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ABSTRACT. Convolutional Neural Networks (CNN) trained from high-order ice flow model
realizations have proven to be outstanding emulators in terms of fidelity and computational
performance. However, the dependence on an ensemble of realizations of an instructor model
renders this strategy difficult to generalize to a variety of ice flow regimes found in the nature.
To overcome this issue, we adopt the approach of physics-informed deep learning, which fuses
traditional numerical solutions by finite differences/elements and deep learning approaches.
Here, we train a CNN to minimise the energy associated with high-order ice flow equations
within the time iterations of a glacier evolution model. As a result, our emulator is a promis-
ing alternative to traditional solvers thanks to its high computational efficiency (especially on
GPU), its high fidelity to the originalmodel, its simplified training (without requiring any data),
its capability to handle a variety of ice flow regimes and memorize previous solutions, and its
relatively simple implementation. Embedded into the “Instructed Glacier Model” (IGM) frame-
work, the potential of the emulator is illustrated with three applications including a large-scale
high-resolution (2400x4000) forward glacier evolution model, an inverse modelling case for
data assimilation, and an ice shelf.

INTRODUCTION

In glacier and ice sheet models, ice is commonly described
as a viscous non-Newtonian [Glen, 1953] fluid whose mo-
tion is governed by the 3D nonlinear Glen-Stokes equations
[Greve and Blatter, 2009]. Solving these equations usually
remains very costly compared to other glacial underlying
processes. To reduce the costs, the ice flow equations are
often simplified by neglecting higher-order terms in the as-
pect ratio of the ice domain ϵ (thickness versus length) con-
sidering it to be usually small. The truncation of the second-
order terms in ϵ yields the First-Order Approximation (FOA)
model [Blatter, 1995], which consists of a 3D non-linear el-
liptic equation [Colinge and Rappaz, 1999] for the horizontal
velocity and remains expensive. Going one step further, the
Shallow Ice Approximation [Hutter, 1983] (SIA) is obtained
after dropping the first-order terms in ϵ in the FOA model.
As a result, the analytical solution of SIA is computation-
ally inexpensive to implement. The SIA remains a reference
model for many applications [e.g., Maussion et al., 2019], de-
spite strongly-simplifying mechanical assumptions and ap-
plicability limited to areas where ice flow is dominated by
vertical shearing [Greve and Blatter, 2009]. The transfer of

numerical methods from Central Processing Units (CPU) on
Graphics Processing Units (GPU) architectures is currently
a promising approach to bypass the computational bottle-
neck associatedwith high-ordermodelling [Brædstrup et al.,
2014], however, massive parallelisation of solvers on GPU re-
mains a complex task [Räss et al., 2020].

As an alternative to traditional solvers, deep learning sur-
rogate models (or emulators) have been found very promis-
ing in reducing computational costs with minimal loss of ac-
curacy [Brinkerhoff et al., 2021, Jouvet et al., 2022, He et al.,
2023]. Deep learning is based on Artificial Neural Networks
(ANNs), which are trained to capture themost essential rela-
tionship between the input and the output of an instructor
model. The ANN is intended to be an efficient substitute
for the original model within the range defined by the train-
ing dataset. Following this strategy, the computationally ex-
pensive Glen-Stokes model could be emulated by a simple
Convolutional Neural Network (CNN) by Jouvet et al. [2022]
with a speedup of several orders of magnitude and high fi-
delity levels in the case of mountain glaciers, and major ben-
efits for inverse modelling purposes [Jouvet, 2023]. Another
key asset of ANNs is that they run very efficiently on GPUs,
permitting additional significant speed-ups, especially when
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modelling high spatial resolution domains. However, the de-
pendence on an instructor model makes the training of such
an emulator technically difficult, not very flexible, and there-
fore limits its ability to generalize its validity range beyond
the training data and its given spatial resolution.

In recent years, Physics-informed neural networks (PINNs)
have emerged as a powerful approach in surrogate mod-
elling to directly enforce physical laws (such as partial differ-
ential equations) in the learning process instead of matching
datasets generated from physical models [e.g., Raissi et al.,
2019]. Basic PINNs are trained to minimise the residual as-
sociated with the equations and the boundary conditions
[Markidis, 2021]. In contrast, Variational PINNs (VPINNs)
exploit theminimization form (or equivalently the variational
form) of the problem as a loss function [Kharazmi et al.,
2019], which has the advantage of involving derivatives of
lower orders compared to residuals. An important aspect of
VPINNs is their connections with traditional Finite Element
Methods (FEM). For example, a standard FEM solver applied
to an elliptic problem represents the solution in a finite el-
ement approximation space spanned by mesh-defined basis
functions and seeks the function that minimises the associ-
ated energy in the approximation space [Ern andGuermond,
2004]. On the contrary, the Deep-Ritz method proposed by
Yu et al. [2018] (which belongs to the category of VPINN)
represents the solution as a neural network in an approxi-
mation space generated by the parameters of a neural net-
work.

In ice flowmodelling, PINNs have been used by Riel et al.
[2021] to learn the time evolution of drag in glacier beds
from observations of ice velocity and elevation and by Riel
and Minchew [2022] to calibrate ice flow law parameters
and perform uncertainty quantification. Recently, Cui et al.
[2022] proposed a mesh-free method to solve Glen-Stokes
equations using an approach inspired by theDeep-Ritzmethod.

In this paper, we propose two different methods to com-
pute First-Order Approximation (FOA) ice-flow efficiently
onGPU by exploiting theminimisation form associatedwith
the FOA model and using optimisation techniques based on
automatic differentiation and stochastic gradient. The first
one is a conventional numerical solver, which is used mostly
here as a reference to evaluate the second one. The sec-
ond one on which the paper focuses is an emulator based on
deep-learning. In more detail, we take the CNN ice flow em-
ulator introduced previously by Jouvet et al. [2022] and pro-
pose a new training strategy inspired by VPINN to remove
the dependence on an instructor model and obtain a more
generic emulator that is easier to implement and faster to
train. Here we train our CNN ice flow emulator at minimis-
ing directly the energy instead of minimizing the misfit with

solutions from an instructor model as done previously (Fig.
1). A similar approach was used by Cordonnier et al. [2023]
for modelling terrain formation by glacial erosion. Their tar-
get was to generate realistic images in computer graphics,
whereas we propose a thorough evaluation of the method
and its potential for glaciological applications.

This paper is structured as follows: First, we introduce
the physical model which includes the ice flow FOA model
and its minimisation formulation. Second, we describe the
numerical model which includes the spatial discretization,
the energy-based FOA solver and deep learning emulator.
Last, we present and discuss our assessment results and ex-
amples of modelling applications.

PHYSICAL MODEL

LetΩ be a rectangular horizontal domain supporting a glacier
/ volume of ice V at time t . Glacier bedrock and surface
interfaces are defined by functions b (x , y ) and s (x , y , t )
where (x , y ) ∈ Ω. According to these definitions, the ice
thickness h is defined as being the difference between the
two: h (x , y , t ) = s (x , y , t ) − b (x , y ), and the three-dimen-
sional volume of iceV is defined as

V = {(x , y , z ), b (x , y ) ≤ z ≤ s (x , y , t ), (x , y ) ∈ Ω},

which has two boundaries: the bedrock

Γb = {(x , y , z ), z = b (x , y ), (x , y ) ∈ Ω}

and the surface

Γs = {(x , y , z ), z = s (x , y , t ), (x , y ) ∈ Ω}

interfaces, see Figure 2. The two interfaces coincide in ice-
free areas.

