
Computers & Graphics (2023)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Neural Green’s Function for Laplacian Systems

Jingwei Tanga, Vinicius C. Azevedob, Guillaume Cordonnierc, Barbara Solenthalera

aETH Zürich, Switzerland
bDisneyResearch—Studios, Switzerland
cInria Université Côte d’Azur, France

A R T I C L E I N F O

Article history:
Received March 18, 2022

Keywords: Machine Learning, Model-
ing and Simulation, Poisson Equation,
Green’s Function

A B S T R A C T

Solving linear system of equations stemming from Laplacian operators is at the heart of
a wide range of applications. Due to the sparsity of the linear systems, iterative solvers
such as Conjugate Gradient and Multigrid are usually employed when the solution has
a large number of degrees of freedom. These iterative solvers can be seen as sparse
approximations of the Green’s function for the Laplacian operator. In this paper we
propose a machine learning approach that regresses a Green’s function from boundary
conditions. This is enabled by a Green’s function that can be effectively represented in
a multi-scale fashion, drastically reducing the cost associated with a dense matrix rep-
resentation. Additionally, since the Green’s function is solely dependent on boundary
conditions, training the proposed neural network does not require sampling the right-
hand side of the linear system. We show results that our method outperforms state of
the art Conjugate Gradient and Multigrid methods.

1. Introduction

Efficiently solving linear systems originating from discrete
Partial Differential Equations (PDEs) is central to many mod-
ern applications, ranging from modelling of natural phenom-
ena to image processing. Since these equations model local
relationships, their discretized counterparts are sparse and only
few entries are non-zero. Therefore, direct matrix inversion is
not efficient since it yields a dense representation, and iterative
solvers such as Conjugate Gradient and Multigrid are preferred.

In this work, we propose a novel framework that compre-
hends iterative methods for solving linear systems of equations
stemming from Poisson Equations. Our method is inspired by
the theory of Green’s functions: integral equations obtained
from the PDE and its corresponding boundary conditions. Once
computed, they can provide the solution to the PDE by a sim-
ple convolution. However, Green’s function methods are not
adopted in practical applications because analytic solutions ex-
ist only in simple settings, and discretizing them is unpractical
due to their wide kernel support. Our first contribution, thus,
is a novel multi-level discrete Green’s function formulation that

is able to take advantage of a sparse and more efficient design.
Our second contribution is to take advantage that Green’s func-
tions only depend on the boundaries of the domain, and train
a neural network model to regress Green’s functions from gen-
eral boundary settings. Lastly, due to the spectral properties
of our multi-level discrete Green’s function, our method can
be applied as an iterative solver on the error residual. These
combined contributions create a linear system solver with un-
precedented error convergence in 2-D, surpassing state of the
art Conjugate Gradient and Multigrid methods.

2. Related Works

We revisit methods for solving linear system of equations
arising from linear discrete PDEs in the following. Classical
methods are extensively studied by LeVeque [1], so our dis-
cussion will focus on recent attempts involving learning-based
methods and approximating Green’s functions.

Learning Green’s functions. The work of Alkhalifah et al.
[2] proposed to represent Green’s function of wave equations

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

through fully-connected neural networks. The network takes
spatial coordinates and source locations as input and predicts
the Green’s function value for a given domain. The formulation
is similar to the Physics-Informed Neural Networks (PINN) [3],
where each specific PDE is represented by one fully connected
network. Similarly to our work, Ichimura et al. [4] developed
a neural network trained to fit local patches of the discretized
Green’s function. The training depends on the right-hand side
and solution pair, thus results in a very large dataset, contain-
ing around 16.2 million samples. As the proposed Green’s
function is still an approximation of the ground-truth, the au-
thors adopted it as a pre-conditioner for the linear system. On
the contrary, we adopt the approximated Green’s function as a
multi-level iterative solver.

Green’s functions were also explored in a multi-scale fashion
to solve specific electromagnetic potentials. In a series of pa-
pers, Li et al. [5, 6, 7] proposed neural networks as non-linear
neural operators to map coefficients of differential operators di-
rectly to solutions. However, the proposed neural operators al-
ways assume fixed forcing terms in the PDE, and these methods
do not deal with complex boundary conditions. The work of
Feliu-Faba et al. [8] decomposes Green’s function of pseudo-
differential operators through a nonstandard wavelet transform,
training neural networks that jointly learn the mapping from
Laplacian coefficients and wavelet parameters. This approach,
however, does not take complex boundary conditions into con-
sideration. Gin et al. [9] designs an autoencoder structure to
map forcing terms from non-linear PDEs into a linear space
for solving PDEs through Green’s functions. Recent advances
in learning Green’s functions also involve applying them other
domains such as solving Helmholtz and Sturm-Liouville prob-
lems [9], computing discrete Markov Chains [10], and quantum
field theory [11].

Multi-Resolution Analysis and Sparse Approximate Inverses.
Our work is inspired by several recent contributions on multi-
resolution analysis and Sparse Approximate Inverses. Multires-
olution matrix factorization (MMF) [12, 13, 14] extends classic
multi-resolution analysis [15] to matrix representations. Haar
wavelets (which act as ideal low pass filters) are the natural ba-
sis when constructing hierarchical representations of the Lapla-
cian operator [12]. Similarly to our work, progressive molli-
fication is applied to Kroenecker deltas for multi-scale analy-
sis with diffusion wavelets [16]. Sparse Approximate Inverses
(SPAI), on the other hand, are more general low rank matrix ap-
proximations for the inverse of a discrete matrix. These can be
employed as preconditioners [17, 18, 19, 20] and as Multigrid
smoothers [21, 22].

Solving Linear PDEs with Convolutional Neural Networks.
More recent endeavors in the deep learning era leaned towards
a direct mapping between image-represented boundary condi-
tions of 2D Laplace equations and their solutions through con-
volutional neural networks (CNN). Barati Farimani et al. [23]
trained a U-Net model by combining L1 and adversarial losses,
while Sharma et al. [24] adopted a weakly-supervised residual
loss. Other works solved the Poisson equation for applied prob-
lems, including pressure projection in fluid simulation [25, 26],
electric potentials [27] and particles simulation [28]. Differ-

ently from the previous work, Hsieh et al. [29] proposed to use
neural networks to modify Jacobi-style iterative solvers. The
neural network operates on the error term at each iteration, and
is designed to be linear (without bias and non-linear activation
functions) to guarantee convergence to the correct fix point so-
lution. After supervised training, the network can moderately
improve the convergence speed of a Jacobi and a Multigrid
solver.

3. Background

We briefly review the linear partial differential equations
(PDE) and their Green’s function solutions in this section. The
symbols used throughout the paper can be found in Table 1.

3.1. Linear Partial Differential Equations

Linear PDE solvers aim to find functions that satisfy a set of
linear differential equations. Consider F = {u : Ω ∈ Rk → R}
as a space of smooth scalar field functions in a domain of k
dimensions, A : F → F a linear differential operator and u ∈
F a candidate function that satisfies the equationAu(x) = f (x),
for f ∈ F . In this paper, we assume A = ∇2 = ∂2

∂x2
1
+ · · · + ∂2

∂x2
n
,

which yields a Poisson equation of the form ∇2u(x) = f (x).
Solving a linear PDE involves finding a function u ∈ F that
satisfies the above conditions.

The solution of a linear PDE depends on specified bound-
ary conditions (BC). Assuming ∂Ω as the boundary of the do-
main with an oriented normal vector n, homogeneous Dirichlet
(u(x) = 0, x ∈ ∂ΩD) and Neumann (∂u(x)

∂n = 0, x ∈ ∂ΩN) are
common boundary conditions. These conditions can model ob-
stacles and domain boundaries. Thus, a Poisson equation with
prescribed boundary conditions is formulated as

∇2u(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂ΩD,
∂u(x)
∂n = 0, x ∈ ∂ΩN .

