
3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL
∗
, Inria, Université Côte d’Azur, France

GEORGIOS KOPANAS
∗
, Inria, Université Côte d’Azur, France

THOMAS LEIMKÜHLER,Max-Planck-Institut für Informatik, Germany

GEORGE DRETTAKIS, Inria, Université Côte d’Azur, France

Ground TruthInstantNGP (9.2 fps) Plenoxels (8.2 fps)
Train: 7min, PSNR: 22.1 Train: 26min, PSNR: 21.9

Mip-NeRF360 (0.071 fps)

Train: 48 h, PSNR: 24.3
Ours (135 fps)

Train: 6 min, PSNR: 23.6
Ours (93 fps)

Train: 51min, PSNR: 25.2

Fig. 1. Our method achieves real-time rendering of radiance fields with quality that equals the previous method with the best quality [Barron et al. 2022],

while only requiring optimization times competitive with the fastest previous methods [Fridovich-Keil and Yu et al. 2022; Müller et al. 2022]. Key to this

performance is a novel 3D Gaussian scene representation coupled with a real-time differentiable renderer, which offers significant speedup to both scene

optimization and novel view synthesis. Note that for comparable training times to InstantNGP [Müller et al. 2022], we achieve similar quality to theirs; while

this is the maximum quality they reach, by training for 51min we achieve state-of-the-art quality, even slightly better than Mip-NeRF360 [Barron et al. 2022].

Radiance Field methods have recently revolutionized novel-view synthesis

of scenes captured with multiple photos or videos. However, achieving high

visual quality still requires neural networks that are costly to train and ren-

der, while recent faster methods inevitably trade off speed for quality. For

unbounded and complete scenes (rather than isolated objects) and 1080p

resolution rendering, no current method can achieve real-time display rates.

We introduce three key elements that allow us to achieve state-of-the-art

visual quality while maintaining competitive training times and importantly

allow high-quality real-time (≥ 30 fps) novel-view synthesis at 1080p resolu-

tion. First, starting from sparse points produced during camera calibration,

we represent the scene with 3D Gaussians that preserve desirable proper-

ties of continuous volumetric radiance fields for scene optimization while

avoiding unnecessary computation in empty space; Second, we perform

interleaved optimization/density control of the 3D Gaussians, notably opti-

mizing anisotropic covariance to achieve an accurate representation of the

scene; Third, we develop a fast visibility-aware rendering algorithm that

supports anisotropic splatting and both accelerates training and allows real-

time rendering. We demonstrate state-of-the-art visual quality and real-time

rendering on several established datasets.

CCS Concepts: • Computing methodologies→ Rendering; Point-based
models; Rasterization;Machine learning approaches.

∗
Both authors contributed equally to the paper.

Authors’ addresses: Bernhard Kerbl, bernhard.kerbl@inria.fr, Inria, Université Côte

d’Azur, France; Georgios Kopanas, georgios.kopanas@inria.fr, Inria, Université Côte

d’Azur, France; Thomas Leimkühler, thomas.leimkuehler@mpi-inf.mpg.de, Max-

Planck-Institut für Informatik, Germany; George Drettakis, george.drettakis@inria.fr,

Inria, Université Côte d’Azur, France.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2018/0-ART0 $15.00

https://doi.org/XXXXXXX.XXXXXXX

Additional Key Words and Phrases: novel view synthesis, radiance fields, 3D

gaussians, real-time rendering

ACM Reference Format:
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Dret-

takis. 2018. 3D Gaussian Splatting for Real-Time Radiance Field Rendering.

ACM Trans. Graph. 0, 0, Article 0 (2018), 14 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

Meshes and points are the most common 3D scene representations

because they are explicit and are a good fit for fast GPU/CUDA-based

rasterization. In contrast, recent Neural Radiance Field (NeRF) meth-

ods build on continuous scene representations, typically optimizing

a Multi-Layer Perceptron (MLP) using volumetric ray-marching for

novel-view synthesis of captured scenes. Similarly, the most efficient

radiance field solutions to date build on continuous representations

by interpolating values stored in, e.g., voxel [Fridovich-Keil and Yu

et al. 2022] or hash [Müller et al. 2022] grids or points [Xu et al. 2022].

While the continuous nature of these methods helps optimization,

the stochastic sampling required for rendering is costly and can

result in noise. We introduce a new approach that combines the best

of both worlds: our 3D Gaussian representation allows optimization

with state-of-the-art (SOTA) visual quality and competitive training

times, while our tile-based splatting solution ensures real-time ren-

dering at SOTA quality for 1080p resolution on several previously

published datasets [Barron et al. 2022; Hedman et al. 2018; Knapitsch

et al. 2017] (see Fig. 1).

Our goal is to allow real-time rendering for scenes captured with

multiple photos, and create the representations with optimization

times as fast as the most efficient previous methods for typical

real scenes. Recent methods achieve fast training [Fridovich-Keil

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-5168-8648
HTTPS://ORCID.ORG/0009-0002-5829-2192
HTTPS://ORCID.ORG/0009-0006-7784-7957
HTTPS://ORCID.ORG/0000-0002-9254-4819
https://orcid.org/0000-0002-5168-8648
https://orcid.org/0009-0002-5829-2192
https://orcid.org/0009-0006-7784-7957
https://orcid.org/0000-0002-9254-4819
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

and Yu et al. 2022; Müller et al. 2022], but struggle to achieve the

visual quality obtained by the current SOTA NeRF methods, i.e.,

Mip-NeRF360 [Barron et al. 2022], which requires up to 48 hours of

training time. The fast – but lower-quality – radiance field methods

can achieve interactive rendering times depending on the scene

(10-15 frames per second), but fall short of real-time rendering at

high resolution.

Our solution builds on three main components. We first intro-

duce 3D Gaussians as a flexible and expressive scene representation.

We start with the same input as previous NeRF-like methods, i.e.,

cameras calibrated with Structure-from-Motion (SfM) [Snavely et al.

2006] and initialize the set of 3D Gaussians with the sparse point

cloud produced for free as part of the SfM process. In contrast to

most point-based solutions that require Multi-View Stereo (MVS)

data [Aliev et al. 2020; Kopanas et al. 2021; Rückert et al. 2022], we

achieve high-quality results with only SfM points as input. Note

that for the NeRF-synthetic dataset, our method achieves high qual-

ity even with random initialization. We show that 3D Gaussians

are an excellent choice, since they are a differentiable volumetric

representation, but they can also be rasterized very efficiently by

projecting them to 2D, and applying standard 𝛼-blending, using an

equivalent image formation model as NeRF. The second component

of our method is optimization of the properties of the 3D Gaussians

– 3D position, opacity 𝛼 , anisotropic covariance, and spherical har-

monic (SH) coefficients – interleaved with adaptive density control

steps, where we add and occasionally remove 3D Gaussians during

optimization. The optimization procedure produces a reasonably

compact, unstructured, and precise representation of the scene (1-5

million Gaussians for all scenes tested). The third and final element

of our method is our real-time rendering solution that uses fast GPU

sorting algorithms and is inspired by tile-based rasterization, fol-

lowing recent work [Lassner and Zollhofer 2021]. However, thanks

to our 3D Gaussian representation, we can perform anisotropic

splatting that respects visibility ordering – thanks to sorting and 𝛼-

blending – and enable a fast and accurate backward pass by tracking

the traversal of as many sorted splats as required.

To summarize, we provide the following contributions:

• The introduction of anisotropic 3DGaussians as a high-quality,

unstructured representation of radiance fields.

• An optimization method of 3D Gaussian properties, inter-

leaved with adaptive density control that creates high-quality

representations for captured scenes.

• A fast, differentiable rendering approach for the GPU, which

is visibility-aware, allows anisotropic splatting and fast back-

propagation to achieve high-quality novel view synthesis.

Our results on previously published datasets show that we can opti-

mize our 3D Gaussians from multi-view captures and achieve equal

or better quality than the best quality previous implicit radiance

field approaches. We also can achieve training speeds and quality

similar to the fastest methods and importantly provide the first

real-time rendering with high quality for novel-view synthesis.

2 RELATED WORK

We first briefly overview traditional reconstruction, then discuss

point-based rendering and radiance field work, discussing their

similarity; radiance fields are a vast area, so we focus only on directly

related work. For complete coverage of the field, please see the

excellent recent surveys [Tewari et al. 2022; Xie et al. 2022].

2.1 Traditional Scene Reconstruction and Rendering

The first novel-view synthesis approaches were based on light fields,

first densely sampled [Gortler et al. 1996; Levoy and Hanrahan 1996]

then allowing unstructured capture [Buehler et al. 2001]. The advent

of Structure-from-Motion (SfM) [Snavely et al. 2006] enabled an

entire new domain where a collection of photos could be used to

synthesize novel views. SfM estimates a sparse point cloud during

camera calibration, that was initially used for simple visualization

of 3D space. Subsequent multi-view stereo (MVS) produced im-

pressive full 3D reconstruction algorithms over the years [Goesele

et al. 2007], enabling the development of several view synthesis

algorithms [Chaurasia et al. 2013; Eisemann et al. 2008; Hedman

et al. 2018; Kopanas et al. 2021]. All these methods re-project and
blend the input images into the novel view camera, and use the

geometry to guide this re-projection. These methods produced ex-

cellent results in many cases, but typically cannot completely re-

cover from unreconstructed regions, or from “over-reconstruction”,

when MVS generates inexistent geometry. Recent neural render-

ing algorithms [Tewari et al. 2022] vastly reduce such artifacts and

avoid the overwhelming cost of storing all input images on the GPU,

outperforming these methods on most fronts.