Given an initial glacier geometry, the time evolution in
ice thickness h (x , y , t ) is determined by the mass conserva-
tion equation, which couples ice dynamics and surface mass
balance through:

∂h

∂t
+ + · (ūh) = SMB, (1)

where +· denotes the divergence operator with respect to
horizontal variables (x , y ), ū = (ū, v̄ ) is the vertically-averaged
horizontal ice velocity field, and SMB the Surface Mass Bal-
ance function, which consists of the integration of ice accu-
mulation and ablation over one year. Eq. (1) is generic and
can be applied to model glacier evolution in number of ap-
plications provided adequate SMB and ice flow model com-
ponents. In the following, we mostly focus on developing an
efficient numerical method to compute the ice flow ū con-
sidering it is often the most computationally expensive com-
ponent in glacier evolution model [Jouvet et al., 2022].
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The parameters λ of the CNN Nλ

are obtained by minimizing the misfit
with pre-computed ice flow model

realizations: min
∑n

i=1 ∥ui
H −Nλ(p

i
H))∥

The parameters λ of the CNN
Nλ are obtained by minimizing
the energy associated with an

ice flow model: minJH(Nλ(pH))

The numerical solution vH is
obtained by minimizing the
energy associated with an
ice flow model: minJH(vH)

Data-based deep-learning Emulator Physics-Informed deep-learning Emulator Solver

Discretized formulation: uH minimizes the system energy JH

Continuous formulation: u minimizes the system energy J

(Jouvet and al., 2022) This paper This paper

Fig. 1. Our Physics-Informed deep-learning emulator can be seen as a fusion of data-driven deep learning and traditional numerical
solving strategies.
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Fig. 2. Cross-section and horizontal view of a glacier with notations (left panel) and its spatial discretization (right panel), which is
obtained using a regular horizontal grid and by subdividing the glacier into a pile of layers. All modelled variables (e.g. ice thickness)
are computed at the corners of each cell of the 2D horizontal grid (materialised with squares) except the ice flow velocities, which are
computed on the 3D corresponding grid. In contrast, the strain rate is computed on the staggered grid at the centre of each cells and
layers (vizualized with circles).

Glen-Stokes model
The Stokes model consists of the momentum conservation
equation when inertial terms are ignored, together with the
incompressibility condition:

−+ · σ = ρg, inV , (2)

+ · u = 0, inV , (3)

where σ is the Cauchy stress tensor, g = (0, 0,−g ), g is the
gravitational constant and u = (ux ,uy ,uz ) is the 3D velocity
field. Let τ be the deviatoric stress tensor defined by

σ = τ − P I , (4)

where I is the identity tensor, P is the pressure field, with
the requirement that tr(τ) = 0 so that P = −(1/3)tr(σ).
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Glen’s flow law [Glen, 1953], which describes the mechani-
cal behaviour of ice, consists of the following nonlinear rela-
tion:

τ = 2µD (u), (5)

where D (u) denotes the strain rate tensor defined by

D (u) = 1

2
(+u + +uT ), (6)

µ is the viscosity defined by

µ =
1

2
A− 1

n |D (u) | 1n −1, (7)

where |Y | :=
√
(Y :Y )/2 denotes the norm associated with

the scalar product ( : ) (the sum of the element-wise prod-
uct), A = A(x , y ) > 0 is the Arrhenius factor and n > 1 is
the Glen’s exponent (here we take the most standard value
n = 3). Note that A depend on the temperature of the
ice [Paterson, 1994]. For simplicity, this paper assumes ver-
tically constant ice temperature, however, this assumption
could be released without further difficulties.

Boundary conditions
The boundary conditions that supplement (2), (3) are the fol-
lowing. Stress free force applies to the ice-air interface,

σ · n = 0, P = 0, on Γs , (8)

where n is an outer normal vector along Γs . Along the lower
surface interface, the nonlinearWeertman friction condition
reads [Hutter, 1983, Schoof and Hewitt, 2013]

u · n = 0, (9)

[(I − nnT )τ] · n = −c−m | (I − nnT ) · u|m−1 (I − nnT ) · u,
(10)

on Γb for k ∈ {x , y }, where m > 0, c = c (x , y ) > 0, and
n is the outward normal unit vector to Γb . The relation (10)
relates the basal shear stress [(I − nnT )τ] · n to the slid-
ing velocity (I − nnT ) · u, both of them projected onto the
tangential plane. Note that c = 0 in case of no-sliding.

Minimization formulation
The above mentioned Glen-Stokes problem can be reformu-
lated into variational and minimisation problems. We follow
the derivation made by Jouvet [2016]. For that, we consider
the following divergence free velocity field space [Girault
and Raviart, 1986]:

X := {v ∈ [W 1,1+ 1
n (V )]3, + · v = 0, v · n = 0 on Γb },

where W 1,p is the appropriate Sobolev space [Adams and
Fournier, 2003]. The variational formulation associated with
the Glen-Stokes problem writes: Find u ∈ X such that for
all v ∈ X we have:∫

V
A− 1

n |D (u) | 1n −1 (D (u),D (v))dV (11)

+
∫
Γb

c−m |u|m−1
M (u, v)M dS + ρg

∫
V
(+s · v)dV = 0, (12)

where the bilinear form (a, b)M := (M a) · b, and its associ-
ated norm |a|M :=

√
(a, a)M have for matrix

M =

(
I + (+xb) (+xb)T 0

0 0

)
. (13)

The above problem is equivalent to seeking for u ∈ X such
that

J (u) = min{J (v), v ∈ X}, (14)

where the functional to be minimised is

J (v) =
∫
V
2
A− 1

n

1 + 1
n

|D (v) |1+ 1
n dV +

∫
Γb

c−m

1 +m
|v|1+mM dS

+ ρg

∫
V
(+s · v)dV . (15)

It must be stressed that only the first term still depends on
the vertical velocity in both formulations (12) and (15).

First-Order Approximation (FOA)
We introduce the aspect ratio ϵ = [h]/[x] of the ice ge-
ometry V , where [h] and [x] denote its typical height and
length. It is easy to verify that in that the strain rate ten-
sor D (v) contains terms scaling with ϵ−1, ϵ0, and ϵ1. As
glaciers are usually thin objects with a small aspect ratio ϵ,
it is a common practise to omit the highest order term. By
doing so and invoking the incompressibility equation, the
vertical velocity components (∂xuz and ∂yuz ) of the strain
rate tensor can be eliminated:

D (u) = (16)

©­«
∂xux

1
2

(
∂yux + ∂xuy

)
, 1

2 (∂zux )
1
2

(
∂yux + ∂xuy

)
∂yuy

1
2

(
∂zuy

)
1
2 (∂zux )

1
2

(
∂zuy

)
−∂xux − ∂yuy

ª®¬ .
In turn, this eliminates the vertical velocity component uz
from the ice flowmodel. The resultingmodel (so-called First-
Order Approximation, FOA, or Blatter-Pattynmodel [Blatter,
1995]) is obtained by minimising the functional J defined
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in (15) with D (u) defined by (16). Advantageously, the con-
straints of the functional space X disappear when remov-
ing the vertical component of the velocity. As a result, the
FOAmodel consists of a three-dimensional, non-linear, ellip-
tic, and unconstrained problem, which is therefore simpler
than the original Glen-Stokes problem. Provided enough
friction at the bedrock (i.e., the coefficient c is not too high)
and other suitable assumptions, one can show [Colinge and
Rappaz, 1999, Schoof, 2006] that the functional J is con-
tinuous, strictly convex and coercive in the functional space
[W 1,1+ 1

n (V )]2, therefore, the FOA problem admits a unique
solution.