(1)

3.2. Green’s Function

A Green’s function G(x, x′) of the linear differential operator
A is defined as

AG(x, x′) = δ(x − x′), x ∈ Ω,
∂G(x,x′)
∂x = 0, x ∈ ∂ΩN ,

G(x, x′) = 0, x ∈ ∂ΩD,
(2)

where δ is the Dirac delta function: δ(x) = 0 for x , 0,∫ ∞
−∞
δ(x)dx = 1; and x′ ∈ Ω is a fixed point. The Green’s

function is useful to solve inhomogeneous linear PDEs, since
once computed for a specific operator, the PDE Au(x) = f (x)
is immediately solved by

u(x) =
∫
Ω

G(x, x′) f (x′) dx′, (3)

for any arbitrary forcing function f (x).
Several analytical solutions of Green’s functions exist; for

example, the three dimensional Green’s function for the

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 3

Laplace equation with Dirichlet conditions at the infinity is
given by

G∞(x, x′) = −
1

4π
·

1
|x − x′|

. (4)

However, once more complex boundary conditions are intro-
duced, there are no known closed form Green’s function for-
mulation for the general case. The goal of this paper, thus, is to
efficiently approximate G(x, x′) given a certain boundary con-
figuration. This will provide us a solution operator of any Pois-
son equation without relying on the forcing function f (x).

3.3. The Discretized Setting
Since there are no trivial analytical solutions for linear PDEs

in the general case, its common to solve them numerically. To
do so, the first step is to discretize the operator A spatially.
Among grid-based methods, regular (Cartesian), curvilinear, or
unstructured discretizations are common [1], and each of which
can be potentially coupled with distinct approximation schemes
such as finite differences, finite volumes or finite elements. In
this paper we will focus on approximating Green’s functions
for regular grids in 2-D with embedded objects discretized by
fully filled cells [30], and no fractional boundary treatment.

𝒖𝒖𝒊𝒊,𝒋𝒋 𝒖𝒖𝒊𝒊+𝟏𝟏,𝒋𝒋

𝒖𝒖𝒊𝒊,𝒋𝒋+𝟏𝟏

𝒖𝒖𝒊𝒊,𝒋𝒋−𝟏𝟏

𝒖𝒖𝒊𝒊−𝟏𝟏,𝒋𝒋

𝑥𝑥

𝑦𝑦

We notice, however, that all
the aforementioned discretiza-
tions will yield a discrete linear
matrix and the discussion pre-
sented here does not limit itself
to the particular choice of regu-
lar grids coupled with finite dif-
ferences.

The 2-D Laplacian operator discretized with a second order
approximation at regular grid node xi, j is given by

∇2u(xi, j) ≈
1
h2 (ui+1, j + ui, j+1 + ui−1, j + ui, j−1 − 4ui, j), (5)

where h is the grid spacing and ui+1, j,ui, j+1,ui−1, j,ui, j−1,ui, j

are discrete grid values at different locations (inset). Notice that
this discretization of Laplacian operator is compact, since each
node only interacts with its immediate neighbors. Extending
this relationship for all grid nodes yields the following linear
system:

Au = f. (6)

Here we use A to discretize the negative of Laplacian operator.
This system is sparse with 5 non-zero entries per row/column.
Boundary conditions can change the stencil of the discrete
Laplacian kernel (Equation (5)) and the structure of matrix A.
Moreover, if boundary conditions are compatible, the matrix A
is symmetric positive definite.

It’s straightforward to see that in the discrete case, the
Green’s function is simply the inverse of the Laplacian matrix,
since discretizing Equation (2) yields

GA = I, (7)

where G is the discretized Green function for the operator A.
Therefore, for an arbitrary discrete forcing term f, the solution
of the PDE is

u = Gf. (8)

Table 1. Summary of symbols
A,G Differential operator and its Green’s function

u(x), f (x) Solution and forcing function of the PDE
A,G Discretized Laplacian and its Green’s function
u, f Ground-truth solution and right-hand side vectors
û Approximated solution vector
r Residual vector r = f − Aû

∂ΩN , ∂ΩD Neumann and Dirichlet boundary
ℓ Level index for Multi-level Green’s Function

i, j Grid position index
Nℓ Number of nodes of the regular grid at level ℓ

mℓ, nℓ Sizes (x and y direction) of the regular grid at level ℓ
Uq
ℓ
,Dq
ℓ

Upsampling and Downsampling operators
G∗ℓ Residual Green’s function at level ℓ (Eq. 9)
Gℓ Green’s function at level ℓ (Eq. 13)
Iℓ Downsampled identity matrix at level ℓ
kℓ Size of Green’s Function Kernel at level ℓ
uℓ Intermediate solution vector at level ℓ
fℓ Downsampled right-hand side vector at level ℓ
ϕℓ SDF of solid obstacles at level ℓ
Mℓ,Θ MLP at level ℓ and its parameters

4. Neural Green’s Function For Laplacian Systems

The most straightforward way to find a Green’s function so-
lution for a Poisson Equation is to invert its discrete matrix rep-
resentation G = A−1. However, this is computationally ineffi-
cient as G is dense. Even if the Green’s function for discrete
Laplacian is known a-priori, the cost for computing the solu-
tion by dense matrix multiplication u = Gf is O(N2) given a
regular grid with N nodes, which is sub-par when compared
with state-of-the-art iterative solvers. This approach, therefore,
is not employed in practice.

Fig. 1. Left: a Green’s function for the one dimensional Laplacian operator.
Right: the power spectrum of the Fourier decomposition of the Green’s
function.

The dense Green’s function for the Laplacian operator, how-
ever, has a sparse counterpart in the frequency space: consider
its one-dimensional representation plotted for Dirichlet bound-
ary conditions in Figure 1. Despite being dense in the orig-
inal space, its power spectrum shows that it is sparse on the
frequency space. This property suggests that there is another
representation, besides the standard matrix format, in which the
Green’s function can be compactly discretized. Previous works
on Sparse Approximate Inverses (SPAI) employed Wavelets
[20] to also make the G’s representation more efficient. We

4 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

therefore propose a multi-level compact representation for the
Green’s function in the next section.

4.1. A Multi-level Green’s Function Representation

Our multi-level Green’s approximation (MLGA) relies on
lower resolution grids that are progressively up-sampled until
a target resolution:

G = UL
1 G∗1D1

L + UL
2 G∗2D2

L + . . . + UL
L−1G∗L−1DL−1

L +G∗L

=

L−1∑
ℓ=1

UL
ℓG
∗
ℓD
ℓ
L +G∗L, (9)

where G∗1 and G∗L are matrices representing coarsest and finest
discretizations respectively; and Uq

ℓ
(Dq
ℓ
) is upsampling (down-

sampling) operator that maps a vector from discretization level
ℓ (of Nℓ nodes) to discretization level q. We implement the up-
sampling (downsampling) operators through composing a se-
ries of ratio-2 operators; e.g., the upsampling operator UL

ℓ is
composed as

UL
ℓ = UL

L−1UL−1
L−2 · · ·U

ℓ+1
ℓ =

L−1∏
q=ℓ

Uq+1
q . (10)

Similar to the Multigrid method [31], the ratio-2 upsampling
and downsampling operators are represented by 3 × 3 full-
weighting kernels. The downsample kernels are constructed
by computing the tensor product D = B ⊗ B between one-
dimensional stencils. We choose B to be a linear stencil defined
as

(Bu)i =
1
4

ui−1 +
1
2

ui +
1
4

ui+1. (11)

The upsample operator is chosen to be the scaled transpose of
the downsample operator U = 4DT [31]. Boundary conditions
are easily handled by manipulating the operand: a Dirichlet
condition imposes that values on the boundaries are set to 0,
while a Neumann condition requires extrapolation of values to
the boundary in the direction of the derivative. When a bound-
ary cell has multiple Neumann conditions applied to it, the ex-
trapolation simply averages contributions from different direc-
tions. Moreover, we notice that linear 3 × 3 downsampling ker-
nels can introduce aliasing; however this was not an observed
problem in our experiments.