2.2 Neural Rendering and Radiance Fields

Deep learning techniques were adopted early for novel-view synthe-

sis [Flynn et al. 2016; Zhou et al. 2016]; CNNs were used to estimate

blendingweights [Hedman et al. 2018], or for texture-space solutions

[Riegler and Koltun 2020; Thies et al. 2019]. The use of MVS-based

geometry is a major drawback of most of these methods; in addition,

the use of CNNs for final rendering frequently results in temporal

flickering.

Volumetric representations for novel-view synthesis were ini-

tiated by Soft3D [Penner and Zhang 2017]; deep-learning tech-

niques coupled with volumetric ray-marching were subsequently

proposed [Henzler et al. 2019; Sitzmann et al. 2019] building on a con-

tinuous differentiable density field to represent geometry. Rendering

using volumetric ray-marching has a significant cost due to the large

number of samples required to query the volume. Neural Radiance

Fields (NeRFs) [Mildenhall et al. 2020] introduced importance sam-

pling and positional encoding to improve quality, but used a large

Multi-Layer Perceptron negatively affecting speed. The success of

NeRF has resulted in an explosion of follow-up methods that address

quality and speed, often by introducing regularization strategies; the

current state-of-the-art in image quality for novel-view synthesis is

Mip-NeRF360 [Barron et al. 2022]. While the rendering quality is

outstanding, training and rendering times remain extremely high;

we are able to equal or in some cases surpass this quality while

providing fast training and real-time rendering.

The most recent methods have focused on faster training and/or

rendering mostly by exploiting three design choices: the use of spa-

tial data structures to store (neural) features that are subsequently

interpolated during volumetric ray-marching, different encodings,

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 3

and MLP capacity. Such methods include different variants of space

discretization [Chen et al. 2022b,a; Fridovich-Keil and Yu et al. 2022;

Garbin et al. 2021; Hedman et al. 2021; Reiser et al. 2021; Takikawa

et al. 2021; Wu et al. 2022; Yu et al. 2021], codebooks [Takikawa

et al. 2022], and encodings such as hash tables [Müller et al. 2022],

allowing the use of a smaller MLP or foregoing neural networks

completely [Fridovich-Keil and Yu et al. 2022; Sun et al. 2022].

Most notable of these methods are InstantNGP [Müller et al. 2022]

which uses a hash grid and an occupancy grid to accelerate compu-

tation and a smaller MLP to represent density and appearance; and

Plenoxels [Fridovich-Keil and Yu et al. 2022] that use a sparse voxel

grid to interpolate a continuous density field, and are able to forgo

neural networks altogether. Both rely on Spherical Harmonics: the

former to represent directional effects directly, the latter to encode

its inputs to the color network. While both provide outstanding

results, these methods can still struggle to represent empty space

effectively, depending in part on the scene/capture type. In addition,

image quality is limited in large part by the choice of the structured

grids used for acceleration, and rendering speed is hindered by the

need to query many samples for a given ray-marching step. The un-

structured, explicit GPU-friendly 3DGaussians we use achieve faster

rendering speed and better quality without neural components.

2.3 Point-Based Rendering and Radiance Fields

Point-based methods efficiently render disconnected and unstruc-

tured geometry samples (i.e., point clouds) [Gross and Pfister 2011].

In its simplest form, point sample rendering [Grossman and Dally

1998] rasterizes an unstructured set of points with a fixed size, for

which it may exploit natively supported point types of graphics APIs

[Sainz and Pajarola 2004] or parallel software rasterization on the

GPU [Laine and Karras 2011; Schütz et al. 2022]. While true to the

underlying data, point sample rendering suffers from holes, causes

aliasing, and is strictly discontinuous. Seminal work on high-quality

point-based rendering addresses these issues by “splatting” point

primitives with an extent larger than a pixel, e.g., circular or elliptic

discs, ellipsoids, or surfels [Botsch et al. 2005; Pfister et al. 2000; Ren

et al. 2002; Zwicker et al. 2001b].

There has been recent interest in differentiable point-based render-
ing techniques [Wiles et al. 2020; Yifan et al. 2019]. Points have been

augmented with neural features and rendered using a CNN [Aliev

et al. 2020; Rückert et al. 2022] resulting in fast or even real-time

view synthesis; however they still depend on MVS for the initial

geometry, and as such inherit its artifacts, most notably over- or

under-reconstruction in hard cases such as featureless/shiny areas

or thin structures.

Point-based 𝛼-blending and NeRF-style volumetric rendering

share essentially the same image formation model. Specifically, the

color 𝐶 is given by volumetric rendering along a ray:

𝐶 =

𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖))c𝑖 with 𝑇𝑖 = exp
©­«−

𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗
ª®¬ , (1)

where samples of density 𝜎 , transmittance 𝑇 , and color c are taken
along the ray with intervals 𝛿𝑖 . This can be re-written as

𝐶 =

𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 , (2)

with

𝛼𝑖 = (1 − exp(−𝜎𝑖𝛿𝑖)) and 𝑇𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼𝑖) .

A typical neural point-based approach (e.g., [Kopanas et al. 2022,

2021]) computes the color𝐶 of a pixel by blendingN ordered points

overlapping the pixel:

𝐶 =
∑︁
𝑖∈N

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗), (3)

where c𝑖 is the color of each point and 𝛼𝑖 is given by evaluating a

2D Gaussian with covariance Σ [Yifan et al. 2019] multiplied with a

learned per-point opacity.

From Eq. 2 and Eq. 3, we can clearly see that the image formation

model is the same. However, the rendering algorithm is very differ-

ent. NeRFs are a continuous representation implicitly representing

empty/occupied space; expensive random sampling is required to

find the samples in Eq. 2 with consequent noise and computational

expense. In contrast, points are an unstructured, discrete represen-

tation that is flexible enough to allow creation, destruction, and

displacement of geometry similar to NeRF. This is achieved by opti-

mizing opacity and positions, as shown by previous work [Kopanas

et al. 2021], while avoiding the shortcomings of a full volumetric

representation.

Pulsar [Lassner and Zollhofer 2021] achieves fast sphere rasteri-
zation which inspired our tile-based and sorting renderer. However,

given the analysis above, we want to maintain (approximate) con-

ventional 𝛼-blending on sorted splats to have the advantages of vol-

umetric representations: Our rasterization respects visibility order

in contrast to their order-independent method. In addition, we back-

propagate gradients on all splats in a pixel and rasterize anisotropic

splats. These elements all contribute to the high visual quality of

our results (see Sec. 7.3). In addition, previous methods mentioned

above also use CNNs for rendering, which results in temporal in-

stability. Nonetheless, the rendering speed of Pulsar [Lassner and

Zollhofer 2021] and ADOP [Rückert et al. 2022] served as motivation

to develop our fast rendering solution.

While focusing on specular effects, the diffuse point-based ren-

dering track of Neural Point Catacaustics [Kopanas et al. 2022]

overcomes this temporal instability by using an MLP, but still re-

quired MVS geometry as input. The most recent method [Zhang

et al. 2022] in this category does not require MVS, and also uses

SH for directions; however, it can only handle scenes of one object

and needs masks for initialization. While fast for small resolutions

and low point counts, it is unclear how it can scale to scenes of

typical datasets [Barron et al. 2022; Hedman et al. 2018; Knapitsch

et al. 2017]. We use 3D Gaussians for a more flexible scene rep-

resentation, avoiding the need for MVS geometry and achieving

real-time rendering thanks to our tile-based rendering algorithm

for the projected Gaussians.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

A recent approach [Xu et al. 2022] uses points to represent a

radiance field with a radial basis function approach. They employ

point pruning and densification techniques during optimization, but

use volumetric ray-marching and cannot achieve real-time display

rates.

In the domain of human performance capture, 3D Gaussians have

been used to represent captured human bodies [Rhodin et al. 2015;

Stoll et al. 2011]; more recently they have been used with volumetric

ray-marching for vision tasks [Wang et al. 2023]. Neural volumetric

primitives have been proposed in a similar context [Lombardi et al.

2021]. While these methods inspired the choice of 3D Gaussians as

our scene representation, they focus on the specific case of recon-

structing and rendering a single isolated object (a human body or

face), resulting in scenes with small depth complexity. In contrast,

our optimization of anisotropic covariance, our interleaved optimiza-

tion/density control, and efficient depth sorting for rendering allow

us to handle complete, complex scenes including background, both

indoors and outdoors and with large depth complexity.

3 OVERVIEW

The input to our method is a set of images of a static scene, together

with the corresponding cameras calibrated by SfM [Schönberger

and Frahm 2016] which produces a sparse point cloud as a side-

effect. From these points we create a set of 3D Gaussians (Sec. 4),

defined by a position (mean), covariance matrix and opacity 𝛼 , that

allows a very flexible optimization regime. This results in a reason-

ably compact representation of the 3D scene, in part because highly

anisotropic volumetric splats can be used to represent fine structures

compactly. The directional appearance component (color) of the

radiance field is represented via spherical harmonics (SH), following

standard practice [Fridovich-Keil and Yu et al. 2022; Müller et al.

