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Figure 1: The first row shows the input video; the second row shows a rendering of the same frames using our new Lagrangian particle-
based representation and the third row shows the result of our edited motion. Notice how the leaves move with much higher amplitude than
in the original video. Please see the supplemental video for the results in motion.

Abstract
Recent advances in Neural Radiance Fields enable the capture of scenes with motion. However, editing the motion is hard;
no existing method allows editing beyond the space of motion existing in the original video, nor editing based on physics. We
present the first approach that allows physically-based editing of motion in a scene captured with a single hand-held video
camera, containing vibrating or periodic motion. We first introduce a Lagrangian representation, representing motion as the
displacement of particles, which is learned while training a radiance field. We use these particles to create a continuous
representation of motion over the sequence, which is then used to perform a modal analysis of the motion thanks to a Fourier
transform on the particle displacement over time. The resulting extracted modes allow motion synthesis, and easy editing of the
motion, while inheriting the ability for free-viewpoint synthesis in the captured 3D scene from the radiance field. We demonstrate
our new method on synthetic and real captured scenes.

1. Introduction

We live in a dynamic 3D world where objects exhibit interesting
and complex natural motion. Several methods have been developed
in recent years to reconstruct the 3D properties of such dynamic

scenes from 2D video observations, enabling novel view synthe-
sis [TTG∗21, PSB∗21, PCPMMN20, LNSW21]. However, these
methods only reconstruct the 3D motion of the scene and do not
reason about the underlying physical models of objects that lead to
the observed motion. Thus, while rendering any observed state of
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a scene from novel camera viewpoints is feasible, it is impossible
to naturally interact with the scene and create novel, physically-
plausible deformations.

In this work, we are interested in capturing properties of dynamic
real-world scenes in a way that enables 3D interactions based on
physics. We focus on scenes that exhibit vibrating or periodic mo-
tions. This covers a wide array of situations, including plants mov-
ing in the wind, a common occurence in outdoor captures. To this
end, we develop a method that can learn physics-based models of
the 3D scene dynamics and reconstruct the 3D structure, appear-
ance, and motion of the scene. For the first time, a simple capture
of a dynamic scene with a single hand-held camera allows a user
to apply virtual forces and synthesize physically-plausible scene
deformations. The deformed 3D scene can be rendered from any
virtual camera – in the limit of the views captured – at photoreal-
istic quality, thus, opening avenues for interesting applications in
computer graphics.

Our dynamics model is inspired by modal analysis [DBC∗15,
HSO03], that has been used in computer graphics to compute the
physical properties of moving objects from videos by extracting
the periodic components of motion using spectral analysis. These
physical properties can then be used to generate novel, plausible
motion for the scene. The closest method to our paper is [DCD15],
which uses modal analysis for editing objects in videos. However,
this method is limited to 2D – it uses the optical flow of a video
captured from a static camera to learn the physical dynamics. Since
this method does not reason about the 3D scene geometry, it cannot
account for scenes with complex motion and large disocclusions,
and can also not synthesize 3D motion and novel camera-view ren-
derings. Additionally, it requires the scene to be captured by a static
camera.

In contrast, our method enables modal analysis and synthesis of
3D scenes only using 2D observations from a single moving hand-
held video camera. We introduce several technical innovations that
enable this. We present a novel particle-based Lagrangian repre-
sentation for reconstructing the 3D scene motion. Unlike existing
methods [TTG∗21, PSB∗21] that use neural fields to deform 3D
points in the camera view to a learned canonical volume, we use a
particle-based formulation. We regularly sample a set of particles
in a canonical volume, and represent the motion in the scene as a
displacement of those particles. The scene geometry and appear-
ance in the canonical – or rest – space are learned using a factor-
ized voxel grid, as introduced in TensoRF [CXG∗22]. To render
the scene at a given frame and alternate viewpoint, we deform the
canonical space using the motion stored in the particles.

We develop a volume rendering formulation that uses the de-
formed particles to render an image from any novel camera view-
point. This particle-based Lagrangian formulation is essential, as
we can now persistently track a set of 3D points over the en-
tire motion sequence, which was not possible with existing dy-
namic reconstruction methods. Using a voxel grid also makes our
approach more efficient to train, compared to Multi-Layer Per-
ceptrons (MLPs) used in existing methods [MST∗20, TTG∗21,
PSB∗21, PCPMMN20].