4.2. Enforcing Sparsity

Simply approximating the matrix inverse with the formula-
tion shown in Equation (9) is not enough for an efficient rep-
resentation. Therefore, similarly to SPAI approaches [14], our
goal is to find a sparse approximation of the Green’s function
Ĝ, which can be expressed through the following optimization:

Ĝ = arg min
G

∥GA − I∥22, (12)

where Ĝ is sparse. One of the contributions of this paper is to
show that the multi-level approximation can sparsely and effi-
ciently represent the Green’s Function by solving Equation (12)
independently per level. To show that, we first define Gℓ as

Gℓ =
ℓ−1∑
q=1

UℓqG∗qDq
ℓ
+G∗ℓ = Uℓℓ−1Gℓ−1Dℓ−1

ℓ +G∗ℓ . (13)

The equation above states that the approximation at the ℓ-th
level is defined by the summing the previous upsampled level
Gℓ−1 and a residual matrix G∗ℓ defined at ℓ.

Similarly to the Galerkin approximation, our derivation as-
sumes that coarser levels should solve a Laplace system pro-
gressively downsampled from the finest level. Defining Aℓ =
DℓLAUL

ℓ and using the Green’s definition of Equation (13), the
sparse optimization can be written as

Ĝℓ = arg min
Gℓ

∥GℓAℓ − Iℓ∥22, (14)

where Iℓ = DℓLIUL
ℓ is the downsampled identity matrix.

Directly optimizing Equation (14) is memory inefficient,
since the approximation in a level depends on the previous
coarser one. By reformulating Equation (14), we can solve for
the mismatch of the downsampled identity between grid reso-
lutions of adjacent levels Iℓ − Uℓ

ℓ−1Dℓ−1
ℓ

Iℓ, and rewrite the opti-
mization to be level-independent as

Ĝ∗ℓ = arg min
Ĝ∗
ℓ

∥∥∥∥Ĝ∗ℓAℓ − (Iℓ − Uℓℓ−1Dℓ−1
ℓ Iℓ
)∥∥∥∥2

2
. (15)

Notice that this method only works because it is bound to a
target finest grid resolution; therefore, it cannot be reused for
distinct grids with varying number of nodes/levels. The full
derivation from Equation (14) to Equation (15) is presented in
the supplemental material.

Lastly, the per-level Ĝ∗ℓ Green’s approximation is mostly
sparse. That happens because each row (a 2-D kernel converted
to an array) has a compact support due to the predominance
of lower frequencies in Green’s function of elliptical operators.
The kernel with compact support is centered around the point of
evaluation as illustrated in Figure 2. This assumption requires
that contributions from distant nodes are inherently modelled
by interpolation of Green’s Functions from coarser levels. Sce-
narios that violate this assumption will be discussed in Section
6.

We choose to represent residual Green’s function approxi-
mations Ĝ∗ℓ through spatially varying convolutions, i.e. sliding-
window of compact kernels G∗ℓ(iℓ, jℓ) that vary at each position.
Here 1 ≤ iℓ ≤ mℓ, 1 ≤ iℓ ≤ nℓ, with mℓ and nℓ being the sizes in
x and y direction of the regular grid at level ℓ, and Nℓ = mℓnℓ.
We can conveniently write them as sparse matrix-vector multi-
plications: the values of G∗ℓ(iℓ, jℓ) represent the non-zero val-
ues at row (iℓNℓ + jℓ) in the matrix G∗ℓ ∈ RNℓ×Nℓ . For coarser
levels we adopt kernels of sizes kℓ × kℓ to cover most of the
domain since they are still relatively cheap to compute. As the
discretization progresses to more refined levels, the kernel size
progressively decreases until it covers only a small neighbour-
hood (e.g., for all our examples the finest level has kernel size
5 × 5).

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 5

𝐮𝐮𝑖𝑖2,𝑗𝑗2 = 𝐔𝐔12𝐆𝐆1∗ 𝑖𝑖1, 𝑗𝑗1 ∗ 𝐟𝐟1 + 𝐆𝐆2∗ 𝑖𝑖2, 𝑗𝑗2 ∗ 𝐟𝐟

… …

𝐆𝐆1∗ ∈ ℝ𝑁𝑁1×𝑁𝑁1

𝐟𝐟1 = 𝐃𝐃12𝐟𝐟
∈ ℝ𝑁𝑁1

…
…

… …

𝐆𝐆2∗ ∈ ℝ𝑁𝑁2×𝑁𝑁2

𝐟𝐟 ∈ ℝ𝑁𝑁2

…
…

+𝐔𝐔12

𝐮𝐮 ∈ ℝ𝑁𝑁2

=
𝐮𝐮𝑖𝑖2,𝑗𝑗2

Row (𝑖𝑖1𝑁𝑁1 + 𝑗𝑗1)

Row (𝑖𝑖2𝑁𝑁2 + 𝑗𝑗2)

Fig. 2. Multi-level Green’s function (L = 2). Left: sparse matrix represented by multi-level Green’s function G∗1,G
∗
2 multiplied with vector f. Right:

spatially varying convolutional kernel represented by G∗1,G
∗
2 convolved with f. Here ∗ represents the 2-D convolution operation. Both representations are

equivalent to each other, with the same values shown in the same color.

The number of operations needed to for sparse matrix-
vector multiplication depends on the number of non-zero ma-
trix entries; the total number of non-zero elements in G∗ℓ is∑L
ℓ=1 k2

ℓNℓ. The number of operations needed for upsampling
and downsampling operators implemented by 3 × 3 kernels
is
∑L−1
ℓ=1 32Nℓ. Therefore, the total number of operations for

multiplying the multi-level Green’s function with a vector is
k2

LNL +
∑L−1
ℓ=1

(
k2
ℓNℓ + 2 · 32Nℓ

)
. Thus, as long as k2

l << Nl in
higher resolution levels, evaluating Equation (8) with the pro-
posed multi-level Green’s approximation requires significantly
less operations when compared with it the dense Green’s coun-
terpart, which requires (NL)2 operations.

4.3. Solving the Poisson System Iteratively

Once the optimization problem in Equation (15) is solved,
the final approximation of the Green’s function can be obtained
by combining all Ĝ∗ℓ in Equation (9). However, naively com-
puting this matrix-vector multiplication is memory inefficient,
since there is no need to upsample the per-level residual Green’s
function Ĝ∗ℓ to level L. Instead, Equation (8) can be imple-
mented through applying Ĝ∗ℓ on the right-hand side vector f
in a level-by-level fashion. Starting with level ℓ = 1, a first
approximation of the solution is obtained u0 = Ĝ∗1(D1

Lf). At
the following levels ℓ, we apply Ĝ∗ℓ on the corresponding right-
hand side vector to get a error correction term eℓ = Ĝ∗ℓ(D

ℓ
Lf).

This correction is then added to the upsampled coarser level,
which yields the current level’s solution uℓ = Uℓ

ℓ−1uℓ−1 + eℓ.
The process continues until the finest level L.