2022]. Our algorithm proceeds to create the radiance field represen-

tation (Sec. 5) via a sequence of optimization steps of 3D Gaussian

parameters, i.e., position, covariance, 𝛼 and SH coefficients inter-

leaved with operations for adaptive control of the Gaussian density.

The key to the efficiency of our method is our tile-based rasterizer

(Sec. 6) that allows 𝛼-blending of anisotropic splats, respecting visi-

bility order thanks to fast sorting. Out fast rasterizer also includes

a fast backward pass by tracking accumulated 𝛼 values, without a

limit on the number of Gaussians that can receive gradients. The

overview of our method is illustrated in Fig. 2.

4 DIFFERENTIABLE 3D GAUSSIAN SPLATTING

Our goal is to optimize a scene representation that allows high-

quality novel view synthesis, starting from a sparse set of (SfM)

points without normals. To do this, we need a primitive that inherits

the properties of differentiable volumetric representations, while

at the same time being unstructured and explicit to allow very fast

rendering. We choose 3D Gaussians, which are differentiable and

can be easily projected to 2D splats allowing fast 𝛼-blending for

rendering.

Our representation has similarities to previous methods that use

2D points [Kopanas et al. 2021; Yifan et al. 2019] and assume each

point is a small planar circle with a normal. Given the extreme

sparsity of SfM points it is very hard to estimate normals. Similarly,

optimizing very noisy normals from such an estimation would be

very challenging. Instead, we model the geometry as a set of 3D

Gaussians that do not require normals. Our Gaussians are defined

by a full 3D covariance matrix Σ defined in world space [Zwicker

et al. 2001a] centered at point (mean) 𝜇:

𝐺 (𝑥) = 𝑒−
1

2
(𝑥)𝑇 Σ−1 (𝑥)

(4)

. This Gaussian is multiplied by 𝛼 in our blending process.

However, we need to project our 3DGaussians to 2D for rendering.

Zwicker et al. [2001a] demonstrate how to do this projection to

image space. Given a viewing transformation𝑊 the covariance

matrix Σ′ in camera coordinates is given as follows:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 (5)

where 𝐽 is the Jacobian of the affine approximation of the projective

transformation. Zwicker et al. [2001a] also show that if we skip the

third row and column of Σ′, we obtain a 2×2 variance matrix with

the same structure and properties as if we would start from planar

points with normals, as in previous work [Kopanas et al. 2021].

An obvious approachwould be to directly optimize the covariance

matrix Σ to obtain 3D Gaussians that represent the radiance field.

However, covariance matrices have physical meaning only when

they are positive semi-definite. For our optimization of all our pa-

rameters, we use gradient descent that cannot be easily constrained

to produce such valid matrices, and update steps and gradients can

very easily create invalid covariance matrices.

As a result, we opted for a more intuitive, yet equivalently ex-

pressive representation for optimization. The covariance matrix Σ
of a 3D Gaussian is analogous to describing the configuration of an

ellipsoid. Given a scaling matrix 𝑆 and rotation matrix 𝑅, we can

find the corresponding Σ:

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 (6)

To allow independent optimization of both factors, we store them

separately: a 3D vector 𝑠 for scaling and a quaternion 𝑞 to represent

rotation. These can be trivially converted to their respectivematrices

and combined, making sure to normalize 𝑞 to obtain a valid unit

quaternion.

To avoid significant overhead due to automatic differentiation

during training, we derive the gradients for all parameters explicitly.

Details of the exact derivative computations are in appendix A.

This representation of anisotropic covariance – suitable for op-

timization – allows us to optimize 3D Gaussians to adapt to the

geometry of different shapes in captured scenes, resulting in a fairly

compact representation. Fig. 3 illustrates such cases.

5 OPTIMIZATION WITH ADAPTIVE DENSITY

CONTROL OF 3D GAUSSIANS

The core of our approach is the optimization step, which creates

a dense set of 3D Gaussians accurately representing the scene for

free-view synthesis. In addition to positions 𝑝 , 𝛼 , and covariance

Σ, we also optimize SH coefficients representing color 𝑐 of each

Gaussian to correctly capture the view-dependent appearance of

the scene. The optimization of these parameters is interleaved with

steps that control the density of the Gaussians to better represent

the scene.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 5

Differentiable
Tile Rasterizer

Adaptive
Density Control

Projection

Initialization

SfM Points 3D Gaussians

Image

Camera

Gradient FlowOperation Flow

Fig. 2. Optimization starts with the sparse SfM point cloud and creates a set of 3D Gaussians. We then optimize and adaptively control the density of this set

of Gaussians. During optimization we use our fast tile-based renderer, allowing competitive training times compared to SOTA fast radiance field methods.

Once trained, our renderer allows real-time navigation for a wide variety of scenes.

Original
Shrunken

Gaussians

Fig. 3. We visualize the 3D Gaussians after optimization by shrinking them

60% (far right). This clearly shows the anisotropic shapes of the 3DGaussians

that compactly represent complex geometry after optimization. Left the

actual rendered image.

5.1 Optimization

The optimization is based on successive iterations of rendering and

comparing the resulting image to the training views in the captured

dataset. Inevitably, geometry may be incorrectly placed due to the

ambiguities of 3D to 2D projection. Our optimization thus needs to

be able to create geometry and also destroy or move geometry if it

has been incorrectly positioned. The quality of the parameters of the

covariances of the 3D Gaussians is critical for the compactness of

the representation since large homogeneous areas can be captured

with a small number of large anisotropic Gaussians.

We use Stochastic Gradient Descent techniques for optimization,

taking full advantage of standard GPU-accelerated frameworks,

and the ability to add custom CUDA kernels for some operations,

following recent best practice [Fridovich-Keil and Yu et al. 2022;

Sun et al. 2022]. In particular, our fast rasterization (see Sec. 6) is

critical in the efficiency of our optimization, since it is the main

computational bottleneck of the optimization.

We use a sigmoid activation function for 𝛼 to constrain it in

the [0 − 1) range and obtain smooth gradients, and an exponential

activation function for the scale of the covariance for similar reasons.

We estimate the initial covariance matrix as an isotropic Gaussian

with axes equal to themean of the distance to the closest three points.

We use a standard exponential decay scheduling technique similar

to Plenoxels [Fridovich-Keil and Yu et al. 2022], but for positions

only. The loss function is L1 combined with a D-SSIM term:

L = (1 − 𝜆)L1 + 𝜆LD-SSIM (7)

We use 𝜆 = 0.2 in all our tests. We provide details of the learning

schedule and other elements in Sec. 7.1.

5.2 Adaptive Control of Gaussians

We start with the initial set of sparse points from SfM and then apply

our method to adaptively control the number of Gaussians and their

density over unit volume
1
, allowing us to go from an initial sparse

set of Gaussians to a denser set that better represents the scene, and

with correct parameters. After optimization warm-up (see Sec. 7.1),

we densify every 100 iterations and remove any Gaussians that are

essentially transparent, i.e., with 𝛼 less than a threshold 𝜖𝛼 .

Our adaptive control of the Gaussians needs to populate empty

areas. It focuses on regions with missing geometric features (“under-

reconstruction”), but also in regions where Gaussians cover large

areas in the scene (which often correspond to “over-reconstruction”).

We observe that both have large view-space positional gradients.
Intuitively, this is likely because they correspond to regions that are

not yet well reconstructed, and the optimization tries to move the

Gaussians to correct this.

Since both cases are good candidates for densification, we den-

sify Gaussians with an average magnitude of view-space position

gradients above a threshold 𝜏pos, which we set to 0.0002 in our tests.

We next present details of this process, illustrated in Fig. 4.

For small Gaussians that are in under-reconstructed regions, we

need to cover the new geometry that must be created. For this, it is

preferable to clone the Gaussians, by simply creating a copy of the

same size, and moving it in the direction of the positional gradient.

On the other hand, large Gaussians in regions with high variance

need to be split into smaller Gaussians. We replace such Gaussians

by two new ones, and divide their scale by a factor of 𝜙 = 1.6which

we determined experimentally. We also initialize their position by

using the original 3D Gaussian as a PDF for sampling.

