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Figure 1: We investigate the design space of scene-specific neural renderers that take environment map lighting and G-buffer pixels as input.
We show that architectures based on design principles from the PRT literature can greatly improve quality at no extra cost.

Abstract
Recent advances in neural rendering indicate immense promise for architectures that learn light transport, allowing efficient
rendering of global illumination effects once such methods are trained. The training phase of these methods can be seen as
a form of pre-computation, which has a long standing history in Computer Graphics. In particular, Pre-computed Radiance
Transfer (PRT) achieves real-time rendering by freezing some variables of the scene (geometry, materials) and encoding the
distribution of others, allowing interactive rendering at runtime. We adopt the same configuration as PRT – global illumination
of static scenes under dynamic environment lighting – and investigate different neural network architectures, inspired by the
design principles and theoretical analysis of PRT. We introduce four different architectures, and show that those based on
knowledge of light transport models and PRT-inspired principles improve the quality of global illumination predictions at equal
training time and network size, without the need for high-end ray-tracing hardware.

1. Introduction

Real-time global illumination has always been one of the major
challenges of Computer Graphics. Recent progress in ray-tracing
hardware [Bur20, NVI18] brings this goal closer, but at the cost
of expensive, high-end ray-tracing GPUs, used for direct, exhaus-
tive computation of path tracing. The history of global illumina-
tion research includes solutions that leverage pre-computation of
light transport to offer fast rendering at run-time [RDGK12]. In-
terestingly, deep learning provides an analogue for neural ren-
dering where precomputation – in the form of training – can
be used to create neural representations for global illumination
[NAM∗17, ERB∗18, GRPN20]. In this paper, we build on this
similarity to propose several neural rendering methods (shown in
Fig. 2), inspired by insights drawn from the extensive literature in
traditional pre-computed global illumination.

Concerning traditional methods, we focus on Pre-computed Ra-
diance Transfer (PRT) that makes certain aspects of the scene
static – such as geometry and materials – and pre-computes rep-
resentative configurations of the dynamic variables, such as cam-
era and lighting. At run-time, the pre-computed data is efficiently
de-compressed and interpolated. On the other hand, neural net-
works have demonstrated their ability to encode radiance distribu-
tions [BMSR20, MST∗20], and to efficiently compress and inter-
polate reflectance data [RJGW19]. In both cases, pre-computation
allows the light transport to be captured and represented in a com-
pact data structure for fast evaluation at run-time.

Neural rendering techniques are rapidly offering exciting and
very competitive solutions for traditional rendering, e.g., for in-
direct lighting [MRNK21] or complex luminaires [ZBX∗21]. We
claim it is important to exploit the extensive knowledge developed
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by graphics research in the past 50 years when designing such neu-
ral rendering algorithms. We demonstrate this idea by exploring
the application of neural networks to encode radiance in a static
synthetic scene under dynamic illumination, inspired by PRT prin-
ciples. The different design choices we present are guided by the
well-established theory and practice of traditional PRT methods
and allow us to inject physically-based inductive biases that im-
prove the quality of the predictions.

We start by demonstrating the capacity of a small neural network
to store and reproduce full global illumination of a medium-sized
scene with various materials under dynamic environment illumina-
tion at interactive framerates. This neural architecture takes as in-
put a series of G-buffers representing scene attributes from the cur-
rent viewpoint, along with a target environment map, and processes
each pixel independently to produce a shaded image. While this
baseline shows promise, it has objectionable visual artifacts. In-
spired by the theoretical analysis and the design principles of PRT,
we explore three additional neural network architectures. Each al-
ternative improves the fidelity of the run-time renderings, without
additional memory cost. Our comparisons and results show that
high visual quality can be achieved compared to alternative solu-
tions, with lower memory requirements and without the need for
high-end ray-tracing hardware.

2. Related Work

Our work builds on two very large domains: global illumination
and neural rendering. We will thus limit our discussion of previ-
ous work to the most closely related literature. Our work targets
rendering of synthetic data, where the full scene description – ge-
ometry, materials and lights – has been perfectly constructed, typi-
cally by an artist. Nonetheless, we have also been inspired by neu-
ral rendering methods originally developed for the acquisition and
re-rendering of real-world data.

2.1. Neural Rendering for Real-world Data

Neural Rendering is a recent field that has seen an explosion in re-
search output; a good survey is provided by Tewari et al. [TFT∗20].
Techniques used for free-view synthesis, relighting and material
representation have all provided methodologies inspiring our work.

Free view synthesis. Early work used appearance flow [ZTS∗16],
and later multi-plane image representations (e.g., [ZTF∗18,
MSOC∗19]), that use Convolutional Neural Networks (CNNs) to
synthesize novel views using a set of photos of a scene as input.
Other approaches use 3D mesh proxies to learn features in texture
space [TZN19] with impressive results. Recently Neural Radiance
Fields (NeRF) [MST∗20] represent a 3D scene using a Multi-Layer
Perceptron (MLP) to store opacity (as a proxy for geometry) and
view-dependent color. While all these methods target real-world
data rather than our synthetic scenes, we also use CNNs and MLPs
to represent different components of light transport, allowing real-
istic rendering.

Free viewpoint relighting. Real-world scenes built from pho-
tographs are “stuck” with the lighting conditions at the time of cap-

ture. Focusing on isolated objects, several methods attempt to re-
light captured scenes using neural networks, taking multiple flash-
lit photos as input to directly learn lighting [GCD∗20], or to ex-
plicitly reconstruct geometry, materials and lighting [ZLW∗21].
Recent variants of MLP-based NeRF also attempt to learn ei-
ther intermediate representations (NeRV [SDZ∗21], Neural Re-
flectance Fields [BXS∗20]) or explicit BRDFs (NeRD [BBJ∗21],
NeRFactor [ZSD∗21]) for relighting. G-buffers, and in particular
reflected directions have recently been used to help neural relight-
ing [PMGD21]. Some solutions operate with point or directional
lights [ZFT∗21], and deal with environment lighting by generating
a sequence of one light at a time renderings, often using complex
light-stage [DHT∗] setups for capture [PEL∗21]. The main empha-
sis of these methods is inverse rendering to recover a representation
enabling relighting from real-world data; the use of MLPs and G-
buffers to encode scene properties for re-lighting share some simi-
larities to our approach.

