org/10.1145/3472749.3474791
https://doi.org/10.1145/3472749.3474791

BIBLIOGRAPHY

[212] Wendy E Mackay, 2023. “DOIT: �e design of interactive things. selected methods for
quickly and e�ectively designing interactive systems from the user’s perspective”. In Extended
Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–3. Cited
pages 7 and 61.

[213] Edward Madojemu, 2022. “Mescaform hill: �e missing �ve”. https://play.

mescaformhill.com/project/missing-five. Cited page 59.

[214] Nolwenn Maudet, 2017. Concevoir les outils numériques du design. Ph.D. thesis. �èse
de doctorat dirigée par Beaudouin-Lafon, Michel Informatique Université Paris-Saclay (ComUE)
2017. URL: http://www.theses.fr/2017SACLS486. Cited pages 60 and 118.

[215] Maxon, 2023. “ZBrush”. https://www.maxon.net/en/zbrush. Cited pages 12 and 53.

[216] Maxon, 2023. “Zbrush - uv map: Unwrap”. https://docs.pixologic.com/

user-guide/3d-modeling/exporting-your-model/uv-mapping/uv-map-unwrap/.
Cited page 19.

[217] Maximilian Mayer, Philipp Trenz, Sebastian Pasewaldt, Mandy Klingbeil, Jürgen Döllner,
Ma�hias Trapp, and Amir Semmo, 2021. “MotionViz: Artistic visualization of human motion on
mobile devices”. In ACM SIGGRAPH 2021 Appy Hour. Cited page 97.

[218] Elie Michel and Tamy Boubekeur, 2021. “DAG amendment for inverse control of parametric
shapes”. ACM Transactions on Graphics (TOG), vol. 40, no. 4, pages 1–14. Cited pages 13 and 119.

[219] Media Molecule, 2020. “Dreams”. https://indreams.me/. Cited pages 13 and 21.

[220] Aron Monszpart, Nicolas Mellado, Gabriel J Brostow, and Niloy J Mitra, 2015. “Rapter:
rebuilding man-made scenes with regular arrangements of planes”. ACM Transactions on Graphics
(Proc. SIGGRAPH), vol. 34, no. 4. Cited page 30.

[221] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos, 2015. “ORB-SLAM: a
versatile and accurate monocular slam system”. IEEE Transactions on Robotics, vol. 31, no. 5. Cited
page 96.

[222] Brad A Myers, Ashley Lai, Tam Minh Le, YoungSeok Yoon, Andrew Faulring, and Joel
Brandt, 2015. “Selective undo support for painting applications”. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pages 4227–4236. Cited pages 60, 71,
and 75.

[223] Naam, 2017. “Art spotlight: Naam, creating art in oculus quill”. https://sketchfab.com/
blogs/community/art-spotlight-naam-creating-art-oculus-quill/. Cited pages 61
and 67.

[224] Bonnie Nardi, Bill Tomlinson, Donald J Pa�erson, Jay Chen, Daniel Pargman, Barath
Raghavan, and Birgit Penzenstadler, 2018. “Computing within limits”. Communications of the
ACM, vol. 61, no. 10, pages 86–93. Cited page 114.

[225] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa, 2006. “Laplacian mesh
optimization”. In Proceedings of the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, pages 381–389. Cited page 40.

137

https://play.mescaformhill.com/project/missing-five
https://play.mescaformhill.com/project/missing-five
http://www.theses.fr/2017SACLS486
https://www.maxon.net/en/zbrush
https://docs.pixologic.com/user-guide/3d-modeling/exporting-your-model/uv-mapping/uv-map-unwrap/
https://docs.pixologic.com/user-guide/3d-modeling/exporting-your-model/uv-mapping/uv-map-unwrap/
https://indreams.me/
https://sketchfab.com/blogs/community/art-spotlight-naam-creating-art-oculus-quill/
https://sketchfab.com/blogs/community/art-spotlight-naam-creating-art-oculus-quill/

BIBLIOGRAPHY

[226] Andrew Nealen, Takeo Igarashi, Olga Sorkine, andMarc Alexa, 2007. “FiberMesh: designing
freeform surfaces with 3D curves”. In ACM SIGGRAPH 2007 papers, pages 41–es. Cited pages 15,
29, and 54.

[227] Cuong Nguyen, Yuzhen Niu, and Feng Liu, 2013. “Direct manipulation video navigation in
3D”. In Proc. ACM SIGCHI Conference on Human Factors in Computing Systems. Cited pages 22
and 96.

[228] NVRMIND, 2018. “Animvr”. https://www.meta.com/en-gb/experiences/pcvr/

1741124389277542/. Cited pages 16, 21, and 74.