In the first case we detect and treat the need for increasing both

the total volume of the system and the number of Gaussians, while

in the second case we conserve total volume but increase the num-

ber of Gaussians. Similar to other volumetric representations, our

optimization can get stuck with floaters close to the input cameras;

in our case this may result in an unjustified increase in the Gaussian

density. An effective way to moderate the increase in the number

of Gaussians is to set the 𝛼 value close to zero every 𝑁 = 3000

1
Density of Gaussians should not be confused of course with density 𝜎 in the NeRF

literature.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis
U

nd
er

-
R

ec
on

st
ru

ct
io

n

Clone

Split

Optimization
Continues

…

…
Optimization

Continues

O
ve

r-
R

ec
on

st
ru

ct
io

n

Fig. 4. Our adaptive Gaussian densification scheme. Top row (under-
reconstruction): When small-scale geometry (black outline) is insufficiently

covered, we clone the respective Gaussian. Bottom row (over-reconstruction):
If small-scale geometry is represented by one large splat, we split it in two.

iterations. The optimization then increases the 𝛼 for the Gaussians

where this is needed while allowing our culling approach to remove

Gaussians with 𝛼 less than 𝜖𝛼 as described above. Gaussians may

shrink or grow and considerably overlap with others, but we peri-

odically remove Gaussians that are very large in worldspace and

those that have a big footprint in viewspace. This strategy results

in overall good control over the total number of Gaussians. The

Gaussians in our model remain primitives in Euclidean space at all

times; unlike other methods [Barron et al. 2022; Fridovich-Keil and

Yu et al. 2022], we do not require space compaction, warping or

projection strategies for distant or large Gaussians.

6 FAST DIFFERENTIABLE RASTERIZER FOR GAUSSIANS

Our goals are to have fast overall rendering and fast sorting to allow

approximate 𝛼-blending – including for anisotropic splats – and to

avoid hard limits on the number of splats that can receive gradients

that exist in previous work [Lassner and Zollhofer 2021].

To achieve these goals, we design a tile-based rasterizer for Gauss-

ian splats inspired by recent software rasterization approaches [Lass-

ner and Zollhofer 2021] to pre-sort primitives for an entire image

at a time, avoiding the expense of sorting per pixel that hindered

previous 𝛼-blending solutions [Kopanas et al. 2022, 2021]. Our fast

rasterizer allows efficient backpropagation over an arbitrary num-

ber of blended Gaussians with low additional memory consump-

tion, requiring only a constant overhead per pixel. Our rasterization

pipeline is fully differentiable, and given the projection to 2D (Sec. 4)

can rasterize anisotropic splats similar to previous 2D splatting

methods [Kopanas et al. 2021].

Our method starts by splitting the screen into 16×16 tiles, and
then proceeds to cull 3D Gaussians against the view frustum and

each tile. Specifically, we only keep Gaussians with a 99% confi-

dence interval intersecting the view frustum. Additionally, we use a

guard band to trivially reject Gaussians at extreme positions (i.e.,

those with means close to the near plane and far outside the view

frustum), since computing their projected 2D covariance would

be unstable. We then instantiate each Gaussian according to the

number of tiles they overlap and assign each instance a key that

combines view space depth and tile ID. We then sort Gaussians

based on these keys using a single fast GPU Radix sort [Merrill

and Grimshaw 2010]. Note that there is no additional per-pixel or-

dering of points, and blending is performed based on this initial

sorting. As a consequence, our 𝛼-blending can be approximate in

some configurations. However, these approximations become negli-

gible as splats approach the size of individual pixels. We found that

this choice greatly enhances training and rendering performance

without producing visible artifacts in converged scenes.

After sorting Gaussians, we produce a list for each tile by iden-

tifying the first and last depth-sorted entry that splats to a given

tile. For rasterization, we launch one thread block for each tile. Each

block first collaboratively loads packets of Gaussians into shared

memory and then, for a given pixel, accumulates color and 𝛼 values

by traversing the lists front-to-back, thus maximizing the gain in

parallelism both for data loading/sharing and processing. When we

reach a target saturation of 𝛼 in a pixel, the corresponding thread

stops. At regular intervals, threads in a tile are queried and the pro-

cessing of the entire tile terminates when all pixels have saturated

(i.e., 𝛼 goes to 1). Details of sorting and a high-level overview of the

overall rasterization approach are given in Appendix C.

During rasterization, the saturation of 𝛼 is the only stopping cri-

terion. In contrast to previous work, we do not limit the number

of blended primitives that receive gradient updates. We enforce

this property to allow our approach to handle scenes with an arbi-

trary, varying depth complexity and accurately learn them, without

having to resort to scene-specific hyperparameter tuning. During

the backward pass, we must therefore recover the full sequence of

blended points per-pixel in the forward pass. One solution would

be to store arbitrarily long lists of blended points per-pixel in global

memory [Kopanas et al. 2021]. To avoid the implied dynamic mem-

ory management overhead, we instead choose to traverse the per-

tile lists again; we can reuse the sorted array of Gaussians and tile

ranges from the forward pass. To facilitate gradient computation,

we now traverse them back-to-front.

The traversal starts from the last point that affected any pixel in

the tile, and loading of points into shared memory again happens

collaboratively. Additionally, each pixel will only start (expensive)

overlap testing and processing of points if their depth is lower than

or equal to the depth of the last point that contributed to its color

during the forward pass. Computation of the gradients described in

Sec. 4 requires the accumulated opacity values at each step during

the original blending process. Rather than trasversing an explicit

list of progressively shrinking opacities in the backward pass, we

can recover these intermediate opacities by storing only the total

accumulated opacity at the end of the forward pass. Specifically, each

point stores the final accumulated opacity 𝛼 in the forward process;

we divide this by each point’s 𝛼 in our back-to-front traversal to

obtain the required coefficients for gradient computation.

7 IMPLEMENTATION, RESULTS AND EVALUATION

We next discuss some details of implementation, present results and

the evaluation of our algorithm compared to previous work and

ablation studies.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 7

Ground Truth Ours Mip-NeRF360 InstantNGP Plenoxels

Fig. 5. We show comparisons of ours to previous methods and the corresponding ground truth images from held-out test views. The scenes are, from the top

down: Bicycle, Garden, Stump, Counter and Room from the Mip-NeRF360 dataset; Playroom, DrJohnson from the Deep Blending dataset [Hedman et al.

2018] and Truck and Train from Tanks&Temples. Non-obvious differences in quality highlighted by arrows/insets.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

Table 1. Quantitative evaluation of our method compared to previous work, computed over three datasets. Results marked with dagger † have been directly

adopted from the original paper, all others were obtained in our own experiments.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method|Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train FPS Mem 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train FPS Mem 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train FPS Mem

Plenoxels 0.626 23.08 0.463 25m49s 6.79 2.1GB 0.719 21.08 0.379 25m5s 13.0 2.3GB 0.795 23.06 0.510 27m49s 11.2 2.7GB

INGP-Base 0.671 25.30 0.371 5m37s 11.7 13MB 0.723 21.72 0.330 5m26s 17.1 13MB 0.797 23.62 0.423 6m31s 3.26 13MB

INGP-Big 0.699 25.59 0.331 7m30s 9.43 48MB 0.745 21.92 0.305 6m59s 14.4 48MB 0.817 24.96 0.390 8m 2.79 48MB

M-NeRF360 0.792
†

27.69
†

0.237
†

48h 0.06 8.6MB 0.759 22.22 0.257 48h 0.14 8.6MB 0.901 29.40 0.245 48h 0.09 8.6MB

Ours-7K 0.770 25.60 0.279 6m25s 160 523MB 0.767 21.20 0.280 6m55s 197 270MB 0.875 27.78 0.317 4m35s 172 386MB

Ours-30K 0.815 27.21 0.214 41m33s 134 734MB 0.841 23.14 0.183 26m54s 154 411MB 0.903 29.41 0.243 36m2s 137 676MB

7K iterations

7K iterations 30K iterations

30K iterations

Fig. 6. For some scenes (above) we can see that even at 7K iterations (∼5min

for this scene), our method has captured the train quite well. At 30K itera-

tions (∼35min) the background artifacts have been reduced significantly. For

other scenes (below), the difference is barely visible; 7K iterations (∼8min)

is already very high quality.

Table 2. PSNR scores for Synthetic NeRF, we start with 100K randomly

initialized points. Competing metrics extracted from respective papers.

Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76

INGP-Base 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18

Mip-NeRF 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09

Point-NeRF 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30

Ours-30K 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72 33.32

7.1 Implementation

We implemented our method in Python using the PyTorch frame-

work and wrote custom CUDA kernels for rasterization that are

extended versions of previous methods [Kopanas et al. 2021], and

use the NVIDIA CUB sorting routines for the fast Radix sort [Mer-

rill and Grimshaw 2010]. We also built an interactive viewer using

the open-source SIBR [Bonopera et al. 2020], used for interactive

viewing. We used this implementation to measure our achieved

frame rates. The source code and all our data are available at:

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Optimization Details. For stability, we “warm-up” the computa-

tion in lower resolution. Specifically, we start the optimization using

4 times smaller image resolution and we upsample twice after 250

and 500 iterations.

SH coefficient optimization is sensitive to the lack of angular

information. For typical “NeRF-like” captures where a central object

is observed by photos taken in the entire hemisphere around it, the

optimizationworkswell. However, if the capture has angular regions

missing (e.g., when capturing the corner of a scene, or performing

an “inside-out” [Hedman et al. 2016] capture) completely incorrect

values for the zero-order component of the SH (i.e., the base or

diffuse color) can be produced by the optimization. To overcome

this problem we start by optimizing only the zero-order component,

and then introduce one band of the SH after every 1000 iterations

until all 4 bands of SH are represented.