Materials. The use of neural networks to represent materials has
received significant interest recently both for BRDFs [SRRW21]
and for neural BTFs [RJGW19, RGJW20]. While focusing on cap-
turing appearance, these methods provide interesting guidelines on
representing materials even in the case of synthetic data.

2.2. Neural Rendering for Synthetic Data

Traditional rendering with synthetic data can also benefit from the
use of neural networks and representations. The methodology is
similar to the case of real-world data, as neural networks are also
trained to encode distributions in a compact manner, but the input
is produced by explicit analytic models rather than measurement
devices. Geometry, materials and shading have all recently bene-
fited from such neural representations to encode data that is costly
to compute, allowing fast evaluation at run-time.

Geometry and Materials. Signed-distance fields (SDFs) are a
popular continuous representation of geometry; neural represen-
tations achieve impressive levels of accuracy [PFS∗19]. Different
encodings such as SIREN [SMB∗20] or ACORN [MLL∗21] fur-
ther improve the compactness and/or accuracy of such represen-
tations. The recent Neural Luminaires method goes further, and
uses an MLP to represent both the geometry and the emission of
complex spatial lighting [ZBX∗21]. Neural methods have success-
fully encoded materials at the BRDF level (e.g., Deep appearance
maps [MRLTF19]), or with generative models for normal distri-
bution functions [KHX∗19]. Recent solutions include multi-scale
neural representation of BTFs [KMX∗21] and the use of NeRF-like
MLPs to encode and render volumetric textures [BGP∗21].

In contrast to these approaches, we use traditional representa-
tions of geometry and materials to generate G-buffers, and focus
on encoding light transport to turn these buffers into a shaded im-
age with global illumination.

Rendering/Shading. In their pionneering work, Ren et
al. [RWG∗13] express indirect illumination from point lights
using so-called radiance regression functions, represented as
multiple small neural networks distributed over the scene. Deep
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shading [NAM∗17] presented the first complete neural renderer,
which demonstrated that a neural network can learn various visual
effects such as depth of field, indirect illumination etc. In a similar
spirit, Eslami et al. [ERB∗18] used a neural network to represent
the radiance function over a class of scenes. In follow-up work,
Granskog et al. [GRPN20] investigate disentangling lighting and
geometry. The Neural Radiance Cache learns indirect illumination
online, in the context of real-time path tracing [MRNK21], while
Neural Radiosity trains a network to learn both sides of the
rendering equation [HCZ21]. Neural methods have also been used
extensively to denoise path-traced images [HY21].

These methods show how the power of neural networks can be
used to improve or replace parts of the rendering pipeline. Our
starting point is in a similar spirit, since our baseline approach is
a radiance-regressing network, i.e., a neural network that is trained
to directly output radiance from G-buffers.

2.3. Traditional PRT

Many neural rendering approaches share an expensive pre-
processing step: a large amount of data is either captured from a
real world scene or generated from a synthetic scene description,
then used to train a network. In many cases, the goal of the neu-
ral network is not to generalize to new scenes but rather to encode
scene-specific information, effectively offering a compressed rep-
resentation of the input data. One of our key observations is the
similarity of this process to Precomputed Radiance Transfer, which
leverages scene-specific pre-processing to allow real-time run-time
rendering. A complete overview of PRT and other methods for fast
GI is given in the STAR report by Ritschel et al. [RDGK12]; we
only cover the most relevant work here.

PRT was introduced by Sloan et al [SKS02]. The key idea is to
choose an angular basis of continuous functions – Spherical Har-
monics (SH) in this case – and to perform all light transport oper-
ations in that domain. In a preprocess, transfer matrices, which en-
code the transformation from distant light to local incoming light
in basis coordinates, are computed at every scene vertex and stored.
The massive data is then compressed using a variation of PCA. At
run-time, the environment lighting and the materials are projected
into SH, and all light transport is computed trivially via matrix mul-
tiplications in the SH domain.

The choice of angular basis is central in PRT and many op-
tions have been proposed. Spherical Harmonics are limited in
terms of high frequencies, unlike Haar wavelets used by Ng et
al [NRH04]. Tsai and Shih introduce spherical radial basis func-
tions [TS06] which are a more general form of Spherical Gaus-
sians [GKMD, WRG∗09]. The exploration of bases culminated in
Anisotropic Spherical Gaussians [XSD∗13] which offer the most
flexibility and expressiveness. Our PRT-inspired neural renderers
can be seen as learning an implicit basis, which improves quality
through scene-specific learning.

PRT is a generic framework that offers not only a lot of freedom
in the choice of angular basis, but also in the content that is precom-
puted and the type of scenes that are modelled. Early work focused
on reducing the storage of precomputed data [SHHS03], dynamic
geometry [SLS05, PWXLPB07], dynamic materials [SZC∗07],

one-bounce interreflections [XCM∗14] and recently near-field il-
lumination [WR18, WCZR20].

In contrast to the majority of PRT methods that focus on direct
lighting/shadowing, our neural approach models all light transport
effects, i.e., full global illumination.

2.4. Neural Methods and PRT

The last few years have seen interest in using Deep Learning tools
within traditional PRT frameworks. Ren et al. [RDL∗15] use neu-
ral networks to learn and compress the light transport matrix as a
function of light position and pixel coordinates, for a static view-
point. Xu et al. [XSHR18] generalize this method across scenes
with a deep convolutional neural network. Li et al. [LWM19] use a
CNN to predict PRT-SH coefficients of a deformable object within
an animation, simplifying precomputation. Similarly, Currius et
al. [CDAS20] use a CNN to predict Spherical Gaussian coeffi-
cients of the transfer matrices, which works more coherently and
robustly than other optimisation methods. More explicitly, Jiang
and Kainz [JK21] use a CNN to upsample maps of incident radi-
ance computed at the first intersection, to regularize local incoming
lighting. In contrast, we develop a pure neural rendering method
(no path tracing needed) inspired by PRT.