[229] Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim, 2018. “Fast video
object segmentation by reference-guided mask propagation”. In Proc. IEEE Conference on Computer
Vision and Pa�ern Recognition (CVPR). Cited page 97.

[230] Makoto Okabe, Yasuyuki Matsushita, Takeo Igarashi, and Heung-Yeung Shum, 2006. “Illu-
mination brush: Interactive design of image-based lighting”. In ACM SIGGRAPH 2006 Research
posters, pages 141–es. Cited page 90.

[231] Pauline Olivier, Renaud Chabrier, Damien Rohmer, Eric De �oisy, and Marie-Paule Cani,
2019. “Nested explorativemaps: A new 3D canvas for conceptual design in architecture”. Computers
& Graphics, vol. 82, pages 203–213. Cited pages 14 and 113.

[232] Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge, 2009. “Sketch-
based modeling: A survey”. Computers & Graphics, vol. 33, no. 1, pages 85–103. Cited page
14.

[233] GüNay Orbay and Levent Burak Kara, 2012. “Sketch-based surface design using malleable
curve networks”. Computers & Graphics, vol. 36, no. 8, pages 916–929. Cited pages 27 and 28.

[234] Michaël Ortega and �omas Vincent, 2014. “Direct drawing on 3D shapes with automated
camera control”. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2047–2050. Cited pages 20 and 73.

[235] Alfred Oti and Nathan Crilly, 2021. “Immersive 3D sketching tools: Implications for visual
thinking and communication”. Computers & Graphics, vol. 94, pages 111–123. Cited page 60.

[236] Patrick Paczkowski, Min H Kim, Yann Morvan, Julie Dorsey, Holly E Rushmeier, and Carol
O’Sullivan, 2011. “Insitu: sketching architectural designs in context.” ACM Trans. Graph., vol. 30,
no. 6, page 182. Cited page 14.

[237] Hao Pan, Yang Liu, Alla She�er, Nicholas Vining, Chang-Jian Li, and Wenping Wang, 2015.
“Flow aligned surfacing of curve networks”. ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 34, no. 4. Cited pages 28, 49, and 51.

[238] Karran Pandey, J Andreas Bærentzen, and Karan Singh, 2022. “Face extrusion quad meshes”.
In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–9. Cited page 11.

[239] Karran Pandey, Fanny Chevalier, and Karan Singh, 2023. “Juxtaform: interactive visual
summarization for exploratory shape design”. ACM Transactions on Graphics (TOG), vol. 42, no. 4,
pages 1–14. Cited page 119.

138

https://www.meta.com/en-gb/experiences/pcvr/1741124389277542/
https://www.meta.com/en-gb/experiences/pcvr/1741124389277542/

BIBLIOGRAPHY

[240] �eo Pavlidis and Christopher J Van Wyk, 1985. “An automatic beauti�er for drawings and
illustrations”. ACM SIGGRAPH Computer Graphics, vol. 19, no. 3, pages 225–234. Cited page 17.

[241] Hans Køhling Pedersen, 1996. “A framework for interactive texturing on curved surfaces”.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages
295–302. Cited page 19.

[242] Daniel Martin Peixe, 2020. “Creating faces in quill with daniel martin peixe (part 1/2)”.
https://www.youtube.com/watch?v=EqRmMYjp6Tg. Cited pages 61 and 67.

[243] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung,
2016. “A benchmark dataset and evaluation methodology for video object segmentation”. In
Computer Vision and Pa�ern Recognition. Cited page 105.

[244] Lohit Petikam, Ken Anjyo, and Taehyun Rhee, 2021. “Shading rig: Dynamic art-directable
stylised shading for 3d characters”. ACM Transactions on Graphics (TOG), vol. 40, no. 5, pages
1–14. Cited pages 21 and 90.

[245] Trung T. Pham, Markus Eich, Ian Reid, and Gordon Wyeth, 2016. “Geometrically consistent
plane extraction for dense indoor 3d maps segmentation”. In IROS. Cited page 30.

[246] Polysketch, 2023. “Polysketch”. https://www.polysketchvr.com/. Cited page 11.

[247] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-
Hornung, and Luc Van Gool, 2017. “�e 2017 DAVIS challenge on video object segmentation”.
arXiv:1704.00675. Cited page 105.

[248] Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung,
2017. “Autocuts: simultaneous distortion and cut optimization for UVmapping”. ACM Transactions
on Graphics (TOG), vol. 36, no. 6, pages 1–11. Cited page 19.