As the approximated Green’s function Ĝ is not exact due to
cut-offs introduced by compact kernels, directly applying it on
the right-hand side vector usually does not provide a solution
that is precise enough. Thus, we devise an iterative fashion of
applying the Green’s function to refine the prediction. After
getting a first approximation of the result as û = uL, a resid-
ual r = f − Aû is computed. Then, the approximated Green is
applied on this residual and added back to û to obtain the next
approximation: û ← û + Ĝr. The process is repeated until a
user-defined residual tolerance or maximum number of itera-
tion is reached. The presented method has similarities with a
Multigrid solver, but the relaxation step is substituted by using

our approximated Green’s kernels. The whole solving process
is summarized in Algorithm 1.

Input: {Ĝ∗ℓ : ℓ = 1, 2, . . . , L}, right-hand side vector f,
system matrix A, maximum number of iteration
Nitr, residual tolerance ε.

Initialization: r← f; û← 0;
for I = 1 to Nitr do

u1 ← Ĝ∗1(D1
Lr);

for ℓ = 2 to L do
eℓ ← Ĝ∗ℓ(D

ℓ
Lr);

uℓ ← Uℓ
ℓ−1uℓ−1 + eℓ;

end
û← û + uℓ;
r← f − Aû;
if ||r||∞ < ε then

break;
end

end
Output: û
Algorithm 1: Using G∗ℓ to solve Poisson Equation.

4.4. Learning Green’s Functions
The optimization in Equation (15) depends on the specific

system matrix A that it was solved for, which restricts its ap-
plication to a Laplace operator under specific boundary condi-
tions. Assuming that the Laplacian operator has homogeneous
coefficients, we observe that the kernel weights of G∗ℓ(i, j) can
be determined solely by the boundary conditions in a given do-
main. Therefore, we can obtain Green’s functions for more gen-
eral configurations by training a Multilayer Perceptron (MLP)
to directly map boundary conditions into kernel weights.

Contrary to position-based features that were used in previ-
ous implicit approaches [32], we can adopt features that are
based on distances of an evaluation point relative to all domain
boundaries. Including all these distances (or, alternatively, the
whole domain as input) as features of the neural network, how-
ever, would result in a large parametrization space that is chal-
lenging to generalize, since it would contain features that would

6 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

ϕℓ 𝑖𝑖, 𝑗𝑗 ∈ ℝ𝑘𝑘ℓ×𝑘𝑘ℓ

𝐌𝐌𝐌𝐌𝐏𝐏ℓ

𝐆𝐆ℓ∗(𝑖𝑖, 𝑗𝑗) ∈ ℝ𝑘𝑘ℓ×𝑘𝑘ℓ

Loss in Eq. (16)

ϕℓ

Select
Patch

(a) Training

(b) Test

𝐌𝐌𝐌𝐌𝐏𝐏ℓ

ϕℓ 𝑖𝑖, 𝑗𝑗 𝐆𝐆ℓ∗(𝑖𝑖, 𝑗𝑗)
ϕℓ

Unfold

𝐟𝐟ℓ = 𝐃𝐃𝐿𝐿ℓ𝐟𝐟

Unfold

𝐟𝐟ℓ(𝑖𝑖, 𝑗𝑗)

*

𝒆𝒆ℓ(𝑖𝑖, 𝑗𝑗)

Fold

𝒖𝒖ℓ

Element-wise
Multiplication

Spatially-varying Convolution

𝐔𝐔ℓ−1ℓ 𝒖𝒖ℓ−1 +

Fig. 3. Pipeline illustration for training and test time. During training (a), given the SDF ϕℓ of objects representing the interior boundary setting at
level ℓ, several patches are randomly selected to form an input mini-batch. The MLP at this level processes the input SDF batch and outputs a batch
of corresponding residual Green’s function kernels. These kernels are then used to incur the loss defined in Equation (16). Dashed lines represent the
back-propagation process. At test time (b), sliding local patches are extracted from the SDF ϕℓ. These patches represent the input MLP; the MLP’s output
corresponds to the residual Green’s function kernels. The kernels are used to perform a spatially-varying convolution on the right-hand-side to get the
error correction term eℓ. The error correction term is added to the up-sampled coarser solution from level ℓ − 1 to get the current level’s solution uℓ.
The Unfold operation extracts all local patches centered at (i, j) of size kℓ × kℓ: ϕℓ → {ϕℓ(i, j)}(mℓ ,nℓ)(i, j)=(0,0). The Fold operation is the inverse of Unfold, and it
combines all local patches back into a complete field.

only weakly correlate with the outputs of our Neural Green’s
function. Instead, we rely on a feature vector that takes patches
of Signed Distance Functions (SDFs) from the point of evalu-
ation to the domain boundaries. These functions are smooth,
and once coupled with their derivatives - which are automat-
ically encoded by the patch information - they can represent
non-local information of the underlying geometries embedded
on the domain.

The neural network that maps the boundary conditions to
Green’s function kernels at level ℓ is defined asMΘ

ℓ
: ϕℓ(i, j) ∈

Rkℓ×kℓ → G∗ℓ(i, j) ∈ Rkℓ×kℓ . This mapping takes a SDF patch
ϕℓ centered at (i, j) and maps it to a Green’s kernel G∗ℓ(i, j) of
the same size. Since the mapping is defined continuously by
the signed distance functions, the mapping functionMΘ

ℓ
is well

represented by a MLP. The MLP flattens the input SDF patch
into a vector and outputs a vector of the same shape. The output
vector is then reshaped into a kℓ × kℓ patch and used as G∗ℓ(i, j).

We define separate MLPs for each level. The training of each
level is also performed independently according to the objective
defined in Equation (15). The only difference lies in the param-
eters to be optimized:

Θ̂ = arg min
Θ

∑
r

∑
i, j∥∥∥∥MΘℓ (ϕr

ℓ(i, j)
)

Aℓ −
(
Iℓ − Uℓℓ−1Dℓ−1

ℓ Iℓ
)∥∥∥∥2

2
, (16)

where r denotes the training example index. The multiplication
ofMΘ

ℓ
(ϕℓ(i, j)) and matrix A is a sparse vector-matrix multipli-

cation. In practice, we do not sequentially take all patches from

a boundary setting to form a batch during training, but rather
randomly pick (i, j) from different boundary settings.

At test time, we extract all sliding local patches from ϕℓ to
form a batch {ϕℓ(i, j) : ∀1 ≤ i ≤ mℓ,∀1 ≤ j ≤ nℓ}. The whole
batch is used as input to the current level’s MLP to get pre-
dictions of the corresponding residual Green’s function kernels
{G∗ℓ(i, j) : ∀1 ≤ i ≤ mℓ,∀1 ≤ j ≤ nℓ}. This process is performed
for all levels ℓ = 1, . . . , L to obtain the full multi-level Green’s
function representation. Given G∗ℓ(i, j) for all levels, we can
use the procedure defined in Algorithm 1 to solve for arbitrary
right-hand side. An overall illustration of the training and test
pipeline can be seen in Figure 3.

5. Experiments and Results

We evaluate the ability of our approximated Green’s function
to solve the Poisson equations (Algorithm 1) by comparing its
performance with classical linear solvers. Random right-hand
side vectors f are generated with either Gaussian noise (Figure
5, top row) or Perlin noise [33] (Figure 5, bottom row). Clas-
sical linear solvers evaluated include Jacobi, Conjugate Gradi-
ent (CG), Multigrid (MG), and Multigrid Preconditioned Con-
jugate Gradient (MGPCG). The residual L1-norm of different
solvers is plotted against the number of multiply-add opera-
tions, as a comparison based on the number of iterations would
be biased by the computational cost required at each iteration
step.

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 7

5.1. Implementation Details

We implement all our models, as well as classical (Conjugate
Gradient (CG), Jacobi, Multigrid, and Multigrid Preconditioned
Conjugate Gradient) solvers in PyTorch [34]. All experiments
are run on a NVIDIA GeForce RTX 2080Ti GPU with 11 GB
of dedicated memory.