More recently, ideas from PRT have been used in the context of
neural rendering. In the Plenoctrees method, Spherical Harmonics
are used to encode the directional information of NeRF, allowing
faster rendering [YLT∗21]. PRT has been used as an efficient ren-
dering method to allow relighting of humans; a neural network first
learns to decompose a single image into albedo, illumination and
light transport [LSY∗21]. NeX [WPYS21] uses a neural basis of
angular radiance distributions, that can be seen as a form of learnt
PRT basis. Similar to those in Sec. 2.1, these methods learn light-
ing/rendering from real data, while our method operates on efficient
global illumination for synthetic scenes.

3. Overview

In the related work, we showed the immense potential of neural net-
works in the traditional rendering pipeline, and outlined the analo-
gies with PRT. Our goal is to explore the design space of neural
rendering in the same context as traditional PRT, e.g. efficient low-
cost rendering of static scenes with dynamic lighting via use of
precomputation.

We hence operate in the same setting as classic PRT: a scene with
fixed object geometries and materials, and dynamic, arbitrary envi-
ronment lighting described by environment maps. We additionally
fix the neural budget, i.e., training time and network size, and inves-
tigate architectures inspired by PRT methodology and principles.

Section 4 gives an overview of PRT principles and the traditional
PRT framework, as opposed to the Monte-Carlo sampling approach
of path tracing. Section 5 introduces our PRT-inspired architectures
and motivates the design choices via analogies with the PRT back-
ground. In Section 6, we detail the experimental setup (training and
data generation strategies) and provide technical details. Finally,
we evaluate our alternatives and compare our results to different
approaches in Section 7.
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4. Background on Precomputed Radiance Transfer

We first introduce the main concepts on light transport that form
the foundations for our neural-based PRT approaches.

4.1. Integral Formulation of Light Transport

In traditional rendering, the outgoing radiance Lo at a point x with
normal n observed by the camera in direction ωo is given by the
Rendering Equation [Kaj86]:

Lo(x,ωo) = Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,ωi)(ωi ·n)dωi (1)

where Le is the scene’s lighting, fr is the reflectance function, Li is
the incoming radiance reflected from other locations in the scene,
Ω is the hemisphere of incoming directions ωi. In path-tracing, this
integral equation is solved by Monte-Carlo aggregation of samples
(rays/paths through the scene).

We focus on scenes lit with distant environment lighting, mean-
ing the lighting only has a directional but no spatial dependency,
and is only observed in the background. For clarity, we hence re-
move the lighting term from the equation, and reveal the material
parameters (diffuse albedo kd, specular albedo ks and roughness α)
that modulate the reflectance function fr at x:

Lo(x,ωo) =
∫

Ω

fr(ωi,ωo,kd,ks,α)Li(x,ωi)(ωi ·n)dωi (2)

Diffuse-Specular Separation. The reflectance function at a given
point is often approximated as:

fr(ωi,ωo,kd,ks,α) =
kd
π

+ks
D(α)FG

4(ωi ·n)(ωo ·n)
, (3)

where the first term models diffuse reflectance, while the second
term models view-dependent specular/glossy effects. In the second
term, D, F and G respectively model the distribution of orienta-
tions of microfacets controlled by roughness α, the Fresnel factor
and the geometric term. Given this split of the reflectance function,
the outgoing radiance can be refactored as the sum of diffuse and
specular/glossy contributions, LD

o and LS
o , each weighted by their

respective albedos:

Lo(x,ωo) = kdLD
o +ksLS

o (4)

LD
o =

∫
Ω

(ωi ·n)
π

Li(x,ωi)dωi (5)

LS
o =

∫
Ω

D(α)FG
4(ωi ·n)(ωo ·n)

Li(x,ωi)(ωi ·n)dωi (6)

4.2. Matrix Formulation of Light Transport

One of the governing principles of Precomputed Radiance Transfer,
originally described in the seminal work of Sloan et al. [SKS02],
is the projection of lighting and materials into a compact, contin-
uous function space. This approach was later formalized by Lehti-
nen [Leh07] in a framework that provides an operator-driven view
of light transport, as opposed to the sample-driven view of Monte
Carlo rendering. Within this framework, the rendering equation is
expressed in abstract form as

L = E +T L, (7)

where E is the emitted radiance from light sources, L is the light
distribution in the scene, and T is the transport operator. Due to the
recursive nature of the equation, the author shows that the solution
to the global illumination problem can be written as:

L = SE (8)

where S is the solution operator. In this abstract framework, all op-
erators are infinite-dimensional. In practice, PRT methods define
angular bases of projection to reduce the problem to a linear equa-
tion. E and L are represented as vectors of coefficients in the basis
of choice, S is expressed as a matrix, and Equation 8 becomes the
matrix-vector product:

l = Se (9)

Transport vs. Transfer. Another important principle of Precom-
puted Radiance Transfer is the separation of light transport into
transfer and convolution with the reflectance function. Transfer
refers to the transformation of the spherical distribution of distant
light (the environment map) to local light Li, incoming at the given
point. This transfer contains all global illumination effects of light
transport throughout the scene. The only step left to obtain outgo-
ing radiance is the convolution of Li with the reflectance function
fr, as expressed by Equation 2. In the operator view of light trans-
port, this is equivalent to factoring out the last bounce of light in
the scene, before it hits the camera, and expressing the convolution
with the local reflection operator R:

L =RSE. (10)

The main reasoning behind this separation is to pre-compute the
costly light transfer and store it as a matrix S, and only compute
the convolution with the reflectance function at run-time, which can
be done efficiently in an appropriate angular basis. Additionally,
the pre-computed matrix only stores the transfer, which usually has
lower-frequency spatial variation than the transport, for instance in
the presence of textured objects with spatially-varying reflectance.