7.2 Results and Evaluation

Results. We tested our algorithm on a total of 13 real scenes

taken from previously published datasets and the synthetic Blender

dataset [Mildenhall et al. 2020]. In particular, we tested our ap-

proach on the full set of scenes presented in Mip-Nerf360 [Barron

et al. 2022], which is the current state of the art in NeRF rendering

quality, two scenes from the Tanks&Temples dataset [2017] and

two scenes provided by Hedman et al. [Hedman et al. 2018]. The

scenes we chose have very different capture styles, and cover both

bounded indoor scenes and large unbounded outdoor environments.

We use the same hyperparameter configuration for all experiments

in our evaluation. All results are reported running on an A6000 GPU,

except for the Mip-NeRF360 method (see below).

In supplemental, we show a rendered video path for a selection

of scenes that contain views far from the input photos.

Real-World Scenes. In terms of quality, the current state-of-the-

art is Mip-Nerf360 [Barron et al. 2021]. We compare against this

method as a quality benchmark. We also compare against two of

the most recent fast NeRF methods: InstantNGP [Müller et al. 2022]

and Plenoxels [Fridovich-Keil and Yu et al. 2022].

We use a train/test split for datasets, using the methodology

suggested by Mip-NeRF360, taking every 8th photo for test, for con-

sistent and meaningful comparisons to generate the error metrics,

using the standard PSNR, L-PIPS, and SSIM metrics used most fre-

quently in the literature; please see Table 1. All numbers in the table

are from our own runs of the author’s code for all previous meth-

ods, except for those of Mip-NeRF360 on their dataset, in which we

copied the numbers from the original publication to avoid confusion

about the current SOTA. For the images in our figures, we used our

own run of Mip-NeRF360: the numbers for these runs are in Appen-

dix D. We also show the average training time, rendering speed, and

memory used to store optimized parameters. We report results for a

basic configuration of InstantNGP (Base) that run for 35K iterations

as well as a slightly larger network suggested by the authors (Big),

and two configurations, 7K and 30K iterations for ours. We show

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 9

Table 3. PSNR Score for ablation runs. For this experiment, we manually downsampled high-resolution versions of each scene’s input images to the established

rendering resolution of our other experiments. Doing so reduces random artifacts (e.g., due to JPEG compression in the pre-downscaled Mip-NeRF360 inputs).

Truck-5K Garden-5K Bicycle-5K Truck-30K Garden-30K Bicycle-30K Average-5K Average-30K

Limited-BW 14.66 22.07 20.77 13.84 22.88 20.87 19.16 19.19

Random Init 16.75 20.90 19.86 18.02 22.19 21.05 19.17 20.42

No-Split 18.31 23.98 22.21 20.59 26.11 25.02 21.50 23.90

No-SH 22.36 25.22 22.88 24.39 26.59 25.08 23.48 25.35

No-Clone 22.29 25.61 22.15 24.82 27.47 25.46 23.35 25.91

Isotropic 22.40 25.49 22.81 23.89 27.00 24.81 23.56 25.23

Full 22.71 25.82 23.18 24.81 27.70 25.65 23.90 26.05

the difference in visual quality for our two configurations in Fig. 6.

In many cases, quality at 7K iterations is already quite good.

The training times vary over datasets and we report them sepa-

rately. Note that image resolutions also vary over datasets. In the

project website, we provide all the renders of test views we used to

compute the statistics for all the methods (ours and previous work)

on all scenes. Note that we kept the native input resolution for all

renders.

The table shows that our fully converged model achieves qual-

ity that is on par and sometimes slightly better than the SOTA

Mip-NeRF360 method; note that on the same hardware, their aver-

age training time was 48 hours
2
, compared to our 35-45min, and

their rendering time is 10s/frame. We achieve comparable quality

to InstantNGP and Plenoxels after 5-10m of training, but additional

training time allows us to achieve SOTA quality which is not the

case for the other fast methods. For Tanks & Temples, we achieve

similar quality as the basic InstantNGP at a similar training time

(∼7min in our case).

We also show visual results of this comparison for a left-out

test view for ours and the previous rendering methods selected

for comparison in Fig. 5; the results of our method are for 30K

iterations of training. We see that in some cases even Mip-NeRF360

has remaining artifacts that our method avoids (e.g., blurriness in

vegetation – in Bicycle, Stump – or on the walls in Room). In the

supplemental video and web page we provide comparisons of paths

from a distance. Our method tends to preserve visual detail of well-

covered regions even from far away, which is not always the case

for previous methods.

Synthetic Bounded Scenes. In addition to realistic scenes, we also

evaluate our approach on the synthetic Blender dataset [Mildenhall

et al. 2020]. The scenes in question provide an exhaustive set of

views, are limited in size, and provide exact camera parameters. In

such scenarios, we can achieve state-of-the-art results even with

random initialization: we start training from 100K uniformly random

Gaussians inside a volume that encloses the scene bounds. Our

approach quickly and automatically prunes them to about 6–10K

meaningful Gaussians. The final size of the trained model after 30K

iterations reaches about 200–500K Gaussians per scene. We report

and compare our achieved PSNR scores with previous methods in

Table 2 using a white background for compatibility. Examples can

2
We trained Mip-NeRF360 on a 4-GPU A100 node for 12 hours, equivalent to 48 hours

on a single GPU. Note that A100’s are faster than A6000 GPUs.

be seen in Fig. 10 (second image from the left) and in supplemental

material. The trained synthetic scenes rendered at 180–300 FPS.

Compactness. In comparison to previous explicit scene representa-

tions, the anisotropic Gaussians used in our optimization are capable

of modelling complex shapes with a lower number of parameters.

We showcase this by evaluating our approach against the highly

compact, point-based models obtained by [Zhang et al. 2022]. We

start from their initial point cloudwhich is obtained by space carving

with foreground masks and optimize until we break even with their

reported PSNR scores. This usually happens within 2–4 minutes.

We surpass their reported metrics using approximately one-fourth

of their point count, resulting in an average model size of 3.8 MB,

as opposed to their 9 MB. We note that for this experiment, we only

used two degrees of our spherical harmonics, similar to theirs.

7.3 Ablations

We isolated the different contributions and algorithmic choices

we made and constructed a set of experiments to measure their

effect. Specifically we test the following aspects of our algorithm:

initialization from SfM, our densification strategies, anisotropic

covariance, the fact that we allow an unlimited number of splats

to have gradients and use of spherical harmonics. The quantitative

effect of each choice is summarized in Table 3.

Initialization from SfM. We also assess the importance of initializ-

ing the 3D Gaussians from the SfM point cloud. For this ablation, we

uniformly sample a cube with a size equal to three times the extent

of the input camera’s bounding box. We observe that our method

performs relatively well, avoiding complete failure even without the

SfM points. Instead, it degrades mainly in the background, see Fig. 7.

Also in areas not well covered from training views, the random

initialization method appears to have more floaters that cannot be

removed by optimization. On the other hand, the synthetic NeRF

dataset does not have this behavior because it has no background

and is well constrained by the input cameras (see discussion above).

Densification. We next evaluate our two densification methods,

more specifically the clone and split strategy described in Sec. 5.

We disable each method separately and optimize using the rest of

the method unchanged. Results show that splitting big Gaussians

is important to allow good reconstruction of the background as

seen in Fig. 8, while cloning the small Gaussians instead of splitting

them allows for a better and faster convergence especially when

thin structures appear in the scene.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

SfM

Random

Fig. 7. Initialization with SfM points helps. Above: initialization with a

random point cloud. Below: initialization using SfM points.

Full-5k

No Clone-5k

No Split-5k

Fig. 8. Ablation of densification strategy for the two cases "clone" and

"split" (Sec. 5).

Unlimited depth complexity of splats with gradients. We evaluate

if skipping the gradient computation after the 𝑁 front-most points

Fig. 9. If we limit the number of points that receive gradients, the effect on

visual quality is significant. Left: limit of 10 Gaussians that receive gradients.

Right: our full method.

will give us speed without sacrificing quality, as suggested in Pul-

sar [Lassner and Zollhofer 2021]. In this test, we choose N=10, which

is two times higher than the default value in Pulsar, but it led to

unstable optimization because of the severe approximation in the

gradient computation. For the Truck scene, quality degraded by

11dB in PSNR (see Table 3, Limited-BW), and the visual outcome is

shown in Fig. 9 for Garden.

Anisotropic Covariance. An important algorithmic choice in our

method is the optimization of the full covariance matrix for the 3D

Gaussians. To demonstrate the effect of this choice, we perform an

ablation where we remove anisotropy by optimizing a single scalar

value that controls the radius of the 3D Gaussian on all three axes.

The results of this optimization are presented visually in Fig. 10.

We observe that the anisotropy significantly improves the quality

of the 3D Gaussian’s ability to align with surfaces, which in turn

allows for much higher rendering quality while maintaining the

same number of points.

Spherical Harmonics. Finally, the use of spherical harmonics im-

proves our overall PSNR scores since they compensate for the view-

dependent effects (Table 3).

7.4 Limitations

Our method is not without limitations. In regions where the scene

is not well observed we have artifacts; in such regions, other meth-

ods also struggle (e.g., Mip-NeRF360 in Fig. 11). Even though the

anisotropic Gaussians have many advantages as described above,

our method can create elongated artifacts or “splotchy” Gaussians

(see Fig. 12); again previous methods also struggle in these cases.