[249] Narjes Pourjafarian, Fjolla Mjaku, Marion Koelle, Martin Schmitz, Jan Borchers, and Jürgen
Steimle, 2023. “Handheld tools unleashed: Mixed-initiative physical sketching with a robotic
printer”. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages
1–14. Cited page 120.

[250] Frano Rajič, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher Yu, 2023.
“Segment anything meets point tracking”. arXiv:2307.01197. Cited page 114.

[251] Gonzalo Ramos, George Robertson, Mary Czerwinski, Desney Tan, Patrick Baudisch, Ken
Hinckley, and Maneesh Agrawala, 2006. “Tumble! splat! helping users access and manipulate
occluded content in 2D drawings”. In Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’06, page 428–435. Association for Computing Machinery, New York, NY, USA.
doi:10.1145/1133265.1133351. Cited page 90.

[252] Sverker Rasmuson, Erik Sintorn, and Ulf Assarsson, 2020. “User-guided 3D reconstruction
using multi-view stereo”. In Symposium on Interactive 3D Graphics and Games, I3D ’20. Association
for Computing Machinery, New York, NY, USA. doi:10.1145/3384382.3384530. Cited page
11.

[253] Alex Rav-Acha, Pushmeet Kohli, Carsten Rother, and Andrew Fitzgibbon, 2008. “Unwrap

139

https://www.youtube.com/watch?v=EqRmMYjp6Tg
https://www.polysketchvr.com/
https://doi.org/10.1145/1133265.1133351
https://doi.org/10.1145/3384382.3384530

BIBLIOGRAPHY

mosaics: A new representation for video editing”. ACM Transactions on Graphics (Proc. SIGGRAPH).
Cited page 96.

[254] Miguel A Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon, 2023. “Interaction
knowledge: Understanding the ‘mechanics’ of digital tools”. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pages 1–14. Cited pages 65 and 83.

[255] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch, Ted
Selker, and Mike Eisenberg, 2005. “Design principles for tools to support creative thinking”. Cited
pages 2 and 25.

[256] Alec Rivers, Andrew Adams, and Frédo Durand, 2012. “Sculpting by numbers”. ACM
Transactions on Graphics (TOG), vol. 31, no. 6, pages 1–7. Cited page 120.

[257] Alec Rivers, Takeo Igarashi, and Frédo Durand, 2010. “2.5D cartoon models”. ACM
Transactions on Graphics (Proc. SIGGRAPH), vol. 29, no. 4. Cited page 23.

[258] Sco� Robertson and �omas Bertling, 2014. How to Render: the fundamentals of light,
shadow and re�ectivity. Cited pages 71 and 75.

[259] Zoe Roellin, 2020. “But my granddad still sees gentian”. https://zoeroellin.ch/

gentian/. Cited page 59.

[260] Enrique Rosales, Chrystiano Araújo, Jafet Rodriguez, Nicholas Vining, Dongwook Yoon,
and Alla She�er, 2021. “AdaptiBrush: Adaptive general and predictable VR ribbon brush”. ACM
Transaction on Graphics (Proc. SIGGRAPH Asia), vol. 40, no. 1. Cited pages 30 and 74.

[261] Enrique Rosales, Jafet Rodriguez, and Alla She�er, 2019. “SurfaceBrush: From virtual
reality drawings to manifold surfaces”. ACM Transaction on Graphics, vol. 38, no. 4. doi:https:
//doi.org/10.1145/3306346.3322970. Cited page 30.

[262] Runway, 2022. “Runwayml”. https://app.runwayml.com/. Cited page 95.

[263] Emanuel Sachs, Andrew Roberts, and David Stoops, 1991. “3-Draw: A tool for designing
3D shapes”. IEEE Computer Graphics and Applications, , no. 6, pages 18–26. Cited page 16.

[264] Bardia Sadri and Karan Singh, 2014. “Flow-complex-based shape reconstruction from 3d
curves”. ACM Transactions on Graphics (TOG), vol. 33, no. 2. Cited pages 27 and 28.

[265] Stephanie Santosa, Fanny Chevalier, Ravin Balakrishnan, and Karan Singh, 2013. “Direct
space-time trajectory control for visual media editing”. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1149–1158. Cited page 22.

[266] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li, 2019. “Interactive body-
driven graphics for augmented video performance”. In Proc. ACM CHI Conference on Human
Factors in Computing Systems. Cited page 97.

[267] Steven Schkolne, Michael Prue�, and Peter Schröder, 2001. “Surface drawing: creating
organic 3d shapes with the hand and tangible tools”. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 261–268. Cited pages 4, 16, 17, 21, 59, and 74.

[268] Johannes Schmid, Martin Sebastian Senn, Markus Gross, and Robert W Sumner, 2011.