Diffuse-Specular Separation. Similarly to the integral formula-
tion of Equation 4, the reflection operator can be decomposed into
a diffuse and a specular term to yield:

L = (RD +RS)SE, (11)

where RD amounts to convolving the incoming lighting with a
clamped cosine lobe centered on the surface normal, while RS

corresponds to a convolution with the roughness-dependent glossy
lobe centered on the mirrored direction. Factorizing back the re-
flection into the transport operator S reveals two different types of
transport:

L = SDE +SSE. (12)

This separation allows one to treat diffuse and specular/glossy
transport separately, for instance by allocating more coefficients to
the specular term since it typically contains higher frequencies, and
by treating diffuse transport as a lower-dimensional problem as it
does not depend on the view direction [SKS02].
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Figure 2: The four network architectures we investigate. The light code is obtained from the environment map encoding CNN.

Light descriptor

Figure 3: We use a standard CNN to encode the environment map
lighting into a low-dimensional vector.

5. Method

Traditional PRT methods leverage the linearity of the projection
and the orthogonality of carefully-chosen basis functions such as
Spherical Harmonics, to achieve real-time rendering with global il-
lumination, at the cost of a loss of high-frequency content. We now
revisit PRT principles from the new perspective of neural rendering,
which allows us to define more expressive, non-linear representa-
tions of radiance and corresponding operators. We investigate the
design space of such approaches, which leads us to present four
alternatives of increasing complexity, illustrated in Figure 2.

5.1. Environment Map Encoding

The first step of most PRT methods is to project the lat-long envi-
ronment map lighting E onto an angular basis, such that the map
can be described by a low-dimensional vector e.

Instead of relying on a pre-defined angular basis, we propose
to embed the environment map into a learned compact space. We
perform this dimensionality reduction using an encoder FL, imple-
mented as a Convolutional Neural Network (CNN) that outputs a
64-dimensional descriptor, as illustrated in Figure 3:

ê = FL(E). (13)

We train this CNN encoder jointly with subsequent radiance trans-
fer operators for each scene separately, which allows the encoder
to focus its resources on the parts of the environment map that con-

tribute most to the final renderings, while ignoring parts that are
most often occluded.

5.2. Baseline Transport Operator

Given the compact lighting descriptor ê, we first define a baseline
architecture Ŝ that we train to perform the entire light transport
L = Ŝ(ê) for a given scene. We implement this transport oper-
ator as a Multi-Layer Perceptron (MLP) with ReLU activations,
which takes as input, along with ê, scene attributes at the point to
be shaded, in the form of G-buffers. These attributes include the po-
sition x, view direction ωo, normal direction n, diffuse albedo kd,
specular albedo ks, and roughness α, as appearing in Equation 2.
We also provide the mirror direction ωr – which corresponds to the
reflection of the view direction around the surface normal – as an
additional source of information to model specular/glossy effects.
Our baseline network hence learns to approximate:

L = Ŝ(ê,x,ωo,ωr,n,kd,ks,α). (14)

5.3. PRT-Inspired Transport Operator

As mentioned in Section 4.2, traditional Precomputed Radiance
Transfer methods express global illumination as a fast linear opera-
tion by projecting both the input lighting and the solution operator
onto a suitable basis to form the light vector e and the transport
matrix S. Inspired by this principle, we next design a Multi-Layer
Perceptron FT that encodes light transport at a point as a compact
descriptor:

ŝ = FT(x,ωo,ωr,n,kd,ks,α). (15)

Since ê and ŝ are now produced by non-linear neural networks, we
replace the linear matrix-vector product by a learnt operator Φ that
applies the transport to the lighting. By analogy to Equation 8, this
architecture computes:

L = Φ(ŝ, ê). (16)

From a neural network perspective, splitting the task into these
two steps brings several benefits. First, the baseline method de-
scribed in Section 5.2 concatenates the 64-dimensional lighting
descriptor with the 19-dimensional vector of scene attributes be-
fore processing all this information with a single MLP. In contrast,
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our second architecture first processes the scene attributes with
FT to embed them in a 64-dimensional space, such that lighting
and transport are given equal dimensions before being processed
by Φ. Second, using two separate MLPs allow us to adopt dif-
ferent architectures adapted to their respective tasks. On the one
hand, since FT needs to represent high-frequency light transport
effects from a low-dimensional attribute vector, we implement it
with SIREN activations [SMB∗20] that have been shown to per-
form well on similar tasks. On the other hand, since Φ needs to
map high-dimensional descriptors to a single RGB value, ReLU
activations are more appropriate. We validate these design choices
in Section 6.

5.4. Albedo Factorization

Our third design follows the insight provided by PRT that the re-
flection operator can be cheap to compute at run-time, and doing so
alleviates unnecessary pre-computation and storage (Equation 10).
However, our non-linear representation prevents treating reflection
as a convolution, as done in traditional PRT. We instead only factor
out the diffuse and specular albedos, which we multiply by the dif-
fuse and specular/glossy contributions predicted from the lighting
and transport descriptors:

(LD,LS) = Φ(ŝ, ê) (17)

L = kdLD +ksLS. (18)

This separation of the task frees the neural networks from modeling
spatially-varying albedos, which is especially beneficial on scenes
with intricate textures. Apart from doubling the size of the final
output, we keep the same architecture for FT and Φ. In particular,
we observed that even though kd and ks are used explicitly in the
final shading computation, feeding them as input to FT improves
results, possibly because this additional information helps the net-
work distinguish nearby points via the texture information.

5.5. Diffuse-Specular Separation

As noted in Section 4, the diffuse and specular terms of the re-
flectance involve different computations, which can benefit from
being treated separately (Equation 12). Following this observation,
our last design models the diffuse and specular/glossy transport
operators as two distinct Multi-Layer Perceptrons. While this de-
sign induces some redundancy, since both MLPs need to learn the
transfer operation S, it allows to inject additional inductive bias
within the input parameters of each MLP. Specifically, we only pro-
vide the position, normal and diffuse albedo to the MLP in charge
of computing the diffuse transport descriptor ŝD = FD

T (x,n,kd),
while we provide the view direction, reflection direction, roughness
and specular albedo to the MLP in charge of computing the specu-
lar/glossy transport descriptor ŝS =FS

T(x,n,ks,ωo,ωr,α). We also
train distinct operators Φ

D and Φ
S to apply the diffuse and specu-

lar/glossy transport to the lighting, respectively. The final compu-
tation amounts to:

L = kdΦ
D(ŝD, ê)+ksΦ

S(ŝS, ê). (19)

For fair comparisons, we decrease the number of neurons for each
track to match the neural budget of the other architectures.