We also occasionally have popping artifacts when our optimiza-

tion creates large Gaussians; this tends to happen in regions with

view-dependent appearance. One reason for these popping artifacts

is the trivial rejection of Gaussians via a guard band in the rasterizer.

A more principled culling approach would alleviate these artifacts.

Another factor is our simple visibility algorithm, which can lead to

Gaussians suddenly switching depth/blending order. This could be

addressed by antialiasing, which we leave as future work. Also, we

currently do not apply any regularization to our optimization; doing

so would help with both the unseen region and popping artifacts.

While we used the same hyperparameters for our full evaluation,

early experiments show that reducing the position learning rate can

be necessary to converge in very large scenes (e.g., urban datasets).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 11

Ground
Truth Full Isotropic

Ground
Truth Full Isotropic

Ground
Truth Full Isotropic

Fig. 10. We train scenes with Gaussian anisotropy disabled and enabled. The use of anisotropic volumetric splats enables modelling of fine structures and has

a significant impact on visual quality. Note that for illustrative purposes, we restricted Ficus to use no more than 5k Gaussians in both configurations.

Even though we are very compact compared to previous point-

based approaches, our memory consumption is significantly higher

than NeRF-based solutions. During training of large scenes, peak

GPU memory consumption can exceed 20 GB in our unoptimized

prototype. However, this figure could be significantly reduced by a

careful low-level implementation of the optimization logic (similar

to InstantNGP). Rendering the trained scene requires sufficient GPU

memory to store the full model (several hundred megabytes for

large-scale scenes) and an additional 30–500 MB for the rasterizer,

depending on scene size and image resolution. We note that there

are many opportunities to further reduce memory consumption

of our method. Compression techniques for point clouds is a well-

studied field [De Queiroz and Chou 2016]; it would be interesting to

see how such approaches could be adapted to our representation.

Fig. 11. Comparison of failure artifacts: Mip-NeRF360 has “floaters” and

grainy appearance (left, foreground), while our method produces coarse,

anisoptropic Gaussians resulting in low-detail visuals (right, background).

Train scene.

Fig. 12. In views that have little overlap with those seen during training,

our method may produce artifacts (right). Again, Mip-NeRF360 also has

artifacts in these cases (left). DrJohnson scene.

8 DISCUSSION AND CONCLUSIONS

We have presented the first approach that truly allows real-time,

high-quality radiance field rendering, in a wide variety of scenes

and capture styles, while requiring training times competitive with

the fastest previous methods.

Our choice of a 3D Gaussian primitive preserves properties of

volumetric rendering for optimization while directly allowing fast

splat-based rasterization. Our work demonstrates that – contrary to

widely accepted opinion – a continuous representation is not strictly
necessary to allow fast and high-quality radiance field training.

The majority (∼80%) of our training time is spent in Python code,

since we built our solution in PyTorch to allow our method to be

easily used by others. Only the rasterization routine is implemented

as optimized CUDA kernels. We expect that porting the remaining

optimization entirely to CUDA, as e.g., done in InstantNGP [Müller

et al. 2022], could enable significant further speedup for applications

where performance is essential.

We also demonstrated the importance of building on real-time

rendering principles, exploiting the power of the GPU and speed of

software rasterization pipeline architecture. These design choices

are the key to performance both for training and real-time render-

ing, providing a competitive edge in performance over previous

volumetric ray-marching.

It would be interesting to see if our Gaussians can be used to per-

form mesh reconstructions of the captured scene. Aside from prac-

tical implications given the widespread use of meshes, this would

allow us to better understand where our method stands exactly in

the continuum between volumetric and surface representations.

In conclusion, we have presented the first real-time rendering

solution for radiance fields, with rendering quality that matches the

best expensive previous methods, with training times competitive

with the fastest existing solutions.

ACKNOWLEDGMENTS

This research was funded by the ERC Advanced grant FUNGRAPH

No 788065 http://fungraph.inria.fr. The authors are grateful to Adobe

for generous donations, the OPAL infrastructure from Université

Côte d’Azur and for the HPC resources from GENCI–IDRIS (Grant

2022-AD011013409). The authors thank the anonymous reviewers

for their valuable feedback, P. Hedman and A. Tewari for proof-

reading earlier drafts also T. Müller, A. Yu and S. Fridovich-Keil for

helping with the comparisons.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

http://fungraph.inria.fr

12 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lem-

pitsky. 2020. Neural Point-Based Graphics. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII. 696–
712.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for

anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5855–5864.

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

Sebastien Bonopera, Jerome Esnault, Siddhant Prakash, Simon Rodriguez, Theo Thonat,

Mehdi Benadel, Gaurav Chaurasia, Julien Philip, and George Drettakis. 2020. sibr:

A System for Image Based Rendering. https://gitlab.inria.fr/sibr/sibr_core

Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt. 2005. High-

Quality Surface Splatting on Today’s GPUs. In Proceedings of the Second Eurographics
/ IEEE VGTC Conference on Point-Based Graphics (New York, USA) (SPBG’05). Euro-
graphics Association, Goslar, DEU, 17–24.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.

2001. Unstructured lumigraph rendering. In Proc. SIGGRAPH.
Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.

2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 1–12.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022b. TensoRF:

Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).
Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2022a.

MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field

Rendering on Mobile Architectures. arXiv preprint arXiv:2208.00277 (2022).

Ricardo L De Queiroz and Philip A Chou. 2016. Compression of 3D point clouds using

a region-adaptive hierarchical transform. IEEE Transactions on Image Processing 25,

8 (2016), 3947–3956.

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson De Aguiar,

Naveed Ahmed, Christian Theobalt, and Anita Sellent. 2008. Floating textures. In

Computer graphics forum, Vol. 27. Wiley Online Library, 409–418.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. Deepstereo:

Learning to predict new views from the world’s imagery. In CVPR.
Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo

Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In CVPR.
Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien

Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). 14346–14355.

Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M Seitz.

2007. Multi-view stereo for community photo collections. In ICCV.
Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The

lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. 43–54.

Markus Gross and Hanspeter (Eds) Pfister. 2011. Point-based graphics. Elsevier.
Jeff P. Grossman and William J. Dally. 1998. Point Sample Rendering. In Rendering

Techniques.
Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and

Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based rendering.

ACM Trans. on Graphics (TOG) 37, 6 (2018).
Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable

Inside-Out Image-Based Rendering. ACM Transactions on Graphics (SIGGRAPH
Asia Conference Proceedings) 35, 6 (December 2016). http://www-sop.inria.fr/reves/

Basilic/2016/HRDB16

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul

Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV
(2021).

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2019. Escaping plato’s cave: 3d shape

from adversarial rendering. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 9984–9993.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and

temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (ToG) 36, 4 (2017), 1–13.

Georgios Kopanas, Thomas Leimkühler, Gilles Rainer, Clément Jambon, and George

Drettakis. 2022. Neural Point Catacaustics for Novel-View Synthesis of Reflections.

ACM Transactions on Graphics (SIGGRAPH Asia Conference Proceedings) 41, 6 (2022),
201. http://www-sop.inria.fr/reves/Basilic/2022/KLRJD22

Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. 2021. Point-

Based Neural Rendering with Per-View Optimization. Computer Graphics Forum 40,

4 (2021), 29–43. https://doi.org/10.1111/cgf.14339

Samuli Laine and Tero Karras. 2011. High-performance software rasterization on GPUs.

In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics.
79–88.

Christoph Lassner and Michael Zollhofer. 2021. Pulsar: Efficient Sphere-Based Neural

Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 1440–1449.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. 31–42.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh,

and Jason Saragih. 2021. Mixture of volumetric primitives for efficient neural

rendering. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–13.
Duane G Merrill and Andrew S Grimshaw. 2010. Revisiting sorting for GPGPU stream

architectures. In Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques. 545–546.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.

3530127

Eric Penner and Li Zhang. 2017. Soft 3D reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. 2000. Surfels:

Surface Elements as Rendering Primitives. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM
Press/Addison-Wesley Publishing Co., USA, 335–342. https://doi.org/10.1145/

344779.344936

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speed-

ing up Neural Radiance Fields with Thousands of Tiny MLPs. In International
Conference on Computer Vision (ICCV).

Liu Ren, Hanspeter Pfister, and Matthias Zwicker. 2002. Object Space EWA Surface

Splatting: A Hardware Accelerated Approach to High Quality Point Rendering.

Computer Graphics Forum 21 (2002).

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian

Theobalt. 2015. A versatile scene model with differentiable visibility applied to

generative pose estimation. In Proceedings of the IEEE International Conference on
Computer Vision. 765–773.

Gernot Riegler and Vladlen Koltun. 2020. Free view synthesis. In European Conference
on Computer Vision. Springer, 623–640.

Darius Rückert, Linus Franke, and Marc Stamminger. 2022. ADOP: Approximate

Differentiable One-Pixel Point Rendering. ACM Trans. Graph. 41, 4, Article 99 (jul
2022), 14 pages. https://doi.org/10.1145/3528223.3530122

Miguel Sainz and Renato Pajarola. 2004. Point-based rendering techniques. Computers
and Graphics 28, 6 (2004), 869–879. https://doi.org/10.1016/j.cag.2004.08.014

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion

Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).
Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2022. Software Rasterization of

2 Billion Points in Real Time. Proc. ACM Comput. Graph. Interact. Tech. 5, 3, Article
24 (jul 2022), 17 pages. https://doi.org/10.1145/3543863

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and

Michael Zollhofer. 2019. Deepvoxels: Learning persistent 3d feature embeddings. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2437–2446.