Multi-level representation. Grids at all levels are discretized
with a resolution of Nl = (2ℓ+1 + 1) × (2ℓ+1 + 1) nodes, where
ℓ = 1, . . . , L is the index of the level. This means that we al-
ways fix the coarsest level ℓ = 1 to have 5×5 nodes. The kernel
sizes of each level kℓ are determined heuristically. For exam-
ple, setups with the resolution of N = 1292 employ different
kernels sizes for each level as k1 = 9, k2 = 11, k3 = 9, k4 =

7, k5 = 5, k6 = 5. The total number of multiply-add operations
in this setting when applying the multi-level Green’s function to
the right-hand side is ∼ 7.1 × 105, while the operations needed
for applying the dense Green’s function is ∼ 2.8 × 108. Equa-
tion (15) is solved as an unconstrained optimization problem
with a Quasi-Newton (L-BFGS) optimizer. We choose a his-
tory size of 10 to approximate the Hessian, and the Armijo cri-
teria is used for the line search algorithm, which is limited to 10
steps. For all tests the same hyper-parameters are used for the
L-BFGS algorithm.

Neural networks. The model in Section 4.4 uses distinct
MLPs for each level. The MLPs of the coarser levels (up to
ℓ = 3) have 6 fully-connected layers, while rest of the other
levels have 12 layers. Each hidden layer in the MLP has 256
channels, and uses ReLU activations. The input layer is skip
connected to the 4th layer. Dropout is applied in all layers dur-
ing training. Each MLP is trained with an Adam Optimizer,
with initial learning rate set to 10−4. The learning rate progres-
sively decays every 300 epochs by a ratio of 0.5 until conver-
gence. MLPs of different levels are trained independently in
parallel. The training takes around 24 hours for each level.

Multigrid Settings. We implement a geometric Multigrid
solver [31] with weighted Jacobi (ω = 2

3) as the smoothing
operator. We use 8 pre-smoothing steps, 16 post-smoothing
steps for all levels, and 20 smoothing steps for the coarsest
level. When used as preconditioner for Conjugate Gradient,
we change the parameters to 2 pre-smoothing steps, 2 post-
smoothing steps and 4 smoothing steps for the coarsest level.
The same set of parameters is used for all experiments.

5.2. Representing Green’s Function for a Single Scene

We evaluate our method in two parts: first, we validate
that our multi-level representation can adequately represent a
Green’s function for a fixed boundary configuration. Next, we
measure the capacity of the MLPs to predict Green’s functions
for arbitrary obstacles. The purpose of our first experiment is
to validate that the choice of our structure of multi-level convo-
lution is sufficient to accurately and sparsely approximate the
discrete Green’s function (the dense inverse of the A matrix).
To this end, we fix the boundary conditions and directly opti-
mize for the values of Ĝ∗ℓ for all ℓ (Equation (15)). We note
that the discretization of the Green’s function can be exactly
represented with our multi-layer model if we allow the radius

of the convolution to span the size of the whole domain. Al-
though this would be unpractical for large domains, this allows
us to compute a set of ground truth kernels G∗ℓ at low resolution
(33 × 33).

Figure 4 shows the comparisons of ground-truth Ĝ∗ℓ(i, j) (b)
and approximated G∗ℓ(i, j) (c) kernels at different locations for
level ℓ = 3, with the difference between them shown on the
right-most column. This difference does not exceed 3% of the
magnitude for the ground-truth kernel, which indicates that the
most dominant values are well represented by the compact ker-
nels Ĝ∗ℓ(i, j). In Figure 4(e), we show that applying our kernel
iteratively on the residual (Section 4.3) results in an algorithm
that outperforms state-of-the-art solvers.

Additional examples for a grid resolution of 257× 257 nodes
are shown in Figure 5. The MGPCG solver (top row) outper-
forms our model for the simplest case of boundary conditions
(Dirichlet exterior boundaries, no interior boundaries). How-
ever, when more complex boundaries are present (bottom row,
mixed Dirichlet and Neumann exterior and interior boundaries),
our model starts to outperform all classical solvers. We chose
two different types of randomly generated right-hand side vec-
tors on the top and bottom rows to showcase that, once opti-
mized, our Green’s function representation is oblivious to the
right-hand side function. Distinct functions do not influence
the convergence curves shown on the right, and additional ex-
amples are demonstrated in the supplemental material. We also
compare the wall-clock time across resolutions for different
solvers in Table 2. Although our method saves only about 2×
the number of multiply-add operations compared to MGPCG,
its intrinsic parallel nature enables it to reach a speedup of up
to 12× at all resolutions.

Table 2. Runtime comparison of our method with CG and MGPCG solvers
for different grid resolutions. All methods are set to stop at a residual of
5 × 10−4 in L1 norm. We run all experiments on a NVIDIA GeForce RTX
2080Ti GPU.

Solver 33 × 33 65 × 65 129 × 129 257 × 257
CG [ms] 90 189 390 708

MGPCG [ms] 128 197 299 425
Ours [ms] 13 16 26 33

5.3. Predicting Green’s Function for Various Boundary Ge-
ometries

We further evaluate the performance of MLPs to predict
Green’s function kernels based on general boundary conditions
of arbitrary scenes. Note that the training does not rely on ei-
ther the solution or the right-hand-side vectors. It only requires
SDF values for all levels and the corresponding discrete Lapla-
cian operator (ϕ1, . . . , ϕL,A).

Dataset generation. We randomly place spheres and rectan-
gles of random sizes into the scene to represent interior Neu-
mann boundaries. Spheres and rectangles keep canonical ori-
entations for simplicity, but are allowed to overlap in order to
create more complex shapes. SDF values are computed at dif-
ferent discretization levels from the parameters of the spheres
and rectangles to obtain ϕ1, . . . , ϕL. The voxelized obstacle set-
ting and its corresponding discrete Laplacian A are computed

8 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

Fig. 4. We compare our truncated Green’s function kernels (b) with the ground-truth (c). Both approaches are shown in the colored-line squares, the
values outside them are zero paddings. A 33 × 33 regular grid is used (obstacles shown in (a)), and two kernels are extracted at the third level ℓ = 3 (out of
4), at positions (i, j) = (8, 8) (top), and (11, 3) (bottom). In particular, our (5 × 5) convolution kernel (b) is compared to the (33 × 33) ground truth kernel (c)
and the difference is shown in (d). Note that the error is only about 1 − 3%, showing that most of the dominant values in the dense G∗

ℓ
can be captured by

the compact kernels. (e) shows our approximated residual Green’s function can be used iteratively to solve the Poisson equation and outperforms classical
solvers in terms of multiply-add operations.

Fig. 5. Solving the Poisson Equation using multi-level Green’s function optimized on single scenes in a resolution of 257× 257. The scene in the top row has
Dirichlet exterior boundaries and no interior boundaries. The scene in the bottom row has Dirichlet exterior boundary on the left side of the scene and
Neumann exterior boundary on the other sides. The interior objects shown in white all have Neumann boundaries. Our method is inferior to MGPCG for
the simplest case (top row), but outperforms all competing solvers when more complex boundary conditions exist (bottom row).

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 9

Fig. 6. Boundary condition samples from the training dataset. The top
row shows the SDF (plotted in BrBG colormap: brown color for negative
values, white color for zero and aqua for positive values) of the objects
representing interior boundaries. The bottom row shows the correspond-
ing binary map of the solution region (black) and out-of-boundary region
(white). The left exterior boundary of the scene is assumed to be Dirichlet
boundary, while the right, top and bottom exterior boundary are assumed
to be Neumann.

at the finest discretization level. The discrete Laplacian is not
stored for coarser levels, instead, they are downsampled relative
to the finest resolution on the fly during training. We generate
1,000 scenes for the dataset (see examples in Figure 6), but the
number of training samples is larger as we randomly select local
patches. Moreover, 10 scenes are generated in a similar fash-
ion (randomly placing spheres and rectangles) for creating the
testing dataset. This means that none of the test sampeles is
seen during training. The left side of the exterior boundary of
all scenes is assumed to be Dirichlet while the other sides are
assumed to be Neumann.