6. Data Generation and Training

Similarly to PRT, we operate in a setting where all time- and
computation-heavy operations can be moved to a pre-processing
phase with no restrictions on time budget. During this phase, we
render ground truth images for various combinations of views and
lighting, and train the networks, which can be seen as analog to the
data compression step in PRT since the trained network equates to
a lossy, compressed representation of the pre-computed renderings,
with built-in interpolation.

Figure 4: Examples from the validation dataset of ATELIER.

Data Generation. We use the real-time path tracer Fal-
cor [BYC∗20] for data generation. For each scene, we render 3000
training images at 256× 256 pixel resolution, and 200 test images
at 400 × 400 pixel resolution (see Fig. 4 for examples). We use
center sampling in the G-Buffers and output all layers that we sub-
sequently feed to the networks (position, view direction, normal,
diffuse and specular albedo, roughness); this allows precise valida-
tion without the interference of anti-aliasing.

For illumination, we use the datasets from the Laval HDR
database. The indoor environment maps [GSY∗17] are used to
light the Atelier scene, while the dataset of outdoor environment
maps [HGAL19] is used for San Miguel, Kitchen and Bedroom. In
both cases, we perform a train/test split of the maps and only use
them respectively for the train and test renderings. Additionally,
the maps used as illumination in the training images are randomly
rotated about the vertical axis, to augment the lighting conditions.

For each scene, we define an active volume where we randomly
place the training and test cameras. Similarly, the viewing direction
is randomly chosen within a pyramid of directions. After training,
we visualize a camera path through this volume.

We opt for this camera specification strategy over a completely
random one, to make sure that all renderings contribute valuable in-
formation to the learning. Otherwise some cameras might be very
close to, or even on/inside objects, or looking into regions with-
out important details. We leave adaptive or more involved camera
placement strategies to future work.

Pre-processing Input Data. We pre-process the environment map
inputs to the CNN encoder by normalizing by the mean, and apply-
ing a log(1+ x) tonemap. The position buffer is also normalized
(linearly) so that all possible position values in the scene lie be-
tween -1 and 1. The other inputs are given without transformation.

© 2022 The Author(s)
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Encoder CNN Design. Our encoder consists of 5 blocks (convolu-
tion layer with a ReLU activation, max-pooling and a skip connec-
tion) followed by a fully-connected layer. The convolution layers
use 32 channels and the final linear layer outputs a 64-dimensional
vector, which we found to work well in practice.

Table 1: Number of parameters per network and storage.

Light Encoder FL Transport FT Total MB

Baseline 290,848 219,651 510,499 2.0
PRT-Insp. 290,848 186,947 477,795 1.8
Albedo Fact. 290,848 187,718 478,566 1.8
D/S Separ. 290,848 194,226 482,074 1.9

Design of the MLPs. We design the MLPs to have comparable
numbers of trainable parameters. We give the naïve baseline net-
work 4 layers of 256 neurons each. To match this, the PRT-inspired
network and the network with separate diffuse-specular outputs
have 2 layers of 256 for the SIREN, and 2 layers of 256 for the
MLP. Finally, the network with separate tracks also has 2 layers per
sub-network, but only with 172 neurons per layer. Exact numbers
of parameters are given in Table 1.

Importance of the SIREN layers We choose a SIREN architec-
ture for the transport embedding network. We show ablation scores
in Table 2: we compare the baseline architecture with ReLU activa-
tions (design 1), to the baseline architecture with sine activations,
as well as the PRT-inspired architecture with all ReLU activations,
and the PRT-inspired architecture with sine activations in the trans-
port MLP, ReLU in the second MLP (design 2). The results give
evidence for the superiority of our final PRT-inspired design.

Table 2: Validation loss in presence (S) or absence (R) of sine acti-
vations (SIREN) for the scenes ATELIER and BEDROOM. The third
column proves that the PRT-Inspired architecture improves the pre-
dictions, even more so when using SIREN layers in the first MLP to
encode high-frequency detail. Using SIREN in a naïve way (second
column) performs worse than standard ReLU activations.

Scene ATELIER BEDROOM

Loss RMSE Loss RMSE

Baseline (R) 19.0 0.058 6.6 0.023
Baseline (S) 24.4 0.068 31.2 0.056

PRT-Inspired (R) 17.8 0.056 6.3 0.022
PRT-Inspired (S) 16.0 0.049 6.2 0.021

The inferior performance of an all-SIREN baseline architecture
is caused by the concatenation of the light code and the transport
code in the input. Mehta et al. [MGB∗21] also show that condi-
tioning SIRENs by concatenating embeddings to the input can pro-
duce surprisingly poor results (blurry images, no convergence on
3D shapes). In our case, this architecture (second row in Tab. 2)
struggles on ATELIER and does not converge on BEDROOM.

20 min 45 min 2 hour

4 hour 18 hour ref

Figure 5: Quality of the prediction (Diffuse-Specular architecture)
at different times of training, compared to the reference. Note how
the shadow of the handle appears after 4h. Scene: ATELIER.

ref

2 hour

18 hour

45 min

4 hour

20 min

Figure 6: Prediction quality (Diffuse-Specular architecture) dur-
ing training. Note the progressive appearance of the second (left)
reflection of the window on the wooden floor. Scene: BEDROOM.

Training. We train for 500 epochs using the Adam optimizer with
a learning rate of 10−4. The networks are trained to minimize
the L1 loss between the linear radiance data of the prediction and
ground truth, after tonemapping by applying log(1+ x). The effect
of training duration can be seen in Fig. 5,6.