Noah Snavely, Steven M Seitz, and Richard Szeliski. 2006. Photo tourism: exploring

photo collections in 3D. In Proc. SIGGRAPH.
Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt. 2011.

Fast articulated motion tracking using a sums of gaussians body model. In 2011
International Conference on Computer Vision. IEEE, 951–958.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimization:

Super-fast Convergence for Radiance Fields Reconstruction. In CVPR.
Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire,

Alec Jacobson, and Sanja Fidler. 2022. Variable bitrate neural fields. In ACM SIG-
GRAPH 2022 Conference Proceedings. 1–9.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek

Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural

Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. (2021).

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, W Yifan,

Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,

et al. 2022. Advances in neural rendering. In Computer Graphics Forum, Vol. 41.

Wiley Online Library, 703–735.

Justus Thies, Michael Zollhöfer, and Matthias Nießner. 2019. Deferred neural rendering:

Image synthesis using neural textures. ACM Transactions on Graphics (TOG) 38, 4
(2019), 1–12.

AngtianWang, PengWang, Jian Sun, Adam Kortylewski, and Alan Yuille. 2023. VoGE: A

Differentiable Volume Renderer using Gaussian Ellipsoids for Analysis-by-Synthesis.

In The Eleventh International Conference on Learning Representations. https://

openreview.net/forum?id=AdPJb9cud_Y

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://gitlab.inria.fr/sibr/sibr_core
http://www-sop.inria.fr/reves/Basilic/2016/HRDB16
http://www-sop.inria.fr/reves/Basilic/2016/HRDB16
http://www-sop.inria.fr/reves/Basilic/2022/KLRJD22
https://doi.org/10.1111/cgf.14339
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1016/j.cag.2004.08.014
https://doi.org/10.1145/3543863
https://openreview.net/forum?id=AdPJb9cud_Y
https://openreview.net/forum?id=AdPJb9cud_Y

3D Gaussian Splatting for Real-Time Radiance Field Rendering • 13

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. 2020. Synsin:

End-to-end view synthesis from a single image. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7467–7477.

Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and

Weiwei Xu. 2022. Scalable Neural Indoor Scene Rendering. ACM Transactions on
Graphics (TOG) (2022).

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41.

Wiley Online Library, 641–676.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and

Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5438–5448.

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung.

2019. Differentiable surface splatting for point-based geometry processing. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–14.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.

PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.
Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. 2022. Dif-

ferentiable Point-Based Radiance Fields for Efficient View Synthesis. In SIGGRAPH
Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA ’22). Association for

Computing Machinery, New York, NY, USA, Article 7, 12 pages. https://doi.org/10.

1145/3550469.3555413

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros.

2016. View synthesis by appearance flow. In European conference on computer vision.
Springer, 286–301.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. 2001a. EWA

volume splatting. In Proceedings Visualization, 2001. VIS’01. IEEE, 29–538.
Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. 2001b. Surface

Splatting. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery, New

York, NY, USA, 371–378. https://doi.org/10.1145/383259.383300

A DETAILS OF GRADIENT COMPUTATION

Recall that Σ/Σ′ are the world/view space covariance matrices of

the Gaussian, 𝑞 is the rotation, and 𝑠 the scaling,𝑊 is the viewing

transformation and 𝐽 the Jacobian of the affine approximation of

the projective transformation. We can apply the chain rule to find

the derivatives w.r.t. scaling and rotation:

𝑑Σ′

𝑑𝑠
=
𝑑Σ′

𝑑Σ

𝑑Σ

𝑑𝑠
(8)

and

𝑑Σ′

𝑑𝑞
=
𝑑Σ′

𝑑Σ

𝑑Σ

𝑑𝑞
(9)

Simplifying Eq. 5 using𝑈 = 𝐽𝑊 and Σ′ being the (symmetric) upper

left 2×2matrix of𝑈 Σ𝑈𝑇
, denoting matrix elements with subscripts,

we can find the partial derivatives
𝜕Σ′
𝜕Σ𝑖 𝑗

=

(
𝑈1,𝑖𝑈1, 𝑗 𝑈1,𝑖𝑈2, 𝑗

𝑈1, 𝑗𝑈2,𝑖 𝑈2,𝑖𝑈2, 𝑗

)
.

Next, we seek the derivatives
𝑑Σ
𝑑𝑠

and
𝑑Σ
𝑑𝑞

. Since Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 ,

we can compute 𝑀 = 𝑅𝑆 and rewrite Σ = 𝑀𝑀𝑇
. Thus, we can

write
𝑑Σ
𝑑𝑠

= 𝑑Σ
𝑑𝑀

𝑑𝑀
𝑑𝑠

and
𝑑Σ
𝑑𝑞

= 𝑑Σ
𝑑𝑀

𝑑𝑀
𝑑𝑞

. Since the covariance ma-

trix Σ (and its gradient) is symmetric, the shared first part is com-

pactly found by
𝑑Σ
𝑑𝑀

= 2𝑀𝑇
. For scaling, we further have

𝜕𝑀𝑖,𝑗

𝜕𝑠𝑘
={

𝑅𝑖,𝑘 if j = k

0 otherwise

}
. To derive gradients for rotation, we recall the

conversion from a unit quaternion 𝑞 with real part 𝑞𝑟 and imaginary

parts 𝑞𝑖 , 𝑞 𝑗 , 𝑞𝑘 to a rotation matrix 𝑅:

𝑅(𝑞) = 2

©­­«
1

2
− (𝑞2

𝑗
+ 𝑞2

𝑘
) (𝑞𝑖𝑞 𝑗 − 𝑞𝑟𝑞𝑘) (𝑞𝑖𝑞𝑘 + 𝑞𝑟𝑞 𝑗)

(𝑞𝑖𝑞 𝑗 + 𝑞𝑟𝑞𝑘) 1

2
− (𝑞2

𝑖
+ 𝑞2

𝑘
) (𝑞 𝑗𝑞𝑘 − 𝑞𝑟𝑞𝑖)

(𝑞𝑖𝑞𝑘 − 𝑞𝑟𝑞 𝑗) (𝑞 𝑗𝑞𝑘 + 𝑞𝑟𝑞𝑖) 1

2
− (𝑞2

𝑖
+ 𝑞2

𝑗
)

ª®®¬ (10)

As a result, we find the following gradients for the components of 𝑞:

𝜕𝑀

𝜕𝑞𝑟
= 2

(
0 −𝑠𝑦𝑞𝑘 𝑠𝑧𝑞 𝑗

𝑠𝑥𝑞𝑘 0 −𝑠𝑧𝑞𝑖
−𝑠𝑥𝑞 𝑗 𝑠𝑦𝑞𝑖 0

)
,

𝜕𝑀

𝜕𝑞𝑖
= 2

(
0 𝑠𝑦𝑞 𝑗 𝑠𝑧𝑞𝑘

𝑠𝑥𝑞 𝑗 −2𝑠𝑦𝑞𝑖 −𝑠𝑧𝑞𝑟
𝑠𝑥𝑞𝑘 𝑠𝑦𝑞𝑟 −2𝑠𝑧𝑞𝑖

)
𝜕𝑀

𝜕𝑞 𝑗
= 2

(−2𝑠𝑥𝑞 𝑗 𝑠𝑦𝑞𝑖 𝑠𝑧𝑞𝑟
𝑠𝑥𝑞𝑖 0 𝑠𝑧𝑞𝑘
−𝑠𝑥𝑞𝑟 𝑠𝑦𝑞𝑘 −2𝑠𝑧𝑞 𝑗

)
,

𝜕𝑀

𝜕𝑞𝑘
= 2

(−2𝑠𝑥𝑞𝑘 −𝑠𝑦𝑞𝑟 𝑠𝑧𝑞𝑖
𝑠𝑥𝑞𝑟 −2𝑠𝑦𝑞𝑘 𝑠𝑧𝑞 𝑗

𝑠𝑥𝑞𝑖 𝑠𝑦𝑞 𝑗 0

)
(11)

Deriving gradients for quaternion normalization is straightforward.

B OPTIMIZATION AND DENSIFICATION ALGORITHM

Our optimization and densification algorithms are summarized in

Algorithm 1.