Predicting on new boundary settings. We train MLPs for
grids with 129 × 129 nodes and show test results evaluated by
solving Poisson equations in Figure 7 (a,b). Similar to the op-
timization results in Figure 5, the Green’s kernel produced by
the MLPs can outperform classical solvers in terms of residual
convergence.

Fine tuning model output. Most of the test examples perform
similarly well as in Figure 7 (a,b) For some examples with more
complex interior boundary geometry though, inaccurate kernel
predictions can result in slow convergence or even divergence
of the residual, as is shown in Row (c) of Figure 7. The pre-
dicted kernels are suitable approximations in most of the re-
gions, except the few grid points next to the interior Neumann
boundaries. To fix this issue, we run a post-processing step on
the failure cases. We solve the optimization in Equation (15)
with the predicted Green’s function kernels from MLPs as a
starting value. The results of the fixed kernels are shown in Row
(d) of Figure 7. The initialization reduces the number of iter-
ation needed for the optimizations from 20 to 10, and reduces
the runtime of optimization from ∼ 35 s to ∼ 13 s.

Ablation tests. To evaluate the results variation over multiple
training runs, we train the model with different random seeds
for initialization (Figure 8 (b, d)). Both seeds used for initial-
ization show similar results in terms of both accuracy and con-
vergence (Figure 8 (e)). We also tried using spatial gradients
of the SDF patch as extra input channels (Figure 8 (c)). The
plot (e) shows that incorporating the spatial gradient results in a

slightly inferior convergence rate. As the spatial gradient is in-
herently contained in the input SDF patch, we argue that using
it as extra channels is redundant.

5.4. An Example Application

Our multi-level Green’s function can be used to replace clas-
sical solvers for Poisson Equations. We showcase an applica-
tion to a fluid (smoke) simulation in Figure 9, where a Poisson
solver is necessary at the pressure projection step [30]. In par-
ticular, the pressure projection equation is

∇2 p(x) = ρ
∆t∇ · u(x), x ∈ Ω,

∂p(x)
∂n = 0, x ∈ ∂ΩN ,

p(x) = 0, x ∈ ∂ΩD,
(17)

where ∂ΩN and ∂ΩD are fluid-solid and fluid-air interfaces, re-
spectively. This step is the computational bottleneck in fluid
solvers; therefore, it is crucial that its solution is computed ef-
ficiently. We restrict our study to a 2-D, 257 × 257 scene, with
solid obstacles as shown in the top-left inset images in the Fig-
ure. The multi-level Green’s function approximations are ob-
tained by optimizing kernels for this single scene. We compare
our results for several frames (top), to a MGPCG solver (bot-
tom). Both solvers are set to stop at residual tolerance of 10−4

in L∞ norm. The resulting density field of the smoke are sim-
ilar between the two solvers. The simulation takes 104 ms per
frame when using our Multi-level Green’s function, and takes
576 ms per frame when using MGPCG solver.

6. Conclusions and Discussions

A multi-level Green’s functions for 2-D Poisson Equations
was presented as an alternative representation to standard
SPAIs. Our novel optimization scheme is level-independent,
which makes its evaluation efficient and memory-bound. More-
over, we show that our representation can be used to solve the
discrete linear system by iteratively applying it on the residual
of the error.

The locality property of the Laplace operator – its evalua-
tion only depends on the neighborhood of the evaluated posi-
tion – is the key for our method’s efficiency. The Green’s func-
tion, on the other hand, exhibits a sparsity pattern in the fre-
quency domain: the low-frequency global information is crucial
to reconstruct the solution of the current position, while mag-
nitudes of high-frequencies are often small (Figure 1). Our de-
signed multi-level Green’s function approximation takes advan-
tage of this property by representing low-frequency information
through coarser grids, while high-frequency information is lo-
calized in finer grids. Therefore, our method can potentially be
applied to other types of elliptical PDE as the differential oper-
ators are typically local.

By taking advantage that Green’s function of the Poisson
Equations only depends on the boundary conditions, we show
that neural networks can be trained to Green’s functions for gen-
eral boundary settings. Once trained or optimized, our model
can surpass state-of-the-art linear system solvers for certain set-
tings in terms of convergence rate and runtime. Lastly, tested

10 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

(a)

(b)

(c)

(d)

Fig. 7. Solving a Poisson Equation using the multi-level Green’s function obtained by inferring the MLP. All scenes have Dirichlet exterior boundary on
the left side of the scene and Neumann exterior boundary on the other sides. The interior objects (in white) are modelled by Neumann conditions. Rows
(a) and (b): Multi-level Green’s function outperforms other competing solvers in terms of residual convergence. Row (c) shows a divergent result due an
inaccurate kernel prediction for a position that is simultaneously close to two objects (inset image). After post-processing problematic kernels through
optimization (Row (d)), our method outperforms other solvers.

Right-hand Side 𝑓𝑓Seed-0 �𝑢𝑢 Seed-0 Residual

Seed-10 �𝑢𝑢 Seed-10 Residual

Ours �𝑢𝑢 Ours Residual

w/ Grad. Input Residualw/ Grad. Input �𝑢𝑢

Ground-truth Solution 𝑢𝑢

(a) (b)

(c) (d) (e)

Fig. 8. Ablation study for evaluating initialization seeds and SDF gradients as local features. The MLP is trained with different random initialization
seeds (b, d). To evaluate alternative local features, the spatial gradients of SDF values are used as extra input channels (c). All three variations show
similar/inferior results and convergence (e) to our original model (a).

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 11

Fig. 9. Using the multi-level Green’s function (a) and a MGPCG solver (b) to solve the projection step of a fluid solver with a grid resolution 257× 257. The
Neumann interior boundary settings and the SDF of the interior objects are shown as inset images in (a) and (b) respectively. The left exterior boundary is
set to be Dirichlet while the other sides are set to be Neumann. The residual tolerance is set to be 10−4 in L∞ norm for both solvers. The simulation takes
104 [ms] per frame using multi-level Green’s function, and takes 576 [ms] per frame using MGPCG solver. Both wall clock time count exclude initialization
and optimization time.

Fig. 10. We compare our truncated Green’s function kernels (b) with the ground truth (c). We use a 33 × 33 scene with 4 levels (obstacles shown in (a)),
and extract two kernels, at positions (i, j) = (10, 9) (level ℓ = 3, top), and (4, 23) (level ℓ = 4, bottom). In particular, our (5 × 5) convolution kernel (b) is
compared to the (33 × 33) ground truth kernel (c) and the difference is shown in (d). (e) shows our approximated residual Green’s function can be used
iteratively to solve the Poisson equation and outperforms classical solvers in terms of multiply-add operations.

Fig. 11. Solving Poisson Equations using multi-level Green’s function from the MLP output. The MLP is tested on an unseen triangular shape from
training. The model performance is inferior to those in Figure 7.

12 J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023)

our Green’s function representation to replace pressure solvers
in fluid simulation, and achieve a speedup of ∼ 5x compared to
state of the art classical solvers.

The up-front cost to get our approximated multi-level
Green’s function can pay offwhen the system is solved for mul-
tiple different right-hand sides (single scene optimization). Ex-
amples of such applications include Poisson matting [35], in
which a Poisson equation of different right-hand side is solved
in each iteration; Poisson image editing [36], where the bound-
ary condition changes when a different region of blending is se-
lected; grid-based fluid simulations [30], as the right-hand side
computed from the advected velocity change at each time step.