Timings. All inference timings are reported on an Intel Xeon Gold
5218R CPU with an NVIDIA RTX 3090 GPU. All data genera-
tion times are in Falcor; this is scene and sample-per-pixel depen-
dent. On BEDROOM, 3000 training images at 256×256 resolution
and 3200 samples per pixel requires 3.2 hours, while SANMIGUEL

takes 4 hours. On our hardware cluster (NVIDIA RTX6000), our
PyTorch implementation completes training in 16 to 18 hours. We
will release our source code here to facilitate further research:
https://repo-sam.inria.fr/fungraph/neural-prt.

In Tab. 3, we show the cost of inference for each of the four
architectures, as well as the environment map encoder. We compare
these timings with out-of-the-box timings of the Falcor real-time
engine in Tab. 4. To make sure the comparison to any real-time
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Albedo FactorizationBaseline Transport PRT-Inspired Transport Di�use-Specular Separation Reference

Figure 7: Renderings of our proposed architectures on a close up of one frame from the test path of each scene, under unseen lighting.
ATELIER: notice how the accuracy of interreflections and light bleeding between plates, as well as the overall hue, improve with each design.
BEDROOM: the nightstand appears to be floating in the baseline model, the insertion in the scene improves with each design decision.

Table 3: Inference timings on a 512×512 image, per architecture,
on a GeForce RTX 3090. These are upper bounds since the net-
works will not be run on background (environment map) pixels. All
competitors, using path-traced inputs, are given 5 spp (see Tab. 4),
making them equal-speed or slower than our solutions.

Encoder Baseline PRT-Insp. Albedo Fact. D/S Sep.

0.34 ms 9.73 ms 10.57 ms 10.60 ms 16.02 ms

Table 4: Rendering timings of path tracing on a 512× 512 image
using the Falcor engine, evaluated on a GeForce RTX 3090. Dif-
ferent scenes will have slight variations in the timings due to the
number of triangles, the amount of direct versus indirect light etc.

ATELIER BEDROOM KITCHEN SANMIGUEL

G-Buffer 3 ms 3 ms 4 ms 8 ms
RTPT (5 spp) 19 ms 24 ms 27 ms 36 ms

method relying on path-traced inputs is fair, we allocate 5 samples
per pixel to competitors in all subsequent figures and tables.

7. Results and Comparisons

We present results of our method and comparisons using four
scenes of varying content and complexity: ATELIER (533K poly-
gons), BEDROOM (1,499K polys), KITCHEN (1,443K polys)
and SANMIGUEL (5,608K polys). The first, most simple scene
was built from elements of different scenes, BEDROOM and
KITCHEN are from Bitterli’s resources [Bit16], SANMIGUEL is
from McGuire’s Computer Graphics Archive [McG17]. The three

ATELIER BEDROOM KITCHEN SANMIGUEL

Figure 8: Full pathtraced reference views for the close-ups
(marked by rectangles) shown in subsequent comparison figures.
Videos of these camera paths rendered with each proposed method
under unseen, dynamic lighting are in the supplemental material.

last scenes show that our method can handle content of reasonable
complexity.

We first show results on these four scenes for each architecture
and the path-traced reference in the close-up images Fig. 7,9 (see
Fig. 8 for the entire image for each scene allowing to situate the
crops). We also show renderings of paths in the supplemental web-
page that also contains comparisons, where the full images of each
design can be evaluated in detail.

We next discuss the performance of the four alternative designs,
followed by comparisons with previous rendering alternatives. It
is important to note that these previous methods are the fruit of
decades of research; the neural rendering algorithms we propose
are a different and new paradigm. We thus do not claim to have
systematically better performance or quality, but rather present
conceptual comparisons and indicative quantitative and qualitative
evaluation of our neural methods.

© 2022 The Author(s)
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Albedo FactorizationBaseline Transport PRT-Inspired Transport Di�use-Specular Separation Reference

Figure 9: Renderings of our proposed architectures on a close up of one frame from the test path of each scene, under unseen lighting.
KITCHEN: the color of the reflection of the window on the table and the plate is correct only for the last two architectures; sharpness also
improves. SANMIGUEL: highlight shape on both plates, and shadows between plates and table, improves in each design.

7.1. Performance of the different models

The proposed model alternatives illustrate our overall goal of guid-
ing neural rendering designs by well-founded principles of tradi-
tional rendering, in this case PRT.

The baseline transport operator has difficulties exploiting its
full neural budget well, and struggles with very light- and view-
dependent effects – highlights, shadows and interreflections are im-
proved with the PRT-Inspired operator, and are closer to the ref-
erence with Albedo-Factorization and Diffuse-Specular separation
(Fig. 7, 9). The baseline shows more temporal artifacts than the
PRT-inspired solutions (please see videos in supplemental).

Table 5: Reconstruction error ×103 (Root Mean Square Error and
log-loss used for training) of the proposed architectures, evaluated
on the test images of each scene. Lowest (best) in bold.

Scene Baseline PRT-Insp. Albedo Fact. Diff/Specular

Loss RMSE Loss RMSE Loss RMSE Loss RMSE

ATELIER 18.95 57.6 15.96 49.4 14.70 47.9 14.66 46.8
BEDROOM 6.64 23.5 6.17 21.3 6.02 20.5 5.50 20.0
KITCHEN 3.15 16.6 2.79 15.0 2.69 15.1 2.65 14.8

SANMIGUEL 4.05 15.8 3.73 15.0 3.54 14.3 3.51 13.9

In the baseline design, all effects and inputs are entangled, and
given a small neural budget, the network struggles to correctly learn
full GI. In particular, it tends to bake strong shadows and highlights
in place (see Fig. 7, ATELIER, reflection on the metal bucket in the
top right). This issue is tackled by the PRT-Inspired design, where
the first network has to learn a light-independent transport descrip-
tor that only depends on the local point. This makes it much harder

to bake direct lighting; and easier to bake effects like interreflec-
tions and ambient occlusion, which are not dependent on lighting
(see Fig. 7, ATELIER). The second network predicts outgoing radi-
ance given a transport descriptor and a light code of same dimen-
sionality, so it can now aggregate them in a more balanced way.