The set of deforming 3D points is used for modal analysis, where

we recover the modal frequencies exhibited by the object. We se-
lect interesting modes and use them to generate new scene deforma-
tions, where a user can pick a point in the scene and apply a force in
any 3D direction. Since we perform physical reasoning in 3D, we
are not limited by complex occlusion effects in image-space like
the method of [DCD15], and in addition, we can also render novel
camera views of the synthesized motion. Our contributions can be
summarized as follows:

• A Lagrangian, particle-based representation of motion that is
trained together with a radiance field of a scene captured with
a single hand-held camera.

• A modal analysis and synthesis method that uses the particle-
based representation, enabling editing of motion while allowing
free-viewpoint synthesis in the captured 3D scene.

We show the results of our method on a synthetic and three cap-
tured scenes, demonstrating both the quality of the captured mo-
tion and the ability to edit and synthesize new motions in the scene
while rendering novel views.

2. Related Work

We first discuss 3D static and non-rigid reconstruction methods,
and then discuss modal analysis and synthesis in the context of im-
age/video manipulation.

2.1. Neural and Deformable Radiance Fields

Neural Radiance Fields (NeRFs) are a very active area of research
[TTM∗22], allowing for high-quality novel view synthesis for static
scenes. Radiance fields are often stored as a volumetric represen-
tation; NeRF [MST∗20] stores the radiance field in a Multi-Layer
Perceptron (MLP) that is fit to a single scene. Numerous variants
have been proposed, frequently attempting to address the high com-
putational cost of training and rendering. Many such solutions have
been presented recently, such as InstantNGP [MESK22] that uses a
hash grid and fast low-level CUDA operations to accelerate compu-
tation, and Plenoxels [FKYT∗22] that forgoes the neural network
altogether and stores density and spherical harmonic coefficients in
a sparse grid. Another solution is TensoRF [CXG∗22], where the
radiance field is stored as a 4D tensor. Specifically, it stores density
and features in a factored 3D voxel grid. The method uses a spe-
cific factorization-based block term decomposition, that computes
the 3D tensor as products of vectors and 2D tensors to limit the ef-
fective storage size to O(n2). At inference, tri-linear interpolation
of the density and features is performed in the factorized grid. The
interpolated features and camera ray directions are directly fed to
a shallow MLP that predicts the view-dependent local color. We
adopt TensoRF as a basis for our method for its combination of
simplicity and efficiency.

Several dynamic reconstruction methods have been developed
to lift the restriction of NeRF to static scenes. These methods re-
construct time-varying 3D NeRFs from a monocular video of a
dynamic scene. Some approaches directly condition a NeRF net-
work on the timestep [XHKK21, GSKH21, GXH∗22] while oth-
ers learn a canonical NeRF volume that is deformed to create the
reconstruction for each timestep [TTG∗21, PSB∗21, PCPMMN20,
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PSH∗21, GCD∗22, FYW∗22]. The latter methods learn a deforma-
tion field that deforms the canonical volume to the time-varying
volume, enabling computation of correspondences between the dif-
ferent timesteps. However, while these methods can be used for
time-varying novel view synthesis, they cannot perform edits us-
ing physics-based principles such as the modal analysis/synthesis
we use. Some methods exist that provide initial solutions for edit-
ing NeRFs, such as CoNeRF [KYK∗21] or HyperNeRF [PSH∗21].
However, the editing of the NeRF relies on pre-trained latent codes
that can be interpolated and thus, these methods cannot be used to
generate completely novel motion. All these methods can be seen
as Eulerian representations, that make it harder to perform synthe-
sis. In contrast, our Lagrangian particle-based approach is more
suitable for motion control, since we can easily define, track and
modify motion over time.

Similar to us, several existing approaches enable controllable
editing of motion but with different priors that do not enable
physically-based interactions. Control over human or animal mo-
tion has been explored [LHR∗21, WCS∗22, JYS∗22, PZX∗21,
XAS21, AXS∗22, YVN∗22, HLX∗21]; however, these methods do
not extract physical parameters for general scenes and use compo-
nents designed specifically for humans or animals in their meth-
ods. Other approaches [ZLY∗21, YSL∗22] enable control over the
geometry of general scenes; however, they do not discover the un-
derlying physical motion parameters and thus rely entirely on user
intervention to create plausible edits.