6.1. Limitations

Inaccurate MLP kernel predictions. As shown in Figure
7 (c), our trained model underperforms on some individual
patches around solid obstacles. This small potion of inaccurate
kernels can result in slow convergence or even divergence if the
SPD property is locally violated. We suspect that this behav-
ior might come from SDF patches that are not well represented
on the original dataset and the limited capability of the simple
MLPs architectures employed. Therefore an improved network
design and better sampling of the input examples during train-
ing may relieve this issue. Furthermore, when testing our model
on scenes with unseen shapes (e.g., triangles) representing inte-
rior Neumann boundaries, our model also demonstrates inferior
performance (Figure 11). We notice, however, that our method
can be further fine-tuned for these scenarios by performing ad-
ditional optimization iterations through Equation (15) (Figure 7
(d)).

Kernels without compact support. We found in experiments
that ground-truth residual Green’s kernels G∗ℓ(i, j) can have a
non-compact support in some cases, as shown in Figure 10.
The Figure shows the comparison of the approximated resid-
ual Green’s kernel Ĝ∗ℓ(i, j) (b) and G∗ℓ(i, j) (c), computed simi-
larly as in Figure 4), at different spatial locations ((10, 9), top)
and ((4, 23), bottom) for levels ℓ = 3 and ℓ = 4 respectively.
The absolute difference between G∗ℓ(i, j) and Ĝ∗ℓ(i, j) is shown
on the right. Compared to the kernels in Figure 4, ground-truth
kernels in this example have more values outside the compact
range defined. However, our approximated kernels can still per-
form well when evaluating its convergence of solving Poisson
Equations (Figure 10 (e)). We suspect the non-compact kernels
may have a larger effect on the convergence rate in higher reso-
lutions, and additional experiments for fine-tuning and ablation
are needed.

6.2. Future Work

We plan to extend our work to support higher resolutions
and 3-D settings. Moreover, our method could be applied to
handle Poisson equations on arbitrary meshes, which would re-
quire more sophisticated numerical methods and efficient im-
plementation of the downsampling and upsampling operators.
Lastly, our method could offer significant speed-ups when deal-
ing with varying boundaries (moving solids or liquids simula-
tions). These scenarios were not explored in this paper; how-
ever, we believe that the method can be extended to handle such

cases, as long as the training dataset represents moving bound-
aries accurately. These extensions would greatly increase the
application of the proposed approach, since solving the Poisson
equation is a widely pervasive problem.

References

[1] LeVeque, RJ. Finite difference methods for ordinary and partial differen-
tial equations: steady-state and time-dependent problems. SIAM; 2007.

[2] Alkhalifah, T, Song, C, bin Waheed, U. Machine learned Green’s
functions that approximately satisfy the wave equation 2020;:2638–
2642doi:10.1190/segam2020-3421468.1.

[3] Raissi, M, Perdikaris, P, Karniadakis, GE. Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics 2019;378:686–707. URL: https://doi.org/
10.1016/j.jcp.2018.10.045. doi:10.1016/j.jcp.2018.10.045.

[4] Ichimura, T, Fujita, K, Hori, M, Maddegedara, L, Ueda, N, Kikuchi,
Y. A Fast Scalable Iterative Implicit Solver with Green’s function-
based Neural Networks 2020;:61–68doi:10.1109/ScalA51936.2020.
00013.

[5] Li, Z, Kovachki, N, Azizzadenesheli, K, Liu, B, Bhattacharya, K, Stu-
art, A, et al. Multipole Graph Neural Operator for Parametric Partial Dif-
ferential Equations 2020;URL: http://arxiv.org/abs/2006.09535.
arXiv:2006.09535.

[6] Li, Z, Kovachki, N, Azizzadenesheli, K, Liu, B, Bhattacharya, K,
Stuart, A, et al. Fourier Neural Operator for Parametric Partial Dif-
ferential Equations 2020;URL: http://arxiv.org/abs/2010.08895.
arXiv:2010.08895.

[7] Li, Z, Kovachki, N, Azizzadenesheli, K, Liu, B, Bhattacharya, K,
Stuart, A, et al. Neural Operator: Graph Kernel Network for Partial Dif-
ferential Equations 2020;URL: http://arxiv.org/abs/2003.03485.
arXiv:2003.03485.

[8] Feliu-Faba, J, Fan, Y, Ying, L. Meta-learning Pseudo-differential Opera-
tors with Deep Neural Networks 2019;URL: http://arxiv.org/abs/
1906.06782http://dx.doi.org/10.1016/j.jcp.2020.109309.
doi:10.1016/j.jcp.2020.109309. arXiv:1906.06782.

[9] Gin, CR, Shea, DE, Brunton, SL, Kutz, JN. Deepgreen: deep learning
of green’s functions for nonlinear boundary value problems. Scientific
reports 2021;11(1):1–14.

[10] Chung, , Yau, ST. Discrete Green ’ s theorem. Context 2000;(1):2–5.
[11] Frasca, M, Khurshudyan, AZ. General representation of nonlinear

Green’s function for second order differential equations nonlinear in the
first derivative. arXiv 2018;:1–15arXiv:1806.00274.

[12] Kondor, R, Teneva, N, Garg, V. Multiresolution Matrix Factorization.
In: Xing, EP, Jebara, T, editors. Proceedings of the 31st International
Conference on Machine Learning; vol. 32 of Proceedings of Machine
Learning Research. Bejing, China: PMLR; 2014, p. 1620–1628. URL:
https://proceedings.mlr.press/v32/kondor14.html.

[13] Ithapu, VK, Kondor, R, Johnson, SC, Singh, V. The Incremen-
tal Multiresolution Matrix Factorization Algorithm 2017;URL: http:
//arxiv.org/abs/1705.05804. arXiv:1705.05804.

[14] Mudrakarta, PK, Kondor, R. A generic multiresolution preconditioner
for sparse symmetric systems. 2017. arXiv:1707.02054.

[15] Mallat, S. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 1989;11(7):674–693. URL: http://ieeexplore.ieee.org/
document/192463/. doi:10.1109/34.192463.

[16] Coifman, RR, Maggioni, M. Diffusion wavelets. Applied and
Computational Harmonic Analysis 2006;21(1):53–94. URL: https://
linkinghub.elsevier.com/retrieve/pii/S106352030600056X.
doi:10.1016/j.acha.2006.04.004.

[17] Chan, TF, Tang, WP, Wan, WL. Wavelet sparse approximate inverse pre-
conditioners. BIT Numerical Mathematics 1997;37(3):644–660. URL:
http://link.springer.com/10.1007/BF02510244. doi:10.1007/
BF02510244.