NUMERICAL MODEL

The glacier evolutionmodel (equippedwith both the ice flow
solver and the physics-informed deep learning emulator) is
implemented in the “Instructed Glacier Model” framework
(IGM, https://github.com/jouvetg/igm), which can sim-
ulate glacier time evolution (on CPU or GPU) given an initial
glacier geometry and SMB forcing [Jouvet et al., 2022]. IGM
is written in Python and relies on operations of the Tensor-
Flow library to allow vector/parallel operations (such as used
in neural networks) between large arrays that are computa-
tionally efficient on GPU. At each time step, IGM updates in
turn the SMB (e.g., ELA-based parameterisation or climate-
driven PDDmodel), the ice flow (solved or emulated accord-
ing to the user’s choice), and the ice thickness by solving
conservation equation (1) using a first-order upwind finite-
volume scheme on a regular 2D grid. Thus, the time step
is computed adaptively to satisfy the CFL condition, make
sure that the ice is never transported over more than one cell
distance in one time step, and therefore to ensure numerical
stability. We refer to Jouvet et al. [2022] for more details on
the transport numerical scheme. In what follows, we focus
on the computation of the ice flow by numerical solving and
deep-learning emulation.

Spatial discretization

First, the horizontal rectangular domainΩ is discretisedwith
a regular raster/structured grid of sizeNx×Ny with constant
cell spacing H in the x and y direction (Fig. 2, right panel).
Variables such as the ice thickness h, the surface topogra-
phy s , the rate factor A, and the sliding coefficient c are de-
fined at the corners of each grid cell of the horizontal grid.
In the following, we use subscript H to denote these dis-
crete quantities such as uH , hH , sH , AH , cH defined on the
horizontal grid. Note that our choice of a structured grid
(instead of any other type of discretization) is essential to

represent variables as 2D arrays and therefore to use Con-
volution Neural Networks (CNN) for emulating the ice flow
mechanics later on. On the other hand, the ice thickness is
discretised vertically using a fixed number of points Nz (in
this paper we use Nz = 10). Layers are distributed accord-
ing to a quadratic rule such that discretisation is fine close
to the ice-bedrock interface (where the strongest gradients
are expected) and coarse close to the ice-surface interface
following the strategy given by Khroulev and the PISM Au-
thors [PISM, 2020]. Subsequently, the approximation space
XH for velocities consists of piecewise linear functions de-
fined at the corners of each grid cell in the horizontal di-
rection and at the intersection of each layer in the vertical
discretisation.

In finite elements, solving the nonlinear elliptic FOAprob-
lem requires minimizing the associated functional J in a
finite-dimension approximation spaceXH spanned by shape
functions defined in the discretised domain instead of the
full continuous solution space X . We follow a similar strat-
egy here: Given pH = (hH , sH ,AH , cH ), we seek foruH ∈ XH

such that

uH = argmin{JpH (vH ), vH ∈ XH } (17)

where

JpH (vH ) =
∫
Ω

©­«
2A

− 1
n

H

1 + 1
n

∫ sH

sH −hH
|DH (vH ) |1+

1
n dz

+
c−mH
1 +m

|vH |1+mM dS

+ρg
∫ sH

sH −hH
(+sH · vH )dz

)
dΩ. (18)

For simplicity,D is approximated by a finite difference scheme
on a 3D staggered grid (Fig. 2, right panel). As D involves
derivatives in the three dimensions, we apply either a fi-
nite difference or cell averaging to ensure that all deriva-
tives in (16) are approximated consistently on the same 3D
staggered grid (i.e., at the centre of cells horizontally and at
the middle of layers vertically). The two other terms (sliding
and gravity force related) are also computed on the stag-
gered grid (otherwise, this would cause numerical artefacts,
typically chessboard modes). Due to the layer-wise vertical
discretisation, we first compute the horizontal derivatives
of DH in a layer-dependent system of coordinate (x , y , z̃ )
where z̃ = z − l and l is the layer elevation, and transfer
them in the reference system of coordinate (x , y , z ) using a
simple rule of derivative: e.g., ∂f

∂x = ∂f̃
∂x −

∂f̃
∂z

∂l
∂x for any quan-

tity f (resp. f̃ ) defined in (x , y , z ) (resp. (x , y , z̃ )). Lastly,
the integration of (18) is done numerically using the rectan-
gle method. Note that ice margins must be treated carefully
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to prevent singular vertical derivatives of DH as the vertical
step size tends to zero. To overcome this issue, we assume a
minimum ice thickness of one metre.

Solver
Our solver solves the convex optimisation problem (17) us-
ing a stochastic gradient descent method, namely the Adam
optimiser [Kingma and Ba, 2014] with a step size of 1. Using
the Keras [Chollet et al., 2015] and Tensorflow [Abadi and
others, 2015] libraries, the derivatives of JpH with respect to
vH are obtained by automatic differentiation. When used
for computing a single snapshot ice-flow, the optimisation
scheme is initialised with zero ice velocity. When used mul-
tiple times in a transient glacier evolution run, the gradient
scheme uses the ice flow from the previous time step as ini-
tialisation to predict the next one. In the following, we refer
to the “solved” solution (in contrast to the “emulated” solu-
tion defined in the next section), the result of the solver at
convergence. Note that we found in Appendix B a very good
agreement between the “solved” and the reference solutions
of the ISMIP-HOM [Pattyn and others, 2008] experiments.
This test validates the numerical solver, as well as the imple-
mentation of the system energy in IGM, which is used for
both the solver and the emulator.

Emulator
As an alternative to the previously-introduced solver, we now
propose an ice flow emulator, which predicts horizontal ice
flow (uH , vH ) from the input field pH .

Nλ : {hH , sH ,AH , cH ,HH } −→ {uH , vH } (19)

ÒNX ×NY ×5 −→ ÒNX ×NY ×NZ ×2

where input and output can be seen as two- and three-dimen-
sional multichannel fields, which are defined on the regular
horizontal grid (Fig. 3). Having selected these input param-
eters allows us to develop a generic ice flow emulator that
can handle a large variety of glacier shapes, types of ice flow
(from shearing to sliding dominant), and spatial resolutions.
As the spatial resolutionHH is fixed inmodelling application,
including it as an input of the emulator is in fact not neces-
sary. Here we added HH for convenience such that one can
take advantage of an initial pre-trained emulator (Appendix
A) irrespective of the spatial resolution.

As an emulator, we choose an Artificial Neural Network
(ANN), which maps input to output variables by a sequen-
tial composition of linear and nonlinear functions (or a se-
quence of network layers). Linear operations have weights
λ = {λi , i = 1, ...,N }, which are optimised in the training

stage. Here, we use a Convolutional Neural Network [CNN;
Long et al., 2015], which is a special type of ANN that addi-
tionally includes local convolution operations to learn spa-
tially variable relationships [LeCun et al., 2015] and proved
to be capable of learning high-order ice flow models [Jouvet
et al., 2022]. Here we retain the hyper-parameters found by
Jouvet et al. [2022] as they provide a good trade-off between
model fidelity and complexity: our CNN consists of 16 two-
dimensional convolutional layers between input and output
data (Fig. 3). Convolutional operations have a kernel matrix
(or feature map) of size 3×3. A padding is used to conserve
the frame size through the convolution operation. Convolu-
tional operations are repeated using a sliding window with
one stride across the input frame and 32 feature maps. As
a non-linear activation function, we use leaky Rectified Lin-
ear Units. As a result, our CNN has about 140’000 trainable
parameters.

Input fields
(h, s, A, c,H)

Convolutional Neural Network Output fields
(u,v)

Fig. 3. Our emulator consists of a CNN that maps geometrical
(thickness and surface topography), ice flow parameters (shearing
and basal sliding), and spatial resolution inputs to 3D ice flow fields.