While primitive-based rendering has been explored for static
scene reconstruction [KPLD21,LSS∗21,LZ21,XXP∗22], dynamic
scene reconstruction has received little attention. Recently, two ap-
proaches have been developed for particle-based 3D reconstruc-
tion of dynamic scenes [LQC∗23,ACDS22]. PAC-NeRF [LQC∗23]
uses a hybrid Eulerian-Lagrangian representation to model dy-
namic scenes where density and color information is stored in voxel
grids that can be transformed into particles. A differentiable mate-
rial point method (MPM) is used to model the motion of the parti-
cles, enabling estimation of their physical properties. PAC-NeRF
uses a similar method as ours to convert between the Eulerian
and Lagrangian representations; however there are some key dif-
ferences. In particular, initialization of the complete geometry is
required before modeling the scene motion. The Lagrangian rep-
resentation is initialized using a NeRF trained over observations
in the first frame. This requires access to multi-view data, as the
reconstruction from the first frame needs to be complete. In con-
trast, we use monocular video data, and cannot rely on a single-
frame reconstruction as initialization. We instead use all the frames
to jointly reconstruct the geometry and motion in the scene. Our
particles do not live in the camera space of the first frame, but live
in a canonical space that is jointly discovered. Finally, our parti-
cles are allowed to move freely, subject to weak constraints, while
PAC-NeRF uses MPM that requires significant information about
the materials of the objects in the scene, and the scene complexity.

ParticleNeRF [ACDS22] uses a particle-based scene represen-
tation to model the scene geometry and motion. A position-based
dynamics physics model adds collision constraints for the particles.
Our method also uses particles to represent the scene motion. How-
ever, unlike these approaches that rely on synchronous multi-view

video observations, our method only relies on a monocular train-
ing video. Further, we do not add any constraints on the kinds of
materials allowed in the scenes, unlike PAC-NeRF, and enable the
synthesis of novel controllable motion, unlike ParticleNeRF.

2.2. Modal analysis and synthesis

Modal analysis and synthesis have been used extensively in graph-
ics and animation [PW89, NMK∗06, JP02]. Modal analysis can be
used to extract the periodic components of the motion in a scene
by performing a Fourier Transform on the optical flow of a single
viewpoint video sequence. These periodic components have been
used to estimate an objects’s material properties [DBC∗15], syn-
thesize sound from a 3D shape [JLQ∗20], extract ambient sounds
from a muted video [DRW∗14] or deform a 3D mesh [HSO03].
The approach works best on scenes that are subject to an harmonic
vibration. This can range from springs to trees or clothing moving
in the wind.

We focus on the full 3D modal synthesis of oscillating objects
captured in a video sequence from a moving camera. Davis et
al. [DCD15] take video from a static camera as input, and propose
the synthesis of new physically based motion from the properties
extracted with modal analysis based on optical flow. Instead of re-
lying on optical flow [Far03] to estimate the motion of a scene, we
will estimate the deformation field of a dynamic NeRF, providing
the required 3D motion, allowing depth and occlusion handling and
novel view synthesis.

3. Lagrangian deformable radiance field

Existing dynamic NeRF solutions [TTG∗21, PSH∗21] typically
store deformation in a MLP that can be seen as an Eulerian defor-
mation of the sampling space. We show that our new particle-based
Lagrangian representation is easier to edit and allows for efficient
analysis and synthesis of the physical properties of the scene.

Radiance fields, and especially neural radiance fields represent
view-dependent effects in a 3D scene as a mapping between the
position in space x, view direction θ and the corresponding density
σ(x) and color c(x,θ). Rendering of the scene is performed with
volumetric ray-marching. The color of a pixel p with view direction
θ is computed as follows, with s the distance along the ray:

c(p,θ) =
∫ ∞

0
τ(s)c(p+ sθ,θ)

(
1− e−σ(p+s θ)

)
ds, (1)

where:

τ(s) = exp
(
−

∫ s

0
σ(p+ s′ θ)

)
ds′. (2)

Such radiance fields are trained with standard stochastic gradi-
ent descent methods, minimizing the error between the predicted
images and a set of user-provided, pre-calibrated input images. In
our case, our inputs are all the frames of a monocular video, and
the corresponding camera poses are extracted using SfM (e.g., with
Colmap [SF16]).
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Figure 2: Our pipeline for the particle-based deformable tensorf (in the particle box). Rays in the observation space are first deformed to the
canonical space using our particle-based deformation field. Then we query the radiance field to get the color and density of each point along
the ray. After training, we use the deformation field for modal analysis and synthesis. Outside the particle box, the deformation is assumed
to be null and TensoRF additionally takes as input the view direction θ.

