
Author’s Version /Computers & Graphics (2022)

Author’s Version to appear in Computers & Graphics

Deep scene-scale material estimation from multi-view indoor captures (supplementary)

Siddhant Prakasha,, Gilles Rainera, Adrien Bousseaua, George Drettakisa
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A B S T R A C T

The movie and video game industries have adopted photogrammetry as a way to create
digital 3D assets from multiple photographs of a real-world scene. But photogrammetry
algorithms typically output an RGB texture atlas of the scene that only serves as visual
guidance for skilled artists to create material maps suitable for physically-based render-
ing. We present a learning-based approach that automatically produces digital assets
ready for physically-based rendering, by estimating approximate material maps from
multi-view captures of indoor scenes that are used with retopologized geometry. We
base our approach on a material estimation Convolutional Neural Network (CNN) that
we execute on each input image. We leverage the view-dependent visual cues provided
by the multiple observations of the scene by gathering, for each pixel of a given image,
the color of the corresponding point in other images. This image-space CNN provides
us with an ensemble of predictions, which we merge in texture space as the last step of
our approach. Our results demonstrate that the recovered assets can be directly used for
physically-based rendering and editing of real indoor scenes from any viewpoint and
novel lighting. Our method generates approximate material maps in a fraction of time
compared to the closest previous solutions.
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1. Network Architecture Details

We provide network details for the diffuse track and specular
track in Tables 1 and 2 respectively for an image of resolution
640×384×3. As described in Section 4.2 in the main paper, the
number of input channel is defined by the multi-view statistics
being fed to each network. In the decoder from layer 4 onwards,
a nearest-neighbor upsampling is followed by concatenation of
encoder features, and two convolutions. For activations, each
convolution/de-convolution layer is followed by a leaky ReLU
with a weight 0.2 for the negative part.
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Input Layer Output
In: 640 × 384 × 9 4 × 4 Conv, 64, stride 2 1: 320 × 192 × 64
0: 9 FC + SeLU 1: 128
1: 320 × 192 × 64 4 × 4 Conv, 128, stride 2 2: 160 × 96 × 128
1: 256 FC + SeLU 2: 256
2: 160 × 96 × 128 4 × 4 Conv, 256, stride 2 3: 80 × 48 × 256
2: 512 FC + SeLU 3: 512
3: 80 × 48 × 256 4 × 4 Conv, 512, stride 2 4: 40 × 24 × 512
3: 1024 FC + SeLU 4: 512
4: 40 × 24 × 512 4 × 4 DeConv, 256, stride 1 5: 80 × 48 × 256
4: 768 FC + SeLU 5: 256
5: 80 × 48 × 512 4 × 4 DeConv, 128, stride 1 6: 160 × 96 × 128
5: 384 FC + SeLU 6: 180
6: 160 × 96 × 256 4 × 4 DeConv, 64, stride 1 7: 320 × 192 × 64
6: 192 FC + SeLU 7: 64
7: 320 × 192 × 128 4 × 4 DeConv, 3, stride 1 Out: 640 × 384 × 3
7: 67 FC + SeLU 8: 3

Table 1: Details of the network architecture for diffuse track.
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Input Layer Output
In: 640 × 384 × 18 4 × 4 Conv, 64, stride 2 1: 320 × 192 × 64
0: 9 FC + SeLU 1: 128
1: 320 × 192 × 64 4 × 4 Conv, 128, stride 2 2: 160 × 96 × 128
1: 256 FC + SeLU 2: 256
2: 160 × 96 × 128 4 × 4 Conv, 256, stride 2 3: 80 × 48 × 256
2: 512 FC + SeLU 3: 512
3: 80 × 48 × 256 4 × 4 Conv, 512, stride 2 4: 40 × 24 × 512
3: 1024 FC + SeLU 4: 512
4: 40 × 24 × 512 4 × 4 DeConv, 256, stride 1 5: 80 × 48 × 256
4: 768 FC + SeLU 5: 256
5: 80 × 48 × 512 4 × 4 DeConv, 128, stride 1 6: 160 × 96 × 128
5: 384 FC + SeLU 6: 180
6: 160 × 96 × 256 4 × 4 DeConv, 64, stride 1 7: 320 × 192 × 64
6: 192 FC + SeLU 7: 64
7: 320 × 192 × 128 4 × 4 DeConv, 4, stride 1 Out: 640 × 384 × 4
7: 67 FC + SeLU 8: 4

Table 2: Details of the network architecture for specular track.

2. Additional Results

We provide additional results for our experiments.

2.1. Ablation

Figure 1 shows the effects of increasing multi-view informa-
tion for the Synthetic Veach Ajar scene. This figure is a exten-
sion of Fig. 12 in the main paper.
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Specular Re-render
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Figure 1: Example images from Synthetic Veach Ajar showing the effect of increasing multi-view information on results. Note how the quality of the maps is
significantly improved by using the reprojected statistics observed in our image space predicted maps as compared to no reprojection, i.e. using only a single image.
Furthermore, gathering the image space maps in texture space helps improve the consistency of the maps across views and thus improves re-rendering by assigning
same material in local regions (esp. in roughness and specular maps). As a result, we get better re-rendering as the re-rendered images are closer to ground truth.


	Network Architecture Details
	Additional Results
	Ablation