The last two transfer-learning alternatives generally present
more fidelity in the tint of the reflections and the shadows (see
Fig. 9, KITCHEN). The essential difference with the previous ar-
chitectures is that this factorization allows them to learn a radi-
ance distribution which is not affected by the albedos, and hence
much more coherent. Indeed, nearby points on a textured surface
will have similar distributions of incoming light, with similar tints,
even though their outgoing radiance will be affected by the albedo
texture – this show in Fig. 7, BEDROOM, where the first two designs
struggle to create a smooth shadow on the textured floor under the
nightstand.

Finally, the complete separation of diffuse and specular tracks
allows for a more efficient and physically-based disentanglement
of view-dependent effects. The diffuse track focuses on extracting
Lambertian reflectance and shadows, giving more importance to
the positional input, while the specular track focuses on reflections,
giving more importance to the directional input. The separation of
the SIRENs allows them to weight the input importance differently,
which albeit each at a lower neural budget, produces an overall
result with better visual fidelity (see Fig. 9, SANMIGUEL, where
the shape and intensity of the highlight on the plate matches the
reference more closely). The last two architectures achieve better
quality results, but this involves a trade-off since the improvement
in quality comes with slower run-time inference (see Tab. 3).

We also show the quantitative effect of each design in Tab. 5. The
Diffuse-Specular Separation is systematically best in all scenes,
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both for the logarithmic loss used in training and Root Mean Square
Error (RMSE). However, while the difference between Baseline
and PRT-Inspired operators can be significant, the difference be-
tween the subsequent architectures is smaller.

7.2. Comparison to Previous Methods

We show comparisons to real-time path-tracing in Fal-
cor [BYC∗20] (including denoising [CKS∗17], [IMF∗21]),
and the very recent Neural Radiance Cache [MRNK21]. For
these methods no precomputation is required; the comparisons
are simply provided as an indication of quality that our method
can provide. Note also that Falcor is a commercially-built and
optimized system, while our solutions are experimental prototypes
in a new design space. Finally we also show a baseline traditional
PRT implementation, as an indication of the expressiveness of
our neural representation compared to the traditional spherical
harmonics.

RTPT RTPT+Denoiser Ours (D/S) Reference

Figure 10: Left to right: Real-Time Path-Tracing (RTPT) with 5
spp, RTPT with Optix Denoiser (manual color correction has been
applied to best match the reference), Our Diffuse-Specular Separa-
tion architecture and the ground truth.

We first compare to a real-time path-tracing as implemented in
the NVIDIA Falcor system, first with direct visualization and then
with denoising. We provide a 5 sample-per-pixel budget in each
scene, since this has equivalent cost to the inference step of our
slowest solution, and also show images with the Optix denoiser
available for Falcor [CKS∗17]. We show results in Fig. 10 together
with videos in supplemental. We see that the sample budget is sim-
ply insufficient to capture most of the transfer, and the denoiser can
only provide blurry results at this sampling rate. In addition, the
denoiser has significant temporal artifacts. We also tested a more
recent denoiser [IMF∗21] (the authors kindly ran their method on
our scene), but scene conversion issues to another rendering engine
result in slightly different images. We show this result in the supple-
mental webpage: we see that the quality is better, but the sample-
per-pixel rate is still too low, and there are still significant temporal
and spatial artifacts. Additionally, the denoising adds some over-
head to the pathtracing which causes slower framerates; the Optix
denoiser for instance runs in 10ms on a 512×512 frame.

We next show results for the Neural Radiance
Cache [MRNK21]; the authors kindly ran their code on two

NRC NRC-cache Ours (D/S) Reference

Figure 11: Comparison to the Neural Radiance Cache [MRNK21].

of our scenes. We show both the final result of their method,
using a 5 sample-per-pixel (spp) path-tracing and cache queries at
deeper bounces, as well as a direct visualization of the cache at
the first bounce, which is similar to the setting our neural network
operates in. The former is noisy, since the sample budget is low,
and the latter does not represent indirect light accurately, since
the cache is built based on rays cast in earlier frames. When the
lighting changes or the camera moves, the cache carries bias from
the previously seen rays. Additionally, the artifacts of positional
encoding are very visible, in the form of cross-shape artifacts.

CNN MLP CNN MLP

Figure 12: Comparison of MLP (our naïve architecture) versus
CNN [NAM∗17], both trained per-scene at equal parameter count.
Scenes: ATELIER, BEDROOM. Note how the U-Net visibly strug-
gles with specular/glossy appearance. The lack of temporal coher-
ence can be observed in the supplemental material videos.

Regarding learning-based methods, we evaluate the performance
of a per-scene trained Deep Shading [NAM∗17] network with sim-
ilar parameter count. In Figure 12, we compare Deep Shading’s U-
Net (a convolutional network) against our most naïve baseline ar-
chitecture (a basic MLP), which already achieves a drastic increase
in quality. CNNs learn to exploit the local G-buffer context in order
to generalize plausibly to unseen geometries. Since we overfit to a
single scene, treating the G-buffer context instead of an individual
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Table 6: Quantitative comparison of our method with close competitors. Metrics (×103) averaged over the frames of the paths shown in the
supplemental material videos. For PRT, the error was only computed on the single frame shown in Figure 13.

ATELIER BEDROOM

L1 L2 dSSIM MAPE MRSE L1 L2 dSSIM MAPE MRSE

RTPT 124.21 71.20 597.92 328.70 230.02 49.48 13.22 579.23 683.72 511.64
RTPT+DENOISE 293.65 182.57 686.87 689.80 453.46 151.18 45.24 519.14 1889.00 1526.00
NRC 98.19 34.29 533.98 268.22 137.64 35.21 11.17 400.60 442.90 164.90
NRC-CACHE 68.75 15.21 245.93 208.58 72.22 26.21 3.36 237.2 366.50 77.44
DEEP SHADING 51.39 15.75 172.61 175.06 39.11 16.15 3.91 89.38 219.37 47.19
PRT-9 64.86 19.18 147.93 171.43 72.53 14.72 3.17 84.97 172.72 47.64
PRT-25 36.83 11.41 88.27 81.74 29.99 12.63 7.71 55.65 117.85 19.62
OURS (D/S) 30.23 5.34 63.95 80.46 22.02 9.89 2.09 36.95 100.20 21.76

pixel is a waste of capacity that is better used to learn view- and
light-dependent effects, hence our choice of MLP.