3.1. Particle-based deformation of radiance fields

Dynamic NeRF solutions [PSB∗21, PSH∗21, TTG∗21] decouple
the deformation and appearance of the scene. The appearance is
handled in a standard NeRF-like fashion, in a canonical space that
represents the original, undeformed version of the scene. The de-
formation δ is an auxiliary space-time field that warps the space
between a frame k and the canonical space: it is used in the render-
ing equation (Eq. 1) by moving any sampling point x in the space of
frame k to the warped position in canonical space, i.e., x−δ(x, tk).

We can see this as an Eulerian representation of the motion in
the scene: at each point x in space and time ti, the deformation field
expresses the origin of the information that arrives at that point in
canonical space. Although this representation is straightforward to
interface with the rendering equation of NeRF, it poses significant
challenges in our case, where we need to analyze and synthesize
the motion through physical laws defined in object space, which is
inherently Lagrangian.

Instead, we propose to represent motion, not as a deformation
of the space, but as the displacement of particles. The particles
are seeded in canonical space and contain a displacement toward
their position in each frame tk. The advantage of this representa-
tion is that the displacement can be easily manipulated to obtain
the physical properties of the scene and synthesize new, physically
consistent motion. The main advantage compared to Eulerian rep-
resentations is that we can directly define the motion of particles
in canonical space and directly track them at each frame thanks to
the forward mapping. For a point in canonical space, forward map-
ping allows us to know its position at each time step. Doing this
with the backward mapping of the deformation fields in previous
work would be much more challenging since the backward map-
ping gives for each point in the observation space its origin in the
canonical space.

However, we need to be able to recover the displacement from
the space of a given frame to canonical space and use it in the NeRF
rendering equation. To do this, we define a continuous deformation
field based on the particles.

For a frame at time t, each particle is moved from its position
in canonical space pc

i to a new position pi(t) = pc
i + di(t) by a

displacement di(t). Whenever we need to determine the motion for
a point in space x (e.g., samples along rays in NeRF), we interpolate
the deformation associated with the particles in the neighborhood
N(x) of x:

δ(x, t) =
∑i∈N(x) di(t)e−||pi(t)−x||2

∑i∈N(x) e−||pi(t)−x||2 (3)

We accelerate the neighborhood search by storing all the parti-
cles in a regular grid and limiting the neighbors to the particles in
adjacent cells. This remains valid as long as the relative displace-
ment remains small, which is ensured during training by our spatial
regularizer.

We jointly optimize the weights of the NeRF that encode the
appearance and the per-particle displacement (di(tk)). We use Ten-
soRF as a lightweight NeRF representation of the time-invariant
appearance in canonical space (σ and c in Eq. 1), while each parti-
cle stores a time-indexed array of displacements. During the main
optimization loop, the particles are moved using the corresponding
displacement for a given time t to create the continuous warp field
defined in Eq. 3. We use this field to warp the samples in the evalu-
ation of the integral in Eq. 1 to its position in canonical space. The
entire system is trained end-to-end, relying on backpropagation to
update the gradients of both the TensoRF weights and the particle
displacements.

3.2. Training

The particles are sampled regularly in canonical space. We opti-
mize the number of particles and particle spacing by limiting their
positions to a box around the object, which we choose as the max-
imal bounding box of all the possible configurations of the moving
object after 1h of training. We fix the canonical positions of the par-
ticles pc

i and optimize for the displacement, initialized at di(tk) = 0.
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In addition to the standard L2 rendering loss using the ground
truth pixel colors as supervision, we introduce regularizations on
the particle displacements.

Time regularization loss. We observe that the motion - coming
from real footage - should not allow for large changes over time.
Therefore, we constrain the motion to a small velocity dpi/dt =
ddi/dt:

Ltime-reg =
T

(n−1)|P|

n−1

∑
t=1

∑
i∈P

||di(tk+1)−di(tk)||1 (4)

With P the set of particles and di(t) the displacement of a particle i
at frame t. The frames are numbered from 1 to n, for a total video
length of T seconds.

Space regularization loss. We target the reconstruction of os-
cillatory objects, which are almost rigid: the motion should not
exhibit large spatial changes. Other works used a divergence
loss [TTG∗21]; we found that while this regularization effectively
reduced local changes in volume, it did not prevent abrupt shearing
or orthogonal deformations. Therefore, instead of using the diver-
gence loss, we prefer a simplified elastic potential energy:

Lspace-reg =
1

dx2|P| ∑
i∈P

∑
j∈Ni

||di(tk)−d j(tk)||22. (5)

This formulation benefits from the regular sampling of the particles
in the canonical space, with an inter-distance of dx. The set Ni con-
tains the 8 nearest neighbors of particle i in canonical space, and
the frame at time tk is randomly chosen at each iteration.