While Jouvet et al. [2022] proposed to train (19) by fitting
to external ice-flowmodel realizations, we take here another
strategy inspired from Physics-Informed Neural Networks
(PINNs). We differ from traditional PINNs in two ways: first
PINNs usually map the coordinate of the sampling points to
the physical output, which forces them to retrain the net-
work for different settings, while our inputs are essential
model parameters (the coordinates at each pixel are not ex-
plicitly passed). Second, PINNs usually minimise the resid-
ual of the equation and/or boundary conditions involved in
the physical model [e.g., Markidis, 2021]. Instead, we adopt
the different variational PINN strategy [Kharazmi et al., 2019]
byminimising the energy associated with the FOAmodel in-
stead of the residual (Fig. 1). Inmore detail, the training con-
sists of finding the weights of the CNN λ = {λi , i = 1, ...,N }
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that minimise:

λ = argmin
(
JpH (Nλ (pH ))

)
, (20)

given geometrical and glaciological input data pH . The op-
timisation problem (20) is solved again using the Adam op-
timiser [Kingma and Ba, 2014] – the derivatives of JH with
respect to λ being obtained from automatic differentiation.
At first view, the minimisation problem (20) is expected to be
more difficult to solve than that in (17), as there is no guar-
antee that JpH is convex with respect to the training param-
eters λ. On the other hand, problem (20) is expected to have
much fewer control parameters (the number of training pa-
rameters is on the order of 105) than problem (17), which
may have much more control parameters (2×Nz ×Ny ×Nx )
when treating a large scale array.

While there exist different strategies for initializing the
weights of CNNs, we found in Appendix A that using a CNN
pretrained over a large glacier catalogue (Fig. 12) facilitates
the convergence of the emulator, presumably because the
diversity of the catalogue prevents against falling into local
minima. The optimisation of the CNN is therefore always
initialisedwith pre-trainedweights (Appendix A).When used
for computing a single snapshot ice-flow, we use an adaptive
learning strategy including an exponential decay to launch
the training aggressively (∼ 10−4) for efficiency and to end
it gently for fine-tuning (∼ 10−5). When used in a transient
glacier evolution run, one performs a single step of gentle
(∼ 10−5) training per iteration (or each X iteration to vary
the degree of training) starting from the lastly-trained emu-
lator.

RESULTS

In this section, we present fidelity and computational perfor-
mance results of the “emulated” solution toward the “solved”
solution simulationswith different strengths of emulator train-
ing. For that purpose, we consider two glaciers of different
sizes i) the present-day Aletsch Glacier, Switzerland, which
the current largest glacier of the European Alps ii) the for-
mer Valais Glacier, Switzerland, which covered a large part
of Switzerland during the last glacial maximum. The ex-
periments for these two glaciers cover different applications
from individual glaciers on a small grid (244x179 at 100 m of
resolution for Aletsch) relevant for the modelling of today’s
glaciers to large ice fields on large grid (700x700 at 200 m of
resolution for Valais) more relevant for paleo glacier mod-
elling. We conduct two kind of experiments in turn: i) the
computation of a snapshot solution to assess the best accu-
racy we should expect from the emulator without considera-
tion for the computational price, and ii) the computation of a

transient solution to assess both fidelity and computational
performance in a modelling application.

Fidelity of snapshot solutions
First we consider the topography and ice thickness of Aletsch
and Valais glaciers at a given time and fix the ice flow pa-
rameters (A, c) to constant physical values (A = 78 MPa−3

a−1, c = 10 kmMPa−3). Based on these geometries, we com-
puted two numerical solutions: i) a “solved” one uH obtained
by minimizing (18) within the space of solutions Xh , ii) an
“emulated” one Nλ (pH ) obtained by minimizing (20) in the
space of parameters of the CNN. Figures 4 and 5 present the
results in terms of “solved” solution at convergence (panel
A), “emulated” solution at emulator convergence (panel B),
difference between “solved” and “emulated” solutions (panel
C), decrease of the system energy during solving and train-
ing (panels D and E), and L1 error of the emulated uE toward
the solved uS solution through training iterations (panel F)
defined by:

EL1 =

∫
Ω

∫ b+h

b
|uE − uS |. (21)

Fig. 4. Results of the solver and the emulator for the snapshot
experiment related to Aletsch glacier. Panels A and B show the
magnitude of the ice flow velocities obtained by solving and emu-
lation, respectively. Panel C shows the difference between the two.
Panels D and E show the decrease of the system energy through it-
erations. Panel F shows L1 error of the emulated toward the solved
solution through training iterations.

In general, the Adam optimiser succeeds at minimising
the energy and capturing the “solved” and the “emulated”
solutions. Indeed, the energy associatedwith the “emulated”
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Fig. 5. Results of the solver and the emulator for the snapshot
experiment related to Valais glacier. The meaning of panels is sim-
ilar to Fig. 4.

solution decreases towards a value (∼ -0.34) that is relatively
close to the value obtained when solving (∼ -0.35), demon-
strating that our CNNhas learnt well tominimise the energy
for the Aletsch case (Fig. 4 E). Most importantly, the L1 error
is small (∼1.2 m/y, Fig. 4 F), showing that the “emulated” so-
lution is very similar to the reference “solved”. An in-depth
comparison of the spatial pattern of the two solutions (Fig. 4
C) reveals minor and unevenly distributed discrepancies. In-
terestingly, the Valais glacier case shows a larger energy gap
(∼ 10%, Fig. 5 E), and a larger L1 error norm (∼3.6 m/y, Fig.
5 F), which remains small considering the velocity scale (0-
300 m/y). Comparing the spatial pattern of the two solutions
(Fig. 5 C) shows that the error is mostly concentrated on the
most prominent glacier tongue. The slight deterioration of
the accuracy from the Aletsch to the Valais case can be ex-
plained as follows: An emulator trained to a single glacier in
a small region is naturally expected to be more accurate (as
more customized) than an emulator of the same complexity
trained to a larger glacier network. Note that increasing the
size of the CNN (increasing the number of layers, feature
maps, or kernel size) have shown slight but not significant
improvements of fidelity.

For computing a single snapshot ice-flow field at a given
time, the solver was found to be more efficient than the em-
ulator in terms of convergence and then in terms of compu-
tational performance, presumably due to different convexity
properties. In the next section, we show that the opposite is
true when we consider the evolution of a glacier over time.

Fidelity of transient solutions
For each glacier (Aletsch and Valais), we now perform two
kinds of transient experiments: i) the first (referred to as
“ELA-varying”) assumes fixed ice flow parameters (A and
c), and forces the Surface Mass Balance (SMB) with time-
varying Equilibrium Line Altitudes (ELA) ii) ; the second (re-
ferred as “A/c-varying”) assumes fixed ELA and force time-
varying ice flow parameters (A and c). The goal of these
two experiments is to test the memory capacity of the deep-
learning emulator. As SMB, we use a simple parameterisa-
tion based on a given ELA zELA, vertical gradients of accu-
mulation and ablation, and maximum accumulation rate:

SMB (z ) =
{
min(0.003 × (z − zELA), 1), if z ≥ zELA

0.006 × (z − zELA), otherwise.

Prior to running experiments, we collected the bedrock to-
pography of the two regions [Grab, 2020], initialised themodel
with ice-free conditions and ran it with ice flow parameters
c = 10 kmMPa−3 a−1 and A = 78MPa−3 a−1 and mass bal-
ance parameters zELA = 2800m asl, and zELA = 2200m asl
for Aletsch and Valais, respectively. The goal of this prelim-
inary phase is to simulate the build-up of glaciers until they
reach a steady state shape. Then, the ELA-varying transient
experiment consists of modelling 2000 years (starting from
the obtained steady-state shape, and keeping the parame-
ters constant) with the following ELA parametrisation:

zELA = 2800 + 200 × sin(πt/500) m,
zELA = 2200 + 300 × sin(πt/500) m,

for the Aletsch and Valais glaciers, respectively. On the other
hand, the A/c-varying transient experiment consists of run-
ning the model for 2000 years (starting from the obtained
steady-state shape and keeping the parameters constant)
with the following ice flow parameters:

A = 78 + 22 × sin(πt/500) MPa−3a−1,

c = 10 + 5 × sin(πt/500) km MPa−3a−1,

to induce glacier variations (retreat-advance-retreat), and ex-
plore a variety of configurations for assessment.