PRT-9 PRT-25 Ours (D/S) Reference

Figure 13: Comparison of PRT-9 (SH order 2) and PRT-25 (order
4) with our Diffuse-Specular. Scenes: ATELIER, BEDROOM. Note
how the intensity of reflections is not reproduced correctly by PRT.

We also compare to a baseline PRT re-implementation. Transfer
matrices are usually stored at the vertices – we implement a ver-
sion with SH-coded transport (distant to outgoing), stored at every
pixel in a given fixed view. Specifically, we project the environ-
ment map to a spherical harmonic (SH) basis, and we precompute
full transport for each pixel encoded with the same SH basis. A full
implementation of Sloan et al. [SKS02] would precompute at ver-
tices, resulting in significantly more blurred results. We present this
comparison as an indication of the quality obtained by our method
compared to PRT. In Fig. 13, we show results with 9 and with 25
coefficients (per pixel per color channel). We see that even with 25
coefficients the SH basis over- or under-estimates global illumina-
tion, compared to our solution. In terms of memory, the size of our
network would equate to less than 1 coefficient per pixel.

We show numerical comparisons of all methods in Tab. 6. The

quantitative results show that our method outperforms alternative
solutions across the board.

7.3. Limitations

Ours (D/S) Reference

Figure 14: Rendering of a partly unseen (at training time) area
of BEDROOM with challenging materials (perfect mirrors). In the
seen part (right side), the prediction is good even in the mirror. In
the unseen part (left side), the degradation is graceful for diffuse
objects and some artifacts appear in the wall mirror.

Overall, our PRT-inspired neural renderers represent aggregate
effects well, including complex indirect paths. As in any learning-
based method, our solutions offer a compromise of prediction fi-
delity based on the frequency of observations in the training data
and their weighting. The correlation (R) of our diffuse-specular
prediction error with directness (ratio of direct over total incom-
ing light) across test pixels is R = 0.24 for ATELIER and 0.34 for
BEDROOM. The correlation of error with specularity (ratio of spec-
ular over specular+diffuse albedos) gave R = 0.14 for ATELIER

and -0.38 for BEDROOM, which indicates that there is no mean-
ingful relationship: The neural renderer must simply have seen suf-
ficient training examples of the part of the scene we want to ren-
der under similar conditions (see Fig. 14), which can be addressed
through more involved camera placement strategies. Angular de-
tails of high-frequency reflections or harsh direct shadows from
very localized light sources can be reproduced faithfully, as long
as they are observed frequently enough in the training data. This
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limitation can easily be overcome by augmenting the G-Buffer in-
puts with limited one-bounce ray-tracing. Nonetheless, in sparsely
observed regions (limits of the camera volume or the scene), the
prediction degrades gracefully (Fig. 14), relying on the similarity
to observed parts of the scene.

Another constraint is the trade-off between how small the MLP
can be and how accurately it models every part of the scene. In
this paper we investigate the design space of the architecture so
we fix the size of the model and produce training sets that cover
reasonable viewpoints. To appreciate the extent and variation of
viewpoint and lighting, please see the supplemental videos. Scaling
to very large scenes can be addressed in future work by adaptively
subdividing the scene, as done by Ren et al. [RWG∗13] or in the
recent KiloNeRF [RPLG21]. One could also imagine that instead
of taking only a point’s attributes, the transport encoder could take a
learnt embedding of a local intermediate-scale part of a large scene.

8. Conclusions

Designing neural renderers will be an important challenge for ren-
dering as the field moves forward. We claim that building on the
wealth of traditional rendering research will be beneficial in this
process, and lead to efficient solutions.

We illustrated this claim by investigating four different neural
rendering architectures for the case of static scenes with dynamic
lighting. We started with a direct radiance-regressing baseline, and
then demonstrated that using the theoretical foundations and algo-
rithmic principles of PRT leads to progressively better image qual-
ity at equal computation and memory, essentially using the neural
budget more efficiently. In particular, we demonstrated that learn-
ing a separate transport and light code improves the overall estima-
tion of global illumination, e.g., indirect lighting and glossy reflec-
tions. We then applied another PRT principle, factorizing albedo,
and a final design where diffuse and specular terms are separated.
As in PRT, these two solutions learn a transformation more akin to
transfer than transport. These changes permit more accurate recon-
struction of shadows and/or indirect light.

In future work, we plan to treat the case of static illumination or
view more efficiently. In particular, using a cache, we could avoid
re-evaluating the CNN or the MLPs respectively. For the final ar-
chitecture, diffuse irradiance could also be cached if the illumina-
tion does not vary. Another avenue could contain more elaborate
architectures for the environment map encoder, to be robust to the
spherical distortion induced by the latlong projection or to aliasing
which can create temporal flickering. A more involved direction
for future work would be for dynamic/deforming scenes: similarly
to the dynamic lighting we treated, information about the dynamic
scene (e.g., changing materials) could be encoded into a learned
basis which could modulate the outgoing radiance.

A final improvement could tackle anti-aliasing: In our method
we sample each pixel by a unique central ray, in order to be truly
agnostic to rendering resolution / viewing distance and objectively
compare representational power of different architectures without
interference of filtering. Any anti-aliasing strategy can be applied
orthogonally, such as averaging predictions per pixel, or running an
anti-aliasing filter in post-process.

In conclusion, we hope that the proposed methodology will in-
spire further work, expanding the design space in neural rendering
based on well-founded theoretical and practical results from tradi-
tional rendering research, in particular for different hardware plat-
forms that may not have specific ray-tracing acceleration available.
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