In static radiance field methods, the view direction affects the
color of the points to account for specular effects. In our case, we
have found that this feature was competing with the deformation
field to explain the motion. As a first approximation, we disabled
all view-dependent effects inside the box containing the particles.

4. Modal analysis and synthesis

Modal analysis makes the implicit assumption that a superposition
of harmonic oscillators can explain the motion in the scene. Many
types of motion respect this assumption: plants or clothing moving
in the wind, springs, or pendulums. Conceptually, we approximate
the scene and its motion as a set of points linked to each other with
springs. Each spring has different rigidity and damping, and each
point has a different mass. Without external forces, the system tends
to return to a rest state, and the displacement d(t) = {di(t), i ∈ P}
from the rest state is derived from the conservation of momentum:

Md̈(t)+Cḋ(t)+Kd(t) = f(t), (6)

where P is the set of discrete elements of the system (here parti-
cles), ḋ denotes the time derivative of d and d̈ its second derivative,
f(t) stands for the external force applied to the system at time t,
M, C and K are the parameter matrices for the mass, damping, and
rigidity respectively [Sha91].

This law can be expressed in a modal basis, where these matri-
ces are diagonal, reducing this equation to a set of |P| independent

equations (here we factor the mass into the other parameter and
forces:)

q̈i(t)+ ciq̇i(t)+ kiqi(t) = fi(t), (7)

where mi, ci and ki are the elements of the diagonalized matrices,
while qi and fi are the elements of the vectors d and f transformed
to the modal space. Note that we do not explicitly compute the
matrices M, C and K nor the diagonalization matrices, but we rely
on simple observations to transfer information from and to modal
space. A solution to Eq. 7 with no external forces is [Bat06]:

qi(t) = aie
−cit sin(ωit) . (8)

This result means that the motion of one point is the result of
the sum of periodic displacements of amplitude ai, damping ci and
damped natural frequency ωi. We can extract the values of the pa-
rameters ai and ωi by examining the motion of the scene, which is
directly stored in the displacement of the particles trained in Sec. 3
if we assume that the canonical space of our deformable NeRF is
the rest state for the system.

4.1. Mode Extraction

We perform a discrete-time Fourier transform independently on
each (x, y, z) component of the deformation of each particle. Then,
the user picks the frequencies that are the most common across par-
ticles, similarly to Davis et al. [DCD15], and stores their indices in
a set F . The intuition is that these frequencies are the most represen-
tative of the physical motion, and therefore that the corresponding
modal displacements {qi(t), i ∈ F} are sufficient to simulate a sim-
ilar movement. The very small number of selected modes (typically
1-10) makes this method an efficient model reduction.

Modal displacements can be interpreted as the displacement of a
part of the object, with local weights given by the amplitudes in the
Fourier spectrum. We denote the weights as w j→i, or the influence
of the frequency of the mode j on particle i. Therefore, we express
the displacement of a particle i as the weighted sum of all the modal
displacements:

di(t) = ∑
j∈F

w j→i q j(t) (9)

4.2. ModalNeRF Synthesis

From the trained canonical radiance field and extracted mode, we
can efficiently synthesize new physically-based motion from user
interactions, by solving Eq. 7 in modal space. At each time-step,
we can reproject the new modal displacements as particle displace-
ments with Eq. 9, essentially recreating a new continuous deforma-
tion field (Eq. 3) to re-render the scene without any retraining.

The user sets the external forces f (t) at different points in time
and the initial modal deformation qi(0); otherwise initialized at 0.
We further initialize the deformation velocity to q̇i(0) = 0 and solve
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Eq. 7 with finite differences, discretizing time by small steps of
duration dt.

First, we simplify the momentum equation (Eq. 7) follow-
ing [DCD15] with the assumption of Rayleigh damping, which
leads to ki = ω

2
i + c2

i , and update the deformation velocity from
the previous time step at t −dt:

q̇i(t) = q̇i(t −dt)+dt
(

fi(t)−
(

ω
2
i + c2

i

)
qi(t)− ci q̇i(t)

)
, (10)

and update the modal defomation with sympleptic Euler:

qi(t) = qi(t −dt)+dt q̇i(t) (11)

The damped natural frequency ωi was computed during mode
extraction, while ci is the damping parameter of the mode. Modal
analysis does not allow us to compute ci, therefore this parame-
ter is provided by the user. We found that the synthesized motions
are more plausible when increasing the damping coefficient ci for
higher frequencies ωi. These coefficients can be used to change the
stiffness of the movement, providing more editability.