The experiments were performed using the solver (our
reference run) and the emulator (pretrained on a glacier cat-
alogue, Appendix A) with different retraining strategies to
compute the ice dynamics: i) with no retraining at all (Exper-
iment “0%-0%”), ii) with 100% retraining during the first 1000
years (i.e. one step of retraining per iteration) and then no
retraining (Experiment “100%-0%”), iii) with 100% retraining
during the first 1000 years and then 10% retraining (i.e. on
step of retraining each 10 iteration) during the second 1000
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years (Experiment “100%-10%”). Table 1 summaries the de-
sign and the outcomes in terms of fidelity of all experiments.
Figures 6 and 7 show the results of the ELA and A/c-varying
experiments for Aletsch and Valais Glacier, respectively, in
terms of fidelity (L1 error) of the “emulated” solution uE to
the reference “solved” one uS , and overall ice volume.

Exp. Training level Resulting fidelity
name [0,1] ky [1,2] ky [0,1] ky [1,2] ky
0%-0% 0% 0% Med./Low Med./Low
100%-0% 100% 0% High Med./Low
100%-10% 100% 10% High High

Table 1. Design and results of ELA and A/c-varying experiments
with various retraining strategies.

As a result, the pretrained emulator without further re-
training (0%-0%) captures roughly the ice-flow in the ELA-
varying andA/c-varying experiments of AletschGlacier when
ice flow parameters are fixed with an L1 error of ∼5 m/y (Fig.
6), which is fairly small compared to the velocity scale (0-200
m/y). This shows that the shape of the Aletsch Glacier is rel-
atively well represented in the pretraining glacier catalogue
(Fig. 12). Therefore, the emulator has acquired a fair knowl-
edge to predict a solution in line with the “solved” one. How-
ever, emulator-induced cumulative errors lead to an increas-
ing bias in ice volume (Fig. 6). In contrast, the pretrained
emulator performs very poorly with the Valais Glacier (very
high L1 error in Fig. 7). This is likely due to the fact that the
glaciers of this experiment go well beyond the glaciers in the
catalogue (Fig. 12) in terms of shape, size, and ice flow be-
haviour.

In contrast, our results reveal that adaptive retraining
of the emulator (100%-0%) shows largely improved accuracy
with respect to the “solved” reference solution during the
first 1000 years. Indeed, retraining damps the L1 error to
small values: ∼1 m/y and ∼4 m/y in the Aletsch and the
Valais Glacier experiments, respectively (Fig. 6 and 7) in the
first 1000 years when one retraining step is applied to each
time step. These errors as well as the spatial patterns of the
error (not shown) are very similar to the ones found in the
snapshot experiments (Figs. 4 and 5, panel A and B) with
discrepancies, mostly in the trunk of Valais Glacier. As a re-
sult, the modelled volumes agree very well with the “solved”
solution when systematic retraining is used (Figs. 6 and 7).
It must be stressed that using more than one training itera-
tion per time step did not show significant reduction of the
L1 error.

As systematic online retraining during the first 1000 years
is a relatively costly task (next section), we analyse the ef-

fect of releasing the retraining to assess the capability of the
emulator to retain the ice flow solutions accurately (Fig. 6
and 7). As a result, switching off the retraining after 1000
years of simulation and repeating the experiments with the
same forcing for another 1000 years (100%-0%) reveal differ-
ent outcomes. Indeed, the emulator “retains” some of the
relevant training in ELA-varying experiments, but deterio-
rates very quickly in the A/c-varying experiments, leading
to notable biases in ice volume (Figs. 6 and 7). In contrast,
the emulator remains as accurate as in the first phase when
lightly retrained each 10 time steps (100%-10%) in the second
phase. Thismeans that the emulator hasmostly retained the
geometry-ice flow relationship during the first pass and that
the accuracy can bemaintainedwith a light computationally
effective retraining provided an initial systematic training.

An important parameter for online retraining is the learn-
ing rate. A too low parameter (gently learning) will result in
inefficient learning and solution biases, while a too high pa-
rameter (aggressive learning) will result in erratic/non-smooth
accuracy curve and deteriorated memory of the emulator
(not shown). As a trade-off between the two cases, we found
that a learning rate of 2×10−5 is optimal in all our transient
experiments.

Computational performance of transient
solutions
We now compare the computational performance of the 3
solutions: “solved”, “emulatedwithout online retraining” and
“emulated with online retraining” to lead the ELA and A/c-
varying experiments presented in the previous section. Com-
paring the emulator and the solver is a challenge, as the first
requires only one emulation step (the retraining does not
require to be performed more than once per time iteration),
while the solver may require several iterations per time step
to converge. For this reason, we first discuss the costs associ-
ated with one individual step (i.e., one iteration of retraining
or solving of the optimization algorithm) before analysing
the overall costs.

Table 2 gathers together the computational times needed
to achieve one step of i) solving, ii) emulating, and iii) re-
training for modelling domains of various sizes, and on both
CPU and GPU architectures of the same desktop computer
(equipped with a 10-core Intel CPU i9-10900K and a 10’000
cores Nvidia GPU RTX 3090). As a result, the GPU (which
has 1000 times more cores) systematically out-performs the
CPU. While the CPU may be interesting for small-scale ar-
ray domains, Table 2 shows that it is not a viable option
to treat large-scale arrays. Therefore, we focus our perfor-
mance analysis on the GPU only. We find that the emula-
tion step is the most affordable task, followed by the solv-
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Fig. 6. Transient results of the ELA-varying (left panels) and A/c-varying (right panels) transient modelling experiments for Aletsch
Glacier. The panels indicate the time evolution of input parameters (ice flow parameters and ELA), the resulting ice flow L1 error between
all “emulated” solutions (with and without retraining) and the “solved” one, and the output ice volume obtained with the three modelling
methods (“solved”, “emulated” with and without retraining).

ing step, which is slightly (about 30%) more expensive, and
the retraining step, which is about 3 times more expensive
than emulation regardless of the domain size. This can be
explained as follows. The emulation step is inexpensive as it
only requires a single pass of the CNN. On the other hand,
the solving step consists of a forward evaluation of the sys-
tem energy followed by the computation of the energy gra-
dients and an update of the ice flow. Last, the retraining
step is naturally expected to be more costly than the “em-
ulation + solving”, as it combines the tasks of the two: one
CNN evaluation, one system energy evaluation, the compu-
tation of the two gradients and an update of the weights of
the CNN.

Since a CNN is evaluated sequentially layer by layer, the
emulation step is memory efficient. Therefore, emulation
step can be performed on large arrays (i.e. we achieved 2400x4000
with our 24 Gb GPU, Table 2), while the solving and retrain-
ing steps are more memory-demanding and therefore more
limited by the GPU available memory. For example, none of
the solving and retraining steps for the 2400x4000 domain
were achievable with our GPU (we found that a maximum
grid of about 2000x2000). Hopefully, this limitation can be
overcome for the retraining (and not for the solving step,

Table 2) by splitting the domain into smaller patches and
sequentially retraining the emulator patch-wise.

Exp Step CPU GPU
Aletsch solver 125 ms 15 ms
244x179 emulator 39 ms 11 ms

retrain 533 ms 29 ms
Valais solver 1538 ms 51 ms
700x700 emulator 468 ms 38 ms

retrain 5592 ms 110 ms
Entire Alps solver X X
2400x4000 emulator X 360 ms

retrain X 1465 ms

Table 2. Computational time required (in average) to perform
one emulation, retraining, solving iteration step in modelling ex-
periments for Aletsch, Valais, and the entire Alps. In the latter
case, we reported “X” when the computation was not possible, or
prohibitively too expensive. The CPU (i9-10900K) has 10 3.70 GHz
cores with 64 Gb RAM while the GPU (RTX 3090) has about 10’000
1.70 GHz cores with 24 Gb RAM.