Algorithm 1 Optimization and Densification

𝑤 , ℎ: width and height of the training images

𝑀 ← SfM Points ⊲ Positions

𝑆,𝐶,𝐴← InitAttributes() ⊲ Covariances, Colors, Opacities

𝑖 ← 0 ⊲ Iteration Count

while not converged do
𝑉 , 𝐼 ← SampleTrainingView() ⊲ Camera 𝑉 and Image

𝐼 ← Rasterize(𝑀 , 𝑆 , 𝐶 , 𝐴, 𝑉) ⊲ Alg. 2

𝐿 ← 𝐿𝑜𝑠𝑠 (𝐼 , 𝐼) ⊲ Loss

𝑀 , 𝑆 , 𝐶 , 𝐴← Adam(∇𝐿) ⊲ Backprop & Step

if IsRefinementIteration(𝑖) then
for all Gaussians (𝜇, Σ, 𝑐, 𝛼) in (𝑀, 𝑆,𝐶,𝐴) do

if 𝛼 < 𝜖 or IsTooLarge(𝜇, Σ) then ⊲ Pruning

RemoveGaussian()

end if
if ∇𝑝𝐿 > 𝜏𝑝 then ⊲ Densification

if ∥𝑆 ∥ > 𝜏𝑆 then ⊲ Over-reconstruction

SplitGaussian(𝜇, Σ, 𝑐, 𝛼)
else ⊲ Under-reconstruction

CloneGaussian(𝜇, Σ, 𝑐, 𝛼)
end if

end if
end for

end if
𝑖 ← 𝑖 + 1

end while

C DETAILS OF THE RASTERIZER

Sorting. Our design is based on the assumption of a high load

of small splats, and we optimize for this by sorting splats once for

each frame using radix sort at the beginning. We split the screen

into 16x16 pixel tiles (or bins). We create a list of splats per tile by

instantiating each splat in each 16×16 tile it overlaps. This results
in a moderate increase in Gaussians to process which however is

amortized by simpler control flow and high parallelism of optimized

GPU Radix sort [Merrill and Grimshaw 2010]. We assign a key for

each splats instance with up to 64 bits where the lower 32 bits

encode its projected depth and the higher bits encode the index of

the overlapped tile. The exact size of the index depends on how

many tiles fit the current resolution. Depth ordering is thus directly

resolved for all splats in parallel with a single radix sort. After

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://doi.org/10.1145/3550469.3555413
https://doi.org/10.1145/3550469.3555413
https://doi.org/10.1145/383259.383300

14 • Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis

sorting, we can efficiently produce per-tile lists of Gaussians to

process by identifying the start and end of ranges in the sorted

array with the same tile ID. This is done in parallel, launching

one thread per 64-bit array element to compare its higher 32 bits

with its two neighbors. Compared to [Lassner and Zollhofer 2021],

our rasterization thus completely eliminates sequential primitive

processing steps and produces more compact per-tile lists to traverse

during the forward pass. We show a high-level overview of the

rasterization approach in Algorithm 2.

Algorithm 2 GPU software rasterization of 3D Gaussians

𝑤 , ℎ: width and height of the image to rasterize

𝑀 , 𝑆 : Gaussian means and covariances in world space

𝐶 , 𝐴: Gaussian colors and opacities

𝑉 : view configuration of current camera

function Rasterize(𝑤 , ℎ,𝑀 , 𝑆 , 𝐶 , 𝐴, 𝑉)

CullGaussian(𝑝 , 𝑉) ⊲ Frustum Culling

𝑀′, 𝑆′ ← ScreenspaceGaussians(𝑀 , 𝑆 , 𝑉) ⊲ Transform

𝑇 ← CreateTiles(𝑤 , ℎ)

𝐿, 𝐾 ← DuplicateWithKeys(𝑀′, 𝑇) ⊲ Indices and Keys

SortByKeys(𝐾 , 𝐿) ⊲ Globally Sort

𝑅← IdentifyTileRanges(𝑇 , 𝐾)

𝐼 ← 0 ⊲ Init Canvas

for all Tiles 𝑡 in 𝐼 do
for all Pixels 𝑖 in 𝑡 do

𝑟 ← GetTileRange(𝑅, 𝑡)

𝐼 [𝑖] ← BlendInOrder(𝑖 , 𝐿, 𝑟 , 𝐾 ,𝑀′, 𝑆 ′, 𝐶 , 𝐴)
end for

end for
return 𝐼

end function

Numerical stability. During the backward pass, we reconstruct

the intermediate opacity values needed for gradient computation by

repeatedly dividing the accumulated opacity from the forward pass

by each Gaussian’s 𝛼 . Implemented naïvely, this process is prone to

numerical instabilities (e.g., division by 0). To address this, both in

the forward and backward pass, we skip any blending updates with

𝛼 < 𝜖 (we choose 𝜖 as 1

255
) and also clamp 𝛼 with 0.99 from above.

Finally, before a Gaussian is included in the forward rasterization

pass, we compute the accumulated opacity if we were to include it

and stop front-to-back blending before it can exceed 0.9999.

D PER-SCENE ERROR METRICS

Tables 4–9 list the various collected error metrics for our evaluation

over all considered techniques and real-world scenes. We list both

the copied Mip-NeRF360 numbers and those of our runs used to

generate the images in the paper; averages for these over the full

Mip-NeRF360 dataset are PSNR 27.58, SSIM 0.790, and LPIPS 0.240.

Table 4. SSIM scores for Mip-NeRF360 scenes. † copied from original paper.

bicycle flowers garden stump treehill room counter kitchen bonsai

Plenoxels 0.496 0.431 0.6063 0.523 0.509 0.8417 0.759 0.648 0.814

INGP-Base 0.491 0.450 0.649 0.574 0.518 0.855 0.798 0.818 0.890

INGP-Big 0.512 0.486 0.701 0.594 0.542 0.871 0.817 0.858 0.906

Mip-NeRF360
†

0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941
Mip-NeRF360 0.685 0.584 0.809 0.745 0.631 0.910 0.892 0.917 0.938

Ours-7k 0.675 0.525 0.836 0.728 0.598 0.884 0.873 0.900 0.910

Ours-30k 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938

Table 5. PSNR scores for Mip-NeRF360 scenes. † copied from original paper.

bicycle flowers garden stump treehill room counter kitchen bonsai

Plenoxels 21.912 20.097 23.4947 20.661 22.248 27.594 23.624 23.420 24.669

INGP-Base 22.193 20.348 24.599 23.626 22.364 29.269 26.439 28.548 30.337

INGP-Big 22.171 20.652 25.069 23.466 22.373 29.690 26.691 29.479 30.685

Mip-NeRF360
†

24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46
Mip-NeRF360 24.305 21.649 26.875 26.175 22.929 31.467 29.447 31.989 33.397

Ours-7k 23.604 20.515 26.245 25.709 22.085 28.139 26.705 28.546 28.850

Ours-30k 25.246 21.520 27.410 26.550 22.490 30.632 28.700 30.317 31.980

Table 6. LPIPS scores for Mip-NeRF360 scenes. † copied from original paper.

bicycle flowers garden stump treehill room counter kitchen bonsai

Plenoxels 0.506 0.521 0.3864 0.503 0.540 0.4186 0.441 0.447 0.398

INGP-Base 0.487 0.481 0.312 0.450 0.489 0.301 0.342 0.254 0.227

INGP-Big 0.446 0.441 0.257 0.421 0.450 0.261 0.306 0.195 0.205

Mip-NeRF360
†

0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176
Mip-NeRF360 0.305 0.346 0.171 0.265 0.347 0.213 0.207 0.128 0.179

Ours-7k 0.318 0.417 0.153 0.287 0.404 0.272 0.254 0.161 0.244

Ours-30k 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205

Table 7. SSIM scores for Tanks&Temples and Deep Blending scenes.

Truck Train Dr Johnson Playroom

Plenoxels 0.774 0.663 0.787 0.802

INGP-Base 0.779 0.666 0.839 0.754

INGP-Big 0.800 0.689 0.854 0.779

Mip-NeRF360 0.857 0.660 0.901 0.900

Ours-7k 0.840 0.694 0.853 0.896

Ours-30k 0.879 0.802 0.899 0.906

Table 8. PSNR scores for Tanks&Temples and Deep Blending scenes.

Truck Train Dr Johnson Playroom

Plenoxels 23.221 18.927 23.142 22.980

INGP-Base 23.260 20.170 27.750 19.483

INGP-Big 23.383 20.456 28.257 21.665

Mip-NeRF360 24.912 19.523 29.140 29.657

Ours-7k 23.506 18.892 26.306 29.245

Ours-30k 25.187 21.097 28.766 30.044

Table 9. LPIPS scores for Tanks&Temples and Deep Blending scenes.

Truck Train Dr Johnson Playroom

Plenoxels 0.335 0.422 0.521 0.499

INGP-Base 0.274 0.386 0.381 0.465

INGP-Big 0.249 0.360 0.352 0.428

Mip-NeRF360 0.159 0.354 0.237 0.252

Ours-7k 0.209 0.350 0.343 0.291

Ours-30k 0.148 0.218 0.244 0.241

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Scene Reconstruction and Rendering
	2.2 Neural Rendering and Radiance Fields
	2.3 Point-Based Rendering and Radiance Fields

	3 Overview
	4 Differentiable 3D Gaussian Splatting
	5 Optimization with Adaptive Density Control of 3D Gaussians
	5.1 Optimization
	5.2 Adaptive Control of Gaussians

	6 Fast Differentiable Rasterizer for Gaussians
	7 Implementation, results and evaluation
	7.1 Implementation
	7.2 Results and Evaluation
	7.3 Ablations
	7.4 Limitations

	8 Discussion and Conclusions
	Acknowledgments
	References
	A Details of Gradient Computation
	B Optimization and Densification Algorithm
	C Details of the Rasterizer
	D Per-Scene Error Metrics