5. Results and Evaluation

We implemented our method in PyTorch and used a single NVidia
A6000 GPU for training and motion synthesis. We will release all
our code and data, which will be available at: URL will be updated
upon acceptance.

We built our implementation on top of on the TensoRF code-
base and we use the original hyper-parameters for the static NeRF
part: Adam Optimizer with an initial learning rate of 0.02, train-
ing on 4096-pixel rays at each step, and using a small MLP with
two fully-connected layers (with 128-channels) and ReLU activa-
tion for the view dependency. We jointly train TensoRF and the
displacement of the particles, therefore we need significantly more
iterations than what TensoRF uses for a static scene (120k itera-
tions in our case, for approximately 5 hours). We found that the
training time descreased if we delay the upsampling of the tensor
grid so that the training spends more iterations on lower resolution
radiance fields.

We ran our method on one synthetic scene, to validate the anal-
ysis step and have a simple baseline test case, and we also captured
3 real scenes with varying types of motion. The synthetic scene is a
sphere bouncing in mid air with a specific frequency. PLANTA and
PLANTB are plastic plants with a fan blowing on them producing
motion, and RULER is an oscillating ruler (see Fig. 3 and Fig. 1 for
PLANTB, see supplemental videos for a better appreciation of the
synthesis).

For each scene, we selected the coordinates of a box around the
moving object and sampled all the particles inside that box. Boxes
contain approximately 400 particles regularly sampled. For better
results, the weights of the regularizers have been manually set. The
spatial regularizer loss weight is at 0.1 for all three real scenes while
it is at 1e-5 for the synthetic one. Both plant scenes have a time
regularizer weight of 1e-5 while the RULER and SYNTHETICBALL

have a weight of 0.1. We use a learning rate of 3e-4 on the particles,
decayed to 0.01 of its initial value alongside all other learning rates.

For efficiency, TensoRF skips evaluating color (Eq 1) using both
an occupancy grid and by thresholding on the color’s weights. We
disable both of these checks inside the particle box.

5.1. Results

We first present results for motion reconstruction, and then results
of modal analysis and synthesis which are our main contributions.
All results are best viewed in the supplemental video where motion
is easier to see and understand.

Motion Reconstruction. In Fig. 3, we show two rows for the four
scenes. Above we show frames from the input video, and below
we show renderings using our modified TensoRF that captures the
motion. To better appreciate the captured motion, please see the
supplemental video, where the motion is easier to see.

Please note that we are not attempting to improve motion capture
in NeRF; this is not our contribution. Our goal is to allow modal
analysis and synthesis with NeRF; we found that modal analysis re-
quires a novel representation of motion in the form of our particle-
based approach. Nonetheless, our method is competitive with (and
in some cases even better than) existing methods, even for motion
capture (see Sec. 5.2).

Modal Analysis. We performed modal analysis on the scenes. In
Fig. 4 we show the result of modal analysis for the SYNTHETIC

BALL, the RULER and the PLANTA scenes. The graphs show two
accurately extracted periodic motions. The main frequencies found
for the Synthetic Ball and for the (real) Ruler scenes are the correct
frequencies of motion of the object in the video (respectively 1 and
0.7 Hz, measured from the video). This allows easy and meaning-
ful manipulation of the motion in the scene. For PLANTA the modal
analysis is more complex since more frequencies are present in the
motion. For SYNTHETIC BALL and RULER, only one mode was se-
lected since there is only one frequency in the video. For PLANTA
and PLANTB, 2 and 3 modes were selected respectively.

To further test the ability of our approach to extract the frequency
of motion, we modified the synthetic scene to have 1

2 , x2, and x4
the frequency of the original scene. We show the results in Fig. 5;
we can see that our method extracts the correct frequencies accu-
rately, demonstrating the ability to accurately model motion based
on physics.

Free-Viewpoint Modal Synthesis. To perform synthesis, we start
by selecting dominant modes for each scene and apply two types
of motion manipulation. We first apply external forces f (t) at some
given times t. The forces f (t) are defined in modal space, i.e., one
for each mode, which means that the user can chose to apply forces
to some parts of the object only. As a second type of control, we
select a particle i and pull it on a user-given direction dpull. In that
case, we do not set external forces but change the initial modal
deformations to:

q j =−dpull ·w j→i (12)

We show the result of these manipulations in Fig. 6 and the supple-
mental video.