As the other modules (ice thickness and mass balance
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Fig. 7. Transient results of the ELA-varying (left panels) and A/c-varying (right panels) transientmodelling experiments for Valais Glacier.
This is similar to the caption of Figure 6.

updates) are computationally inexpensive compared to the
ice flow model, the overall cost is mainly the number of time
iterations times the costs of individual emulation (with or
without retraining) or solver steps. In the ELA andA/c-varying
experiments related to Aletsch and Valais glaciers, the time
step was on the order of 0.1 y to maintain numerical sta-
bility meaning that ∼10’000 time iterations were needed per
millennium of modelling irrespective of the chosen method
(solver or emulation). When using the solver, several iter-
ations were required to reach convergence at a given time
step, however, this number is case-dependent: ∼3-4 andmore
than 10 iterations in the case of Aletsch and Valais glaciers,
respectively. These numbers should be taken with care, as a
more efficient optimizer (e.g. Newton-like) may reduce the
number of required iterations. In contrast with the solver,
the emulation only requires one step, while the retraining
can be applied infrequently while remaining effective. In
our case, the best trade-off in terms of accuracy to compu-
tational performance was found using light retraining (each
10 iterations) as it maintained accuracy (Figs. 6 and 7) at the
cost of one cheap emulation per time step plus more expen-
sive but infrequent retraining steps (Table 2).

APPLICATIONS

In this section, we illustrate the potential of our physics-
informed ice-flow emulator for glaciological applications.

Paleo glacier modelling in the European Alps

Modelling paleo-glacier evolution is an important tool for
understanding the history of glaciations. However, the long
time scales and the size of the domain may render this ex-
ercise computationally very demanding. For example, the
120’000-year-long simulation of alpine glacier evolution in
the Alps of Jouvet et al. [2023] at 2 km with the Parallel Ice
Sheet Model [PISM, Khroulev and the PISM Authors, 2020]
would take several weeks of computational time on a 10 core
i9-10900K running at 3.70 GHz. It is, therefore, prohibitively
expensive to explore subkilometre resolutions that would be
required to resolve the complex topography of the Alps in
the highest reaches. Therefore, the ice flow emulator with
online retraining is a promising approach to overcome the
computational bottleneck, especially on GPU, which allows
large array computations. Here, we test its capability to sim-
ulate the paleo evolution of glaciers in the entire European
Alps in very high resolution (200 m) over 10’000 years en-
compassing the Last Glacial Maximum (LGM, about 24’000
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years ago).
To this end, we took over the model setting of Jouvet

et al. [2023]. Initialising with ice-free conditions and to-
day’s topography of the Alps as bedrock, IGM was forced
with a coupled modelled paleoclimate data and PDD sur-
face mass balance model [Hock, 1999] from 28’000 years BP
to 18’000 years BP. As a result, the 200 m IGM simulation
at 21’000 years BP shows highly detailed glacier extents re-
solving small valleys and Nunataks (Fig. 8), and took about 2
days of computations on a ∼10’000-core RTX 3090 1.70 Ghz
GPU. Here, the GPU has 24 GB memory, which is key to
treating very large arrays. The horizontal grid covers the en-
tire Alps at 200 meters yielding a resolution of 2400x4000.
This exercise illustrates the capability of our approach to
achieving very high resolutions at affordable computational
costs. For comparison, PISM at a much lower resolution
(2km resolution, 240x400) would take about the same time
to carry a similar simulation on a 10-core 3.70 GHz CPU. Of
course, this comparison must be tempered by the fact that
IGM does not include all the many physical components of
PISM, especially the thermodynamics of ice, which is known
to add substantial computational time.

Fig. 8. Ice thickness of the alpine ice field obtained at 21’000
years BP modelled with IGM at 200 meters of resolution.

Ice flow model inversion/data assimilation
Inverse modelling is an essential step to initialise present-
day glacier models, i.e., estimate unknown variables (such
as ice thickness and/or ice flow parameters) such that the
model matches at best observations (surface ice flow veloci-
ties or pointwise ice thickness profiles). Substituting the ice
flow equations with a CNN emulator allows solving the in-
verse model (or the underlying optimisation problem) very
efficiently by utilising automatic differentiation and stochas-
tic gradientmethods [Jouvet, 2023]. Therefore, the CNN em-

ulator trained by physics-informed deep learning can also
be used in a similar way. Most importantly, one can now
simultaneously optimise the CNN parameters to fit the ice
physics by minimising the system energy and the CNN in-
puts to match observations by minimising the misfit to the
data. The coupled optimisation allows to perform the inver-
sion with an accurate and customised-to-the-glacier CNN at
the same time.

As an illustration, we solve the inversion problem for Alet-
sch Glacier proposed by Jouvet [2023] with this new strat-
egy. Given present-day pointwise ice thickness measure-
ments and surface ice velocity measurements, we use the
CNN trained offline over the glacier catalogue, and seek al-
ternatively for the CNN weights λ, the ice thickness dis-
tribution h and the distributed sliding parameter c , such
that both the system energy (Eq. (20)) and the mismatch
between the observed and modelled quantities (Eq. (5) in
Jouvet [2023]) are minimised. Note that the regularisation
terms for h and c are added to enforce smoothness and en-
sure a unique solution. As a result, Fig. 9 shows the con-
vergence of the fields towards an optimal state and the re-
duction of the corresponding misfit values in terms of STan-
dard Deviations (STD). Here, the quality of data assimila-
tion is comparable to that obtained by Jouvet [2023]. How-
ever, the simultaneous emulator training/optimisation has
a major benefit with respect to the former method (based
on offline training): the online retraining permits to account
for spatial variations of the sliding coefficient (Fig. 9, top-
right panel) and makes the emulator nearly as accurate as
the solver (Fig. 10). In contrast, the former emulator, which
met only the glacier catalogue and spatially constant sliding
coefficient at training, suffers from larger biases as observed
in Appendix A.

Ice shelf
Ice shelves behave very differently to mountain glacier ice
flow as modelled in the two previous applications. Indeed,
they can be very fast due to the absence of friction under
floating ice, and are therefore dominated by basal sliding. By
contrast, friction under grounded glaciers usually induces an
important vertical shearing component. Yet, modelling ac-
curately the dynamics of ice shelves is essential to predict
the evolution of the Antarctic ice sheet under climate change
and the resulting sea level rise [Seroussi et al., 2020]. Here
we demonstrate that IGM equipped with the new physics-
informed deep-learning emulator has an important poten-
tial for modelling ice sheet/shelf systems by performing a
simple experiment inspired by the Marine Ice Sheet Model
Inter-comparison Project [MISMIP Pattyn et al., 2012]. The
goal here is not to run all exercise simulations, but only to
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Fig. 9. Evolution of the sliding distribution c (unit: km MPa−3

a−1), the ice thickness distribution h (unit: m), as well as resulting
surface ice flow velocity field us (unit: m y−1) through the itera-
tions of the optimisation problem for Aletsch glacier. The STan-
dard Deviation (STD) between the modeled and observed fields is
reported at each step.

Fig. 10. Surface ice flow field of Aletsch Glacier with the param-
eters found after performing the simultaneous inversion and emu-
lator training: A) using the solver B) using the retrained emulator.
Panel C) shows the spatial difference between the two.

compute the ice dynamics associated with one state to prove
the capacity of the emulator to handle sliding-dominant ice
flow of ice shelves.