140

https://zoeroellin.ch/gentian/
https://zoeroellin.ch/gentian/
https://doi.org/https://doi.org/10.1145/3306346.3322970
https://doi.org/https://doi.org/10.1145/3306346.3322970
https://app.runwayml.com/

BIBLIOGRAPHY

“OverCoat: an implicit canvas for 3D painting”. In ACM SIGGRAPH 2011 papers, pages 1–10. Cited
pages 21 and 75.

[269] Ryan Schmidt, Cindy Grimm, and Brian Wyvill, 2006. “Interactive decal compositing
with discrete exponential maps”. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, page 605–613.
Association for Computing Machinery, New York, NY, USA. doi:10.1145/1179352.1141930.
Cited page 19.

[270] Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan Singh, 2009. “On expert perfor-
mance in 3D curve-drawing tasks”. In Proc. Symposium on Sketch-Based Interfaces and Modeling
(SBIM). Cited page 100.

[271] Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach, 2009. “Analytic drawing
of 3D sca�olds”. ACM transactions on graphics (TOG), vol. 28, no. 5, pages 1–10. Cited pages 14
and 28.

[272] Ryan Schmidt, Brian Wyvill, Mario Costa Sousa, and Joaquim A Jorge, 2007. “Shapeshop:
Sketch-based solid modeling with blobtrees”. In ACM SIGGRAPH 2007 courses, pages 43–es. Cited
page 15.

[273] Ruwen Schnabel, Patrick Degener, and Reinhard Klein, 2009. “Completion and reconstruc-
tion with primitive shapes”. In Computer Graphics Forum, vol. 28. Cited page 29.

[274] Johannes Lutz Schönberger and Jan-Michael Frahm, 2016. “Structure-from-Motion revis-
ited”. In Proc. IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR). Cited pages 94,
95, 96, and 101.

[275] Silvia Sellán and Alec Jacobson, 2022. “Stochastic poisson surface reconstruction”. ACM
Transactions on Graphics. Cited page 54.

[276] Ticha Sethapakdi, Daniel Anderson, Adrian Reginald Chua Sy, and Stefanie Mueller, 2021.
“Fabricaide: Fabrication-aware design for 2D cu�ing machines”. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–12. Cited page 120.

[277] Vadim Shapiro, 2002. “Solid modeling.” Handbook of computer aided geometric design,
vol. 20, pages 473–518. Cited page 13.

[278] Vishal Sharma, Neha Kumar, and Bonnie Nardi, 2023. “Post-growth human–computer
interaction”. ACM Transactions on Computer-Human Interaction. Cited page 114.

[279] Alla She�er and John C Hart, 2002. “Seamster: inconspicuous low-distortion texture seam
layout”. In IEEE Visualization, 2002. VIS 2002., pages 291–298. IEEE. Cited pages 19 and 73.

[280] Jianbo Shi and Jitendra Malik, 2000. “Normalized cuts and image segmentation”. IEEE
Transactions on pa�ern analysis and machine intelligence, vol. 22, no. 8. Cited page 39.

[281] Evan Shimizu, Ma� Fisher, Sylvain Paris, and Kayvon Fatahalian, 2019. “Finding layers
using hover visualizations”. In Proceedings of the 45th Graphics Interface Conference on Proceedings
of Graphics Interface 2019, pages 1–9. Cited page 90.

[282] Ben Shneiderman, 1983. “Direct manipulation: A step beyond programming languages”.
Computer, vol. 16, no. 08, pages 57–69. Cited page 1.

141

https://doi.org/10.1145/1179352.1141930

BIBLIOGRAPHY

[283] Maria Shugrina, 2021. �e design of playful and intelligent creative tools. Ph.D. thesis. Cited
page 114.

[284] Maria Shugrina, Chin-Ying Li, and Sanja Fidler, 2022. “Neural brushstroke engine: Learning
a latent style space of interactive drawing tools”. ACM Transactions on Graphics (TOG), vol. 41,
no. 6. Cited page 119.

[285] Maria Shugrina, Jingwan Lu, and Stephen Diverdi, 2017. “Playful pale�e: an interactive
parametric color mixer for artists”. ACM Transactions on Graphics (TOG), vol. 36, no. 4, pages
1–10. Cited pages 60, 71, and 119.

[286] Karan Singh and Eugene Fiume, 1998. “Wires: a geometric deformation technique”. In
Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages
405–414. Cited pages 12 and 54.

[287] Gravity Sketch, 2017. “Gravity sketch”. https://www.gravitysketch.com/. Cited
pages 11, 16, 17, 28, and 74.