As can be seen in the supplemental video, by applying forces
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Figure 3: Three of our test scenes: PLANTA, RULER and SYNTHETICBALL. For each scene the top row shows frames of the input video
and below are renderings of the same motion with our method.

PANTASYNTHETICBALL RULER

Frequency 

Amplitude (m)

Frequency

Amplitude (m)

Frequency

Amplitude (m)

1 Hz 1 Hz 1 Hz

Figure 4: Modal analysis results for the SYNTHETIC BALL, RULER and PLANTA scenes. Note how our method correctly identifies the
single frequency of the first two motions. The third has a more complex profile.
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Amplitude (m)

1

Frequency (Hz)

Amplitude (m)

0.5

Amplitude (m)

1

Amplitude (m)

1

Frequency (Hz) Frequency (Hz) Frequency (Hz)

2 4

Half frequency Initial frequency x2 frequency x4 frequency

1

Figure 5: Extracting different motion frequencies for modified versions of SYNTHETIC BALL scenes. We see that our method can accurately
extract the physically correct frequency of the ball motion.

and manipulating the modes, we are able to significantly change
the velocity of the different moving objects in the scenes, creating
convincing exaggerated motion effects. The pre-trained canonical
radiance field allows us to interact with the scene from any new
viewpoint, consistently handling the 3D geometry and occlusions
in the scene. Our method is the first to allow both camera motion
and physics-based synthesis from a simple monocular video.

5.2. Evaluation and Comparisons

We provide two quantitative evaluations of the quality of motion
reconstruction using PSNR. Our first evaluation uses image error
with respect to the input frames to evaluate the quality of the mo-
tion.

We ran our method, NR-NeRF [TTG∗21] and also two very re-
cent methods [GCD∗22], [FYW∗22]. Previous methods essentially
fail when interpolating to unseen frames despite best effort param-
eter adjustment; we thus report PSNR only on the training set. As
we can see, our method is on par or in some cases better than previ-
ous methods for motion capture, and allows physics-based motion
synthesis.

BALL (PSNR↑) PLANTA (PSNR↑)
Ours 37.85 33.54
NR-NeRF [TTG∗21] 23.93 32.34
Guo et al. [GCD∗22] 25.02 30.62
Fang et al. [FYW∗22] 28.01 34.10

Table 1: Quantitative results on motion capture computed on the
BALL and PLANTA scenes.

In our second quantitative evaluation, we compare our recon-
struction to NR-NeRF [TTG∗21] on the synthetic scene. We use
NR-NeRF as a representative method for other similar dynamic re-
construction methods such as [PSB∗21,PCPMMN20]. Specifically,
we place 6 points on the surface of the moving sphere in the syn-
thetic scene, and export their ground truth positions in each frame.
For each method, we evaluate the position of these in the canonical
space at every frame; in a perfect reconstruction, their position in
the canonical space would be identical. For our method, the aver-
age variation of the position of the points from their mean canoni-
cal position is 0.05, while for NR-NeRF, the displacement is 0.61.

For reference, the sphere has a radius of 0.864. Unlike the task of
novel view synthesis where inaccurate motion and geometry can
still lead to plausible results, our task requires accurate motion re-
construction for modal analysis. This evaluation confirms that our
method can accurately capture 3D motion. In Fig. 7, we show the
motion estimated by NR-NeRF, which can be compared to the first
example in Fig. 3. We note that NR-NeRF does not work well for
specular scenes in the monocular setting.

Finally, we have performed several ablations to determine the
effect of the parameters of our method. In most cases, the choice
of parameters have a small effect on metrics. We report PSNR for
various ablations on the Plant A scene in Tab. 2.

5.3. Limitations

The modal analysis relies on the assumption that the observed mo-
tion is an harmonic vibration. This means that our method can be
only used on specific scenes including plants in the wind, pendu-
lums or pieces of clothing. It does not work on non-perdiodic mo-
tions such as humans, falling objects or liquids for example.

We disable view dependent effects wherever motion is expected.
This prevents us from handling moving specular objects. The ambi-
guity between motion and view-dependent effect is a common issue
with non-rigid NeRFs and we hope to solve this in future work by
leveraging physical priors during training. Non-rigid NeRFs also
tend to fail when the frame to frame motion is to large. This is why
we limit ourselves to scenes with small motion or to captures with
a high framerate. For examples of these issues, please refer to the
Appendix.