[18] Benzi, M, Meyer, CD, Tůma, M. A Sparse Approximate In-
verse Preconditioner for the Conjugate Gradient Method. SIAM
Journal on Scientific Computing 1996;17(5):1135–1149. URL:
http://epubs.siam.org/doi/10.1137/S1064827594271421.
doi:10.1137/S1064827594271421.

http://dx.doi.org/10.1190/segam2020-3421468.1
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1109/ScalA51936.2020.00013
http://dx.doi.org/10.1109/ScalA51936.2020.00013
http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2006.09535
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/1906.06782 http://dx.doi.org/10.1016/j.jcp.2020.109309
http://arxiv.org/abs/1906.06782 http://dx.doi.org/10.1016/j.jcp.2020.109309
http://dx.doi.org/10.1016/j.jcp.2020.109309
http://arxiv.org/abs/1906.06782
http://arxiv.org/abs/1806.00274
https://proceedings.mlr.press/v32/kondor14.html
http://arxiv.org/abs/1705.05804
http://arxiv.org/abs/1705.05804
http://arxiv.org/abs/1705.05804
http://arxiv.org/abs/1707.02054
http://ieeexplore.ieee.org/document/192463/
http://ieeexplore.ieee.org/document/192463/
http://dx.doi.org/10.1109/34.192463
https://linkinghub.elsevier.com/retrieve/pii/S106352030600056X
https://linkinghub.elsevier.com/retrieve/pii/S106352030600056X
http://dx.doi.org/10.1016/j.acha.2006.04.004
http://link.springer.com/10.1007/BF02510244
http://dx.doi.org/10.1007/BF02510244
http://dx.doi.org/10.1007/BF02510244
http://epubs.siam.org/doi/10.1137/S1064827594271421
http://dx.doi.org/10.1137/S1064827594271421

J. Tang, V. C. Azevedo, G. Cordonnier, B. Solenthaler /Computers & Graphics (2023) 13

[19] Benzi, M, Cullum, JK, Tuma, M. Robust Approximate In-
verse Preconditioning for the Conjugate Gradient Method. SIAM
Journal on Scientific Computing 2000;22(4):1318–1332. URL:
http://epubs.siam.org/doi/10.1137/S1064827599356900.
doi:10.1137/S1064827599356900.

[20] Bridson, R, Tang, WP. Multiresolution Approximate In-
verse Preconditioners. SIAM Journal on Scientific Computing
2001;23(2):463–479. URL: http://epubs.siam.org/doi/10.1137/
S1064827500373784. doi:10.1137/S1064827500373784.

[21] Tang, WP, Wan, WL. Sparse Approximate Inverse Smoother
for Multigrid. SIAM Journal on Matrix Analysis and Applications
2000;21(4):1236–1252. URL: http://epubs.siam.org/doi/10.

1137/S0895479899339342. doi:10.1137/S0895479899339342.
[22] Bröker, O. Sparse approximate inverse smoothers for geometric and

algebraic multigrid. Applied Numerical Mathematics 2002;41(1):61–
80. URL: https://linkinghub.elsevier.com/retrieve/pii/

S0168927401001106. doi:10.1016/S0168-9274(01)00110-6.
[23] Barati Farimani, A, Gomes, J, Pande, VS. Deep Learning the Physics

of Transport Phenomena. arXiv 2017;94305. arXiv:1709.02432.
[24] Sharma, R, Farimani, AB, Gomes, J, Eastman, P, Pande, V. Weakly-

supervised deep learning of heat transport via physics informed loss.
arXiv 2018;arXiv:1807.11374.

[25] Tompson, J, Schlachter, K, Sprechmann, P, Perlin, K.
Accelerating Eulerian Fluid Simulation With Convolutional Net-
works 2016;URL: http://arxiv.org/abs/1607.03597. doi:10.
1145/1143844.1143891. arXiv:1607.03597.

[26] Xiao, X, Zhou, Y, Wang, H, Yang, X. A Novel CNN-Based Pois-
son Solver for Fluid Simulation. IEEE Transactions on Visualization and
Computer Graphics 2020;26(3):1454–1465. doi:10.1109/TVCG.2018.
2873375.

[27] Tang, W, Shan, T, Dang, X, Li, M, Yang, F, Xu, S, et al. Study
on a Poisson’s equation solver based on deep learning technique. 2017
IEEE Electrical Design of Advanced Packaging and Systems Sympo-
sium, EDAPS 2017 2018;2018-Janua:1–3. doi:10.1109/EDAPS.2017.
8277017. arXiv:1712.05559.

[28] Zhang, Z, Zhang, L, Sun, Z, Erickson, N, From, R, Fan, J. Solv-
ing poisson’s equation using deep learning in particle simulation of PN
junction. arXiv 2018;:2019–2022.

[29] Hsieh, JT, Zhao, S, Eismann, S, Mirabella, L, Ermon, S. Learning
neural pde solvers with convergence guarantees. arXiv 2019;(i):1–14.
arXiv:1906.01200.

[30] Stam, J. Stable fluids. Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 1999
1999;:121–128doi:10.1145/311535.311548.

[31] McAdams, A, Sifakis, E, Teran, J. A parallel multigrid
Poisson solver for fluids simulation on large grids. Eurographics/
ACM SIGGRAPH Symposium on Computer Animation 2010;:10URL:
https://dl.acm.org/citation.cfm?id=1921438. doi:10.2312/
SCA/SCA10/065-073.

[32] Mildenhall, B, Srinivasan, PP, Tancik, M, Barron, JT, Ramamoor-
thi, R, Ng, R. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis 2020;URL: http://arxiv.org/abs/2003.08934.
arXiv:2003.08934.

[33] Perlin, K. Image Synthesizer. Computer Graphics (ACM)
1985;19(3):287–296. doi:10.1145/325165.325247.

[34] Paszke, A, Gross, S, Massa, F, Lerer, A, Bradbury, J, Chanan, G, et al.
PyTorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems 2019;32(NeurIPS).
arXiv:1912.01703.

[35] Sun, J, Jia, J, Tang, CK, Shum, HY. Poisson matting. In: ACM
SIGGRAPH 2004 Papers. 2004, p. 315–321.

[36] Pérez, P, Gangnet, M, Blake, A. Poisson image editing. ACM Transac-
tions on Graphics 2003;22(3):313–318. URL: https://dl.acm.org/
doi/10.1145/882262.882269. doi:10.1145/882262.882269.

http://epubs.siam.org/doi/10.1137/S1064827599356900
http://dx.doi.org/10.1137/S1064827599356900
http://epubs.siam.org/doi/10.1137/S1064827500373784
http://epubs.siam.org/doi/10.1137/S1064827500373784
http://dx.doi.org/10.1137/S1064827500373784
http://epubs.siam.org/doi/10.1137/S0895479899339342
http://epubs.siam.org/doi/10.1137/S0895479899339342
http://dx.doi.org/10.1137/S0895479899339342
https://linkinghub.elsevier.com/retrieve/pii/S0168927401001106
https://linkinghub.elsevier.com/retrieve/pii/S0168927401001106
http://dx.doi.org/10.1016/S0168-9274(01)00110-6
http://arxiv.org/abs/1709.02432
http://arxiv.org/abs/1807.11374
http://arxiv.org/abs/1607.03597
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1145/1143844.1143891
http://arxiv.org/abs/1607.03597
http://dx.doi.org/10.1109/TVCG.2018.2873375
http://dx.doi.org/10.1109/TVCG.2018.2873375
http://dx.doi.org/10.1109/EDAPS.2017.8277017
http://dx.doi.org/10.1109/EDAPS.2017.8277017
http://arxiv.org/abs/1712.05559
http://arxiv.org/abs/1906.01200
http://dx.doi.org/10.1145/311535.311548
https://dl.acm.org/citation.cfm?id=1921438
http://dx.doi.org/10.2312/SCA/SCA10/065-073
http://dx.doi.org/10.2312/SCA/SCA10/065-073
http://arxiv.org/abs/2003.08934
http://arxiv.org/abs/2003.08934
http://dx.doi.org/10.1145/325165.325247
http://arxiv.org/abs/1912.01703
https://dl.acm.org/doi/10.1145/882262.882269
https://dl.acm.org/doi/10.1145/882262.882269
http://dx.doi.org/10.1145/882262.882269

	Introduction
	Related Works
	Background
	Linear Partial Differential Equations
	Green's Function
	The Discretized Setting

	Neural Green's Function For Laplacian Systems
	A Multi-level Green's Function Representation
	Enforcing Sparsity
	Solving the Poisson System Iteratively
	Learning Green's Functions

	Experiments and Results
	Implementation Details
	Representing Green's Function for a Single Scene
	Predicting Green's Function for Various Boundary Geometries
	An Example Application

	Conclusions and Discussions
	Limitations
	Future Work