[288] Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, and Jessica K Hodgins, 2023.
“A method for animating children’s drawings of the human �gure”. ACM Transactions on Graphics,
vol. 42, no. 3, pages 1–15. Cited pages 22 and 23.

[289] Smoothstep, 2021. “�ill”. https://quill.art/. Cited pages 16, 21, 23, 28, 59, 61, 72, 74,
and 75.

[290] Noah Snavely, C Lawrence Zitnick, Sing Bing Kang, and Michael Cohen, 2006. “Stylizing
2.5-D video”. In Proc. Symposium on Non-Photorealistic Animation and Rendering. Cited page 96.

[291] Olga Sorkine and Marc Alexa, 2007. “As-rigid-as-possible surface modeling”. In Symposium
on Geometry processing, vol. 4, pages 109–116. Citeseer. Cited page 12.

[292] Olga Sorkine and Daniel Cohen-Or, 2004. “Least-squares meshes”. In Proceedings Shape
Modeling Applications, 2004., pages 191–199. IEEE. Cited page 42.

[293] Tibor Stanko, Stefanie Hahmann, Georges-Pierre Bonneau, and Nathalie Saguin-Sprynski,
2016. “Smooth interpolation of curve networks with surface normals”. In Eurographics 2016 Short
Papers, pages 21–24. Eurographics Association. Cited page 28.

[294] Tibor Stanko, Stefanie Hahmann, Georges-Pierre Bonneau, and Nathalie Saguin-Sprynski,
2017. “Shape from sensors: Curve networks on surfaces from 3D orientations”. Computers &
Graphics (Proc. SMI), vol. 66. Cited page 104.

[295] Qingkun Su, Xue Bai, Hongbo Fu, Chiew-Lan Tai, and Jue Wang, 2018. “Live sketch: Video-
driven dynamic deformation of static drawings”. In Proc. ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 1–12. Cited pages 22, 23, 97, 102, and 110.

[296] Jiatian Sun, Longxiulin Deng, Triantafyllos Afouras, Andrew Owens, and Abe Davis, 2023.
“Eventfulness for interactive video alignment”. ACM Transactions on Graphics (TOG), vol. 42, no. 4,
pages 1–10. Cited page 113.

[297] Lingyun Sun, Yue Yang, Yu Chen, Jiaji Li, Danli Luo, Haolin Liu, Lining Yao, Ye Tao, and
Guanyun Wang, 2021. “ShrinCage: 4D printing accessories that self-adapt”. In Proceedings of the

142

https://www.gravitysketch.com/
https://quill.art/

BIBLIOGRAPHY

2021 CHI Conference on Human Factors in Computing Systems, pages 1–12. Cited page 120.

[298] Qian Sun, Long Zhang, Minqi Zhang, Xiang Ying, Shi-Qing Xin, Jiazhi Xia, and Ying He,
2013. “Texture brush: an interactive surface texturing interface”. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 153–160. Cited page 19.

[299] Hemant Bhaskar Surale, Aakar Gupta, Mark Hancock, and Daniel Vogel, 2019. “Tabletinvr:
Exploring the design space for using a multi-touch tablet in virtual reality”. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–13. Association for
Computing Machinery. doi:10.1145/3290605.3300243. Cited page 11.

[300] Ivan E Sutherland, 1963. “Sketchpad: A man-machine graphical communication system”.
In Proceedings of the May 21-23, 1963, spring joint computer conference, pages 329–346. Cited page
1.

[301] Ivan E Sutherland, 1968. “A head-mounted three dimensional display”. In Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, pages 757–764. Cited page 15.

[302] Ryo Suzuki, Rubaiat Habib Kazi, Li-yi Wei, Stephen DiVerdi, Wilmot Li, and Daniel Lei-
thinger, 2020. “RealitySketch: Embedding responsive graphics and visualizations in AR through
dynamic sketching”. In Proc. ACM Symposium on User Interface So�ware and Technology (UIST).
Cited page 96.

[303] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or, 2009. “Curve skeleton extraction
from incomplete point cloud”. In ACM SIGGRAPH 2009 papers, pages 1–9. Cited page 29.

[304] Yuka Takahashi, Tsukasa Fukusato, and Takeo Igarashi, 2019. “Paintersview: Automatic
suggestion of optimal viewpoints for 3d texture painting”. In SIGGRAPH Asia 2019 Technical Briefs,
pages 99–102. Cited pages 20 and 73.

[305] Jianchao Tan, Marek Dvorožňák, Daniel Sýkora, and Yotam Gingold, Jul. 2015. “Decompos-
ing time-lapse paintings into layers”. ACM Transactions on Graphics (TOG), vol. 34, no. 4, pages
61:1–61:10. URL: http://doi.acm.org/10.1145/2766960, doi:10.1145/2766960. Cited
page 75.