Another limitation is that the synthesized motion is projected on
the entire scene without any knowledge of the geometry. Pulling
on a leaf will make all the leaves move immediately. In cases
where there are two independent objects that vibrate at a similar
frequency, applying a force to one object will make the other object
move as well. This can be solved by the user manually separating
independent objects of the scene.

Due to the interpolation, extreme deformations can lead to a dis-
continuous field that creates visual artifacts. Fortunately, they are
prevented by the spatial regularizer. However, this puts a limit to
the forces a user can apply before breaking the geometry of the
scene.
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Figure 6: Our four test scenes: PLANTA, RULER, PLANTB and SYNTHETICBALL. For each scene the top row shows frames of the input
video and below are renderings of the motion manipulated with our method.

The particle bounding box has to be manually placed. This can
lead to shearing artefacts if the box is not carefully placed.

6. Conclusion

We present a new Lagrangian radiance-field-based representation
to capture motion in a scene captured with a single handle-held
video camera, focusing on mainly oscillating motion. We introduce
a particle-based representation that creates a continuous represen-
tation of the motion in the scene over the video sequence. This

particle-based representation allows us to perform modal analy-
sis of the reconstructed motion, and finally we can manipulate the
extracted modes to modify the motion in a physically-based man-
ner. Ours is the first solution that allows novel-view synthesis with
physically-based motion manipulation in a scene captured by a sin-
gle hand-held camera.

Directions for future work include expanding the types of motion
we can represent with our approach, and using the physics-based
representation to improve the quality and speed of the motion re-
construction.
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Figure 7: Motion reconstruction for the same sequence as Fig. 3 using NR-NeRF [TTG∗21]. First row is ground truth, second row is our
method and third row is the output of NR-NeRF. Our method can capture higher-quality motion and geometry.

PlantA PlantB Pendulum Ball
Density of particles ×1/4 ×1 ×2 ×1/4 ×1 ×2 ×1/4 ×1 ×2 ×1/4 ×1 ×2
PSNR↑ 31.41 32.08 32.13 33.66 33.87 33.74 30.47 30.23 29.0 37.7 27.5 29.42
Time Reg. 0.01 1.0 10.0 0.01 1.0 10.0 0.01 1.0 10.0 0.01 1.0 10.0
PSNR↑ 32.12 32.0 32.13 33.83 33.84 33.87 29.96 29.99 29.98 29.89 29.9 29.85
Deformation Reg. 1.0 100.0 1000.0 1.0 100.0 1000.0 1.0 100.0 1000.0 1.0 100.0 1000.0
PSNR↑ 32.93 31.40 31.03 34.04 33.89 33.85 30.43 30.16 29.97 31.58 30.92 29.88

Table 2: Quantitative comparisons of parameters ablation on PLANTA, PLANTB, PENDULUM and BALL scenes. For each scene, the middle
collumn shows the default parameters.
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Appendix A: Examples of failure cases and limitations

View dependent effects

As in previous works, we choose to disable the view direction input
to the MLP for all points within the bounding box of the motion. We
found that this was necessary for a good geometric reconstruction,
as shown in Fig. 8: when the view direction is included for moving
objects, the network learns to simulate the motion by creating false
geometry and adapting its color to the viewpoint. Excluding the
view direction for moving objects fixes this problem. Despite this
correction, our method can still recover the motion in scenes with
specular highlights (for instance plants where the leaves are highly
specular). In Fig. 9, we test an extreme case, where the pendulum is
a given a mirrored finish. We observe more artifacts, but the motion
is still recovered.

Large frame to frame motions

In cases where the observed motion has a large amplitude, the dif-
ference between succiessive images in the input increases, and the
quaility of the reconstruction decreases. As we can see in Fig. 10
the method reconstructs multiple spheres along the trajectory of
the pendulum. The deformation field then compresses and expands
these spheres in turn to give the illusion of movement. In the figure
we can observe the artifacts left by the compressed spheres.

Synthesis limitation

The modal synthesis strictly restricts motions in the degrees of free-
dom of the ones observed. For example, if the input video shows a
pendulum oscillating from left to right, then in all synthesized mo-
tion the pendulum will oscillate along the same axis. Although this
might be a limitation in some cases, for example, if this prevents an
interaction that would seem natural, this constraint can also be con-
sidered as a strong regularization that prevents highly non-physical
states.
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