For that purpose, we consider an idealized ice sheet-shelf
geometry lying on a ramp of constant slope in the x -direction

over a distance of Lx = 1100 km (Fig. 11). All geometri-
cal variables are constant in the y -direction to mimic the 2D
MISMIP experiment 1 [Pattyn et al., 2012]. In that configura-
tion, we distinguish the ice sheet (x < xGL ) and the ice shelf
(x > xGL ) from the grounding location xGL ∼ 966.5 km (Fig.
11). The lower surface elevation l is either the bedrock when
the ice is grounded or determined by Archimedes’s princi-
ple when the ice is floating: l = max {b,−(ρi /ρw )h}, where
ρi = 910 kg m−3 and ρw = 1000 kg m−3 denote the densi-
ties of ice and water, respectively. Here, we use the follow-
ing parameters: A = 146.5 MPa−3 a−1, m = 1/3, c = 71.2
km MPa−3 a−1 where the ice is grounded and c−1 = 0 km
MPa−3 a−1 where the ice is floating (no friction). In addi-
tion, we use the “Shallow Shelf Approximation” (SSA) model
[Morland, 1987] instead of the FOA by simply setting a single
layer in the vertical discretization (Fig. 2, right panel), which
is equivalent to assuming vertically-constant ice flow veloc-
ities. Lastly, the function J defined by (15) is augmented
with an additional term to account for balance stress condi-
tions between ice and water columns at the Calving Front
(CF) on the extreme right of the modelled domain (Fig. 11):

−
∫
CF

1

2

(
1 − ρi

ρw

)
ρi gh

2v · n, (22)

where n is an outer normal vector along CF [Schoof, 2006].
The above condition was implemented along the other terms
of the system energy, and a 2D field (namely (22) along the
calving front and zero elsewhere) was added to the emulator
inputs (Eq. (19)) to control this boundary condition.

Fig. 11. MISMIP-inspired ice geometry of the ice shelf experi-
ment along the x -axis, and resulting ice flow velocities modelled
from the solver and the emulator with custom training on the spe-
cific geometry.

As a result, we find that after training the emulator on
the specific geometry, the “Solved” and “Emulated” ice flow
fields along the x -axis are nearly identical (Fig. 11). This
experiment demonstrates that the approach of the paper is
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not limited to grounded glacier flow, but is capable to handle
the sliding-dominant flow of ice shelves.

DISCUSSION AND CONCLUSIONS

In this paper, we have introduced both a solver and a physics-
informed deep learning emulator for modelling high-order
ice flow on a regular grid that are designed to run efficiently
on GPU. The solver relies on a stochastic gradient method
and automatic differentiation tools to efficiently minimise
the energy associated with the underlying ice-flow equa-
tions discretized by finite differences, similarly to Ritz-Galerkin
methods in the finite element framework. On the other hand,
the emulator relies on a CNN, which is trained to minimise
the same energy. Therefore, our method (which belongs to
the category of Deep-Ritz) can be seen as a fusion of finite
element and deep learning approaches. Here, our approxi-
mation space for the ice flow is induced by the training pa-
rameters of our CNN instead of being spanned by finite el-
ement basis functions. As a result, we have shown that our
emulator can reproduce the solutions of the solver with high
fidelity. Unlike the former emulator [Jouvet et al., 2022], the
new one does not require any data from an external ice flow
model, as it enforces the ice flow physics directly in learning.
Here, we used a glacier catalogue to pre-train the emulator
and obtain a good initial guess that facilitates convergence.
However, adaptive online training within the time-stepping
of a glacier evolution model does not require any data and
has proven to significantly improve the emulator accuracy.
This strategy makes the new emulator generic, as it allows
exploration of any parameters, types of ice flow, spatial res-
olutions, and glacier shapes, while the validity of the former
emulator could not be ensured beyond the “hull” defined by
the data and its associated spatial resolution used for train-
ing. In addition, CNN training is therefore significantly eas-
ier and cheaper as no data is required. Last, our new emula-
tor models the full 3D ice flow field (instead of the vertical
average horizontal speeds with the former version), which
can be advantageous for some applications (e.g., Lagrangian
3D particle tracking).

The computational benefits of using a CNN emulator
[Jouvet et al., 2022] remain unchanged. Indeed, one CNN
forward evaluation can be done very efficiently, especially
on GPU. In contrast, the solving and training steps are com-
putationally more expensive (by a factor of 3 in our exper-
iments). Therefore, to obtain the best computational per-
formances, we mitigate the amount of training by limiting
the frequency of retraining. Indeed, the memory capability
of the CNN revealed in our experiments allows us to reduce
the training costs for a given application. For instance, we

found that a light cost-effective online retraining following
a first systematic training is sufficient to maintain accuracy,
as the CNN conserves most of the previously learnt solu-
tions. Therefore, training costs can be strongly reduced in
some modelling applications that meet several times similar
glacier configurations (e.g., in paleo glacier modelling with
repeated glacial cycle, or in parameter sensitivity analysis),
yielding low overall computational costs.

There are a number of aspects that may be improved
in the method presented in this paper. First, we used here
the simplest finite-difference scheme to discretise the spatial
derivatives in the strain rate on a staggered grid for simplic-
ity. A more elaborated finite-element-like discretization is
expected to yield a more accurate solution, possibly slightly
increasing the training costs but without affecting the em-
ulation costs. Second, we used here the Adam optimiser as
it proved to be robust and simple to implement, however,
other optimisers may improve the convergence. For exam-
ple, the (deterministic) L-BFGS-B optimiser has proven to
be efficient at fine-optimising physics informed neural net-
works after an initial coarse pass with Adam to avoid local
minima [Taylor et al., 2022]. Similarly, the solver can be im-
proved, and hybrid solver/emulation strategies that take ad-
vantage of two should be further investigated (e.g., using the
emulator for preconditioning purpose or to help finding an
initial guess). Third, here we investigated retraining strate-
gies (to get the best accuracy while minimizing the amount
of retraining) in an empirical way by quantifying a posteriori
the error between the emulated and solved solutions. Fu-
ture research should investigate more effective and generic
retraining strategies, e.g., seeking for an a priory error esti-
mate of the neural network approximation [e.g. Minakowski
and Richter, 2023] as done FEM for estimating the numeri-
cal error [Ern and Guermond, 2004]. Lastly, the loss of ac-
curacy with increasing domain size is another aspect of the
emulator that should be improved, e.g., by using multiple
region-specific emulators. It must be stressed that our CNN
emulator (computationally-efficient on GPU) strongly relies
on the structured discretisation grid assumption. Therefore,
emulating ice flow onmore complex mesh (e.g. with local re-
finements) would require to follow a different strategy (e.g.,
PINNs).

Our modelling experiments have shown that the new
emulator embedded in a glacier evolution model can handle
very efficiently large-scale and/or high-resolution domain ar-
rays and/or very long time scales. Therefore, our method
has a high potential for paleo-glacier simulations. Addition-
ally, we found that the emulator is suitable for both inverse
and forward modelling. Therefore, the method can be very
beneficial to assimilate data and run prognostic models of
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present-day glaciers on a global scale. Lastly, we have shown
that our approach can be extended to fast-flowing ice as
found in tidewater glaciers, opening promising perspectives
for modelling the Antarctica and Greenland ice sheets in
high spatial resolution. The code to run any solver-based or
emulator-based glacier evolution simulations is open-source,
relatively simple and publicly available with the “Instructed
GlacierModel” (IGM, https://github.com/jouvetg/igm).
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APPENDIX A: PRE-TRAINING OVER A
GLACIER CATALOGUE

Pre-training of the CNN emulator over a glacier catalogue
was found beneficial, especially to avoid localminima during
online training, and improve the memory capability of the
emulator. Here we describe the implementation of the pre-
training, and assess the accuracy of the pre-trained emulator
with respect to the solver. To generate glacier shape inputs
in an offline training process of the CNN, we use a glacier
catalogue of 36 mountain glaciers at 8 different times and
100 m resolution (covering advancing and retreating stages)
obtained by Jouvet et al. [2022] by glacier evolution simula-
tions (Fig. 12). Further details about the construction of this
catalogue are given in Appendix C of Jouvet et al. [2022]. The
catalogue consists of a heterogeneous dataset with a large
variety of possible glacier shapes (large/narrow, thin/thick,
flat/steep, long/small, straight/curved glaciers, . . . ).