[306] Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold, Nov. 2016. “Decomposing images into
layers via RGB-space geometry”. ACM Transactions on Graphics (TOG), vol. 36, no. 1. URL:
http://doi.acm.org/10.1145/2988229, doi:10.1145/2988229. Cited page 75.

[307] T. Tasdizen, J.-P. Tarel, and D.B. Cooper, 2000. “Improving the stability of algebraic curves
for applications”. IEEE Transactions on Image Processing, vol. 9, no. 3. Cited pages 37 and 38.

[308] Gabriel Taubin, 1993. “An improved algorithm for algebraic curve and surface ��ing”. In
1993 (4th) International Conference on Computer Vision, pages 658–665. IEEE. Cited page 35.

[309] Zachary Teed and Jia Deng, 2020. “RAFT: Recurrent all-pairs �eld transforms for optical
�ow”. In European Conference on Computer Vision (ECCV), pages 402–419. Cited pages 95 and 101.

[310] Ma�hew �orne, David Burke, and Michiel Van De Panne, 2004. “Motion doodles: an
interface for sketching character motion”. ACM Transactions on Graphics (ToG), vol. 23, no. 3,
pages 424–431. Cited page 22.

143

https://doi.org/10.1145/3290605.3300243
http://doi.acm.org/10.1145/2766960
https://doi.org/10.1145/2766960
http://doi.acm.org/10.1145/2988229
https://doi.org/10.1145/2988229

BIBLIOGRAPHY

[311] James Townsend, Niklas Koep, and Sebastian Weichwald, 2016. “Pymanopt: A python
toolbox for optimization on manifolds using automatic di�erentiation”. Journal of Machine
Learning Research, vol. 17, no. 137, page 1–5. Cited page 105.

[312] Anil Usumezbas, Ricardo Fabbri, and Benjamin B. Kimia, 2017. “�e surfacing of multiview
3d drawings via lo�ing and occlusion reasoning”. In IEEE Conference on Computer Vision and
Pa�ern Recognition. Cited page 30.

[313] Rodolphe Vaillant, Loı̈c Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien Rohmer,
Brian Wyvill, Olivier Gourmel, and Mathias Paulin, 2013. “Implicit skinning: Real-time skin
deformation with contact modeling”. ACM Transactions on Graphics (TOG), vol. 32, no. 4, pages
1–12. Cited page 21.

[314] Julien Valentin, Adarsh Kowdle, Jonathan T Barron, Neal Wadhwa, Max Dzitsiuk, Michael
Schoenberg, Vivek Verma, Ambrus Csaszar, Eric Turner, Ivan Dryanovski, et al., 2018. “Depth
from motion for smartphone AR”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 37,
no. 6, pages 1–19. Cited page 96.

[315] W. Vaughan, 2012. Digital Modeling. [digital] Series. New Riders. URL: https://books.
google.co.in/books?id=nzJ2QgAACAAJ. Cited page 11.

[316] �e Verge, 2021. “Meta’s oculus quest 2 has shipped 10 million units, ac-
cording to qualcomm”. https://www.theverge.com/2021/11/16/22785469/

meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2. Cited page 1.

[317] Floor Verhoeven and Olga Sorkine-Hornung, 2019. “RodMesh: Two-handed 3D surface
modeling in virtual reality”. Cited page 54.

[318] Philipp Wacker, Adrian Wagner, Simon Voelker, and Jan Borchers, 2018. “Physical guides:
An analysis of 3d sketching performance on physical objects in augmented reality”. In Proceedings
of the 2018 ACM Symposium on Spatial User Interaction, pages 25–35. Cited page 17.

[319] Ludwig Wilhelm Wall, Alec Jacobson, Daniel Vogel, and Oliver Schneider, 2021. “Scrappy:
Using scrap material as in�ll to make fabrication more sustainable”. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–12. Cited page 120.

[320] Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander
Holynski, and Noah Snavely, 2023. “Tracking everything everywhere all at once”. In International
Conference on Computer Vision. Cited page 114.

[321] Andrew MWebb, Andruid Kerne, Zach Brown, Jun-Hyun Kim, and Elizabeth Kellogg, 2016.
“Layer�sh: Bimanual layering with a �sheye in-place”. In Proceedings of the 2016 ACM International
Conference on Interactive Surfaces and Spaces, pages 189–198. Cited page 90.

[322] Gerold Wesche and Hans-Peter Seidel, 2001. “FreeDrawer: a free-form sketching system
on the responsive workbench”. In Proceedings of the ACM symposium on Virtual reality so�ware
and technology, pages 167–174. Cited page 16.

[323] Eva Wiese, Johann Habakuk Israel, Achim Meyer, and Sara Bongartz, 2010. “Investigating
the learnability of immersive free-hand sketching”. In Proceedings of the seventh sketch-based
interfaces and modeling symposium, pages 135–142. Cited pages 59 and 69.

144

https://books.google.co.in/books?id=nzJ2QgAACAAJ
https://books.google.co.in/books?id=nzJ2QgAACAAJ
https://www.theverge.com/2021/11/16/22785469/meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2
https://www.theverge.com/2021/11/16/22785469/meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2

BIBLIOGRAPHY

[324] Nora S. Wille�, Wilmot Li, Jovan Popovic, Floraine Berthouzoz, and Adam Finkelstein,
2017. “Secondary motion for performed 2D animation”. In Proc. ACM Symposium on User Interface
So�ware and Technology (UIST). Cited page 113.

[325] Karl D.D.Willis, Cheng Xu, Kuan-JuWu, Golan Levin, andMark D. Gross, 2010. “Interactive
fabrication: New interfaces for digital fabrication”. In Proceedings of the Fi�h International
Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, page 69–72. Association for
Computing Machinery, New York, NY, USA. doi:10.1145/1935701.1935716. Cited page 120.

[326] Jianhua Wu and Leif Kobbelt, 2005. “Structure recovery via hybrid variational surface
approximation”. Computer Graphics Forum, vol. 24, no. 3. Cited page 30.

[327] Shanel Wu and Laura Devendorf, 2020. “Unfabricate: designing smart textiles for disassem-
bly”. In proceedings of the 2020 CHI conference on human factors in computing systems, pages 1–14.
Cited page 120.

[328] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor, 2016. “Object-oriented
drawing”. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
pages 4610–4621. Cited page 90.

[329] Zhijie Xia, Kyzyl Monteiro, Kevin Van, and Ryo Suzuki, 2023. “RealityCanvas: Augmented
reality sketching for embedded and responsive scribble animation e�ects”. In Proc. ACM Symposium
on User Interface So�ware and Technology (UIST). Cited page 114.

[330] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox, 2018. “PoseCNN: A
convolutional neural network for 6D object pose estimation in clu�ered scenes”. Robotics: Science
and Systems (RSS). Cited page 97.

[331] Chufeng Xiao, Wanchao Su, Jing Liao, Zhouhui Lian, Yi-Zhe Song, and Hongbo Fu, 2022.
“Di�erSketching: How di�erently do people sketch 3D objects?” ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia 2022), vol. 41, no. 4, pages 1–16. Cited page 14.

[332] Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji Yatani, 2015. “Autocomplete hand-drawn
animations”. ACM Transactions on Graphics (TOG), vol. 34, no. 6, pages 1–11. Cited page 23.

[333] Baoxuan Xu, William Chang, Alla She�er, Adrien Bousseau, James McCrae, and Karan
Singh, 2014. “True2Form: 3D curve networks from 2D sketches via selective regularization”. Cited
pages 14, 27, 28, and 46.

[334] Pengfei Xu, Hongbo Fu, Youyi Zheng, Karan Singh, Hui Huang, and Chiew-Lan Tai, 2018.
“Model-guided 3D sketching”. IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 10, pages 2927–2939. Cited page 14.

[335] Dong-Ming Yan, Wenping Wang, Yang Liu, and Zhouwang Yang, 2012. “Variational mesh
segmentation via quadric surface ��ing”. Computer-Aided Design, vol. 44, no. 11. Cited page 30.

[336] Hui Ye, Kin Chung Kwan, and Hongbo Fu, 2021. “3D curve creation on and around physical
objects with mobile AR”. IEEE transactions on visualization and computer graphics, vol. 28, no. 8,
pages 2809–2821. Cited page 17.

[337] Emilie Yu, Rahul Arora, Tibor Stanko, J Andreas Bærentzen, Karan Singh, and Adrien

145

https://doi.org/10.1145/1935701.1935716

BIBLIOGRAPHY

Bousseau, 2021. “CASSIE: Curve and surface sketching in immersive environments”. In ACM
Conference on Human Factors in Computing Systems (CHI), pages 1–14. Cited pages 17, 28, 46, 54,
and 59.

[338] Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold, 2021. “Sca�oldSketch:
Accurate industrial design drawing in vr”. In Proceedings of ACM Symposium on User Interface
So�ware and Technology, UIST. Cited pages 17, 28, and 59.