First, we fix the ice flow parameters (A, c) and the spa-
tial resolutionH to constant standard values (A = 78MPa−3
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Fig. 12. Ice thickness at their maximum extent of half of the
glacier catalogue (18 of the 36). Each glacier shape is a snapshot
of a simulation initialised with ice-free conditions, and forced with
a surface mass balance that permits building and retreat in succes-
sive phases over a total of 200 years. The horizontal bar represents
5 km to give the scale of each glacier.

a−1, c = 10 km MPa−3, H = 100 m) for simplicity. In a sec-
ond experiment, we will vary these parameters at training.

A test glacier is selected in addition to the glacier cata-
logue, and a “solved” ice flow solution is obtained for this
glacier by minimising the associated energy with the Adam
optimiser. Figure 13 presents the results in terms of input
data (panels A and B), “solved” solution (panel C), and a de-
crease in system energy (panel D).

Aside from the solver, we have trained a CNN emula-
tor to minimise the system energy (solving the optimisation
problem (20)) over the entire glacier catalogue (excluding the
test glacier, Fig. 12), and evaluated its performance to repro-
duce the previously “solved” solution on a test glacier. As the
size of the dataset is considerable, one used batches (a batch
size of 8 was used here) to facilitate convergence (previously
only a single glacier sample was used for online training at
each iteration). In addition, we used an adaptive learning
rate including an exponential decay to launch the training
aggressively (10−4) for efficiency and to end it gently (10−6)
for fine-tuning. Lastly, we have re-initialized the learning-
rate each 5000 training iterations to prevent falling in local
minima.

Figure 14 presents the results in terms of “emulated” so-
lution when the training has converged (panel A), the differ-
ence between “solved” and “emulated” solutions (panel B),
the L1 error (panel C), and the decrease in the system energy
through training iterations (panel D). As a result, the evolu-
tion of the L1 error (panel C, Fig. 14) shows that the emulator
captures well the ice flow after about 3000 iterations (the L1
error drops to ∼10 m/y). The effect of the adaptive learning
rate (initially fixed at 10−4, with exponential decay) is clearly
visible: The first stage of training (iterations 0 to 1000) shows

Fig. 13. Results of the solver on the “test” glacier: A) Ice surface
topography and B) ice thickness of the “test” glacier C) “solved”
surface ice flow solution at convergence D) evolution of the system
energy through the iterations of the Adam optimiser.

the largest decays and oscillations, while the last stage (it-
erations 4000 to 5000) is characterised by a smoother but
slower decay. Interestingly, the energy associated with the
“emulated” solution decreases towards a value (∼ -2.2) that
is relatively close to the value obtained when solving (∼ -
2.3), demonstrating that our CNN has learnt well to min-
imise the energy. Although the “emulated” and “solved” so-
lutions show a fair degree of similarity (compare panel C of
Fig. 13 with panel A of Fig. 14), the spatial pattern of the dif-
ference between the two (Fig. 14, panel B) reveals that the
error is unevenly distributed, the highest discrepancy being
found on themost prominent glacier tongue. This is presum-
ably due to the relatively poor representation of large, fast-
flowing glacier tongues in the glacier catalogue compared to
a smaller one [Jouvet et al., 2022].

In a second experiment, we take over the emulator trained
with fixed values of A, c , and H , and augment the training
data by sampling additional values (but spatially constant)
for A ∈ [20, 100] MPa−3 a−1, c ∈ [0, 20] km MPa−3 a−1,
and training at a different resolution H = 100, 200 m. The
ice flow parameters (A, c) were sampled with a uniform dis-
tribution within their ranges, while the spatial resolutionHH

(initially 100 m) was randomly changed to 200 m by simple
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Fig. 14. Results of the emulator on the “test” glacier: A) “Emu-
lated” surface ice flow at the surface of the test glacier (Fig. 13) at
convergence of the offline training over the catalogue, B) difference
between the “emulated” and “solved” solutions C) evolution of the
L1 error between the two solutions and D) of the system energy
through the training epochs. The jumps each 5000 iterations are
due to the re-initialization of the learning rate.

data upscaling. As a result, the CNN meets a large set of
input parameters in terms of glacier shape (sampling into
the catalogue as before) and other parameters. To assess
the performance of the emulator, we compare “emulated”
and “solved” solutions obtained with 5 sets of parameters
(A, c,H ) for the test glacier in Figure 15. As a result, the
emulator generally captures roughly the ice flow for various
parameter sets (compare the first and second rows of Figure
15). However, we find relatively high spatial discrepancies
when displaying the difference between the two (third row
of Figure 15), with L1 errors between 10 and 20 m/y. Such a
deteriorated accuracy is not surprising: the storage capacity
of our CNN model emulator has reached its limit, and one
cannot expect a model of a given size (about 140’000 param-
eters) to store more realisations with similar accuracy.

APPENDIX B: ISMIP-HOM VALIDATION
SOLUTIONS

ISMIP-HOM [Pattyn and others, 2008] experiments consist
of modelling exercises based on various synthetic ice geome-
tries and boundary conditions to produce different types of
ice flow, which can bemet in real glacier modelling. Here, we
focus on ISMIP-HOM experiments A and C, which represent
a wide panel of various 3D ice flow scenarios (from shearing
to sliding-dominant flows) over a square horizontal domain
of length L > 0: Ω = [0, L] × [0, L]. In experiment A, the ice
geometry is defined by

s (x , y ) = −x tan(0.5◦),
b (x , y ) = s (x ) − 1000 + 500 sin (2πx/L) sin (2πy/L) ,

and a no-slip condition is prescribed on the bedrock, while,
in experiment C, the geometry is defined by

s (x , y ) = −x tan(0.1◦),
b (x , y ) = s (x , y ) − 1000,

and a slip condition is prescribed everywhere on the bedrock
defined by m = 1 and

c (x , y ) = [1000 × (1 + sin (2πx/L) sin (2πy/L))]−1.

In both experiments, we use A = 100 MPa−3 a−1 as Arrhe-
nius factor in Glen flow law, and horizontal periodic bound-
ary conditions connect the four horizontal sides of Ω, see
Pattyn and others [2008] for further details. The squared
horizontal domain Ω was divided into 100 cells in both hor-
izontal directions to generate a regular grid, while the ice
thickness is divided into 20 layers. To obtain a wide range
of aspect ratios, we performed both experiments for several
values of domain length L = 10, 20, 40, 80, and 160 km. Figure
16 compares the “solved” solutions at convergence with the
reference ’oga1’ solution obtained from Pattyn and others
[2008] for all experiments.

As a result, we generally find a very good agreement be-
tween the two solutions. In line with model intercompar-
isons [Pattyn and others, 2008], there are small discrepancies
in the experiments that have the smallest domain length L,
which are known to be more sensitive to numerical param-
eters and schemes. This validates our numerical solver and
verifies that the system energy (18) – which is used for solv-
ing and training the CNN – is correctly implemented.
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Fig. 15. Results of the emulator on the “test” glacier with varying values of A, c , and H . Each column corresponds to one parameter set
(A, c,H ) (the first column shows the default original parameters). The first row displays the “solved” surface ice flow solution. The second
row displays the “emulated” solution after training over the glacier catalogue, while the third shows the difference between this solution
and the “solved” one. The last raw shows the L1 error through the training. The jumps each 5000 iterations are due to the re-initialization
of the learning rate.
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Fig. 16. Surface ice flow magnitude along the y = L/4 horizontal line for different length scales L = 10, 20, 40, 80, and 160 km in the
ISMIP-HOM experiments A and C: comparison between “solved” with reference solution ’oga1’ obtained from Pattyn and others [2008].
For simplicity, the x-axis was scaled with L.