[339] Cédric Zanni, Frédéric Claux, and Sylvain Lefebvre, May 2018. “HCSG: Hashing for
real-time CSG modeling”. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. Montreal, Canada. URL: https://inria.hal.science/hal-01792866,
doi:10.1145/3203198. Cited pages 13 and 81.

[340] Jiayi Eris Zhang, Seungbae Bang, David IW Levin, and Alec Jacobson, 2020. “Complemen-
tary dynamics”. ACM Transactions on Graphics (TOG), vol. 39, no. 6, pages 1–11. Cited page
113.

[341] Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala, 2023. “Edit-
ing motion graphics video via motion vectorization and transformation”. arXiv preprint
arXiv:2309.14642. Cited page 21.

[342] Xiuming Zhang, Tali Dekel, Tianfan Xue, Andrew Owens, Qiurui He, Jiajun Wu, Stefanie
Mueller, and William T Freeman, 2018. “Mosculp: Interactive visualization of shape and time”. In
Proc. ACM Symposium on User Interface So�ware and Technology (UIST). Cited page 97.

[343] Y Zhang, C Nguyen, RH Kazi, and LF Yu, 2023. “PoseVEC: Authoring adaptive pose-aware
e�ects using visual programming and demonstrations”. In ACM Symposium on User Interface
So�ware and Technology. Cited page 113.

[344] Zhoutong Zhang, Forrester Cole, Richard Tucker, William T Freeman, and Tali Dekel, 2021.
“Consistent depth of moving objects in video”. ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 40, no. 4, pages 1–12. Cited pages 94 and 96.

[345] Haisen Zhao, MaxWillsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock, Justin Solomon,
and Adriana Schulz, mar 2022. “Co-optimization of design and fabrication plans for carpentry”.
ACM Trans. Graph., vol. 41, no. 3. doi:10.1145/3508499. Cited page 120.

[346] Nanxuan Zhao, Nam Wook Kim, Laura Mariah Herman, Hanspeter P�ster, Rynson WH
Lau, Jose Echevarria, and Zoya Bylinskii, 2020. “Iconate: Automatic compound icon generation
and ideation”. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pages 1–13. Cited page 60.

[347] Rebecca Zheng, Marina Fernández Camporro, Hugo Romat, Nathalie Henry Riche, Benjamin
Bach, Fanny Chevalier, Ken Hinckley, and Nicolai Marquardt, 2021. “Sketchnote components,
design space dimensions, and strategies for e�ective visual note taking”. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, pages 1–15. Cited page 60.

[348] Yang Zhou, Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong, and Daniel Cohen-Or,
2015. “Generalized cylinder decomposition”. ACM Transactions on Graphics (Proc. SIGGRAPH
Asia), vol. 34, no. 6. Cited pages 30 and 53.

146

https://inria.hal.science/hal-01792866
https://doi.org/10.1145/3203198
https://doi.org/10.1145/3508499

BIBLIOGRAPHY

[349] Yixin Zhuang, Ming Zou, Nathan Carr, and Tao Ju, 2013. “A general and e�cient method
for �nding cycles in 3d curve networks”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia),
vol. 32, no. 6. Cited pages 27 and 28.

[350] Amit Zoran and Joseph A Paradiso, 2013. “FreeD: a freehand digital sculpting tool”. In
Proceedings of the SIGCHI conference on human factors in computing systems, pages 2613–2616.
Cited page 120.

[351] Shoshana Zubo�, 2023. “�e age of surveillance capitalism”. In Social �eory Re-Wired,
pages 203–213. Routledge. Cited page 1.

147

	Contents
	Introduction
	3D sketching as a creative medium
	Outline
	Publications

	Background and related work
	Shape authoring
	Appearance authoring
	Motion authoring

	VR sketching for 3D surface modeling
	Motivation
	Piecewise-smooth surface fitting onto unstructured 3D sketches
	Related work
	Overview
	Method
	Implementation details
	Evaluation and results
	Conclusion
	Future work

	How do people paint in VR?
	Introduction
	Related work
	Procedure
	An accessible, direct and controllable 3D authoring tool
	Challenges
	Conclusion

	3D layer compositing for VR painting
	Introduction
	Related work
	Challenges of depicting shape and appearance in VR painting
	Painting with 3D-Layers
	Implementation
	Workflows
	User evaluation
	Conclusion
	Future work

	3D scene-aware hand-drawn animation on videos
	Introduction
	Related work
	Challenges in video doodles authoring
	User workflow
	Algorithmic Components
	Results and evaluation
	Conclusion
	Future Work

	Conclusion
	Contributions
	Research perspectives

	Bibliography

