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A B S T R A C T

The movie and video game industries have adopted photogrammetry as a way to create
digital 3D assets from multiple photographs of a real-world scene. But photogrammetry
algorithms typically output an RGB texture atlas of the scene that only serves as visual
guidance for skilled artists to create material maps suitable for physically-based render-
ing. We present a learning-based approach that automatically produces digital assets
ready for physically-based rendering, by estimating approximate material maps from
multi-view captures of indoor scenes that are used with retopologized geometry. We
base our approach on a material estimation Convolutional Neural Network (CNN) that
we execute on each input image. We leverage the view-dependent visual cues provided
by the multiple observations of the scene by gathering, for each pixel of a given image,
the color of the corresponding point in other images. This image-space CNN provides
us with an ensemble of predictions, which we merge in texture space as the last step of
our approach. Our results demonstrate that the recovered assets can be directly used for
physically-based rendering and editing of real indoor scenes from any viewpoint and
novel lighting. Our method generates approximate material maps in a fraction of time
compared to the closest previous solutions.

Author’s Version Preprint.

1. Introduction

While physically-based rendering is now a mature technol-
ogy [1], creating the digital assets to be rendered remains a
major bottleneck in the creative industry. Photogrammetry
has gained popularity to create digital assets from real-world
scenes. A popular workflow consists in first capturing multiple
photographs of the scene, then using multi-view stereo algo-
rithms to compute an approximate 3D model from these pho-
tographs. The approximate geometry is then manually edited to
create models compatible with traditional rendering pipelines –
a task known as retopology [2]. Unfortunately, existing pho-
togrammetry solutions typically output a simple RGB texture
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of the scene with baked-in lighting, which only serves as a
crude initialization for artists who need create rich materials
maps used by downstream physically-based renderers. Creating
these maps involves significant manual work, including remov-
ing shading, shadows and highlights to form the diffuse albedo,
and guessing specular strength and roughness parameters over
different surfaces. We propose a learning-based approach that
addresses this difficult task by augmenting the photogramme-
try workflow by automatically estimating approximate material
maps from multiple photographs of an indoor scene. Our goal
is to provide assets that directly allow plausible renderings of
the captured scene. Specifically, the output of our method are
approximate Spatially-Varying Bidirectional Reflectance Dis-
tribution Function (SVBRDF) texture atlases which, combined
with retopologized geometry, forms a digital asset ready for
physically-based rendering of indoor scenes. We call these ma-
terial maps from now on.
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(a) Multi-view capture (b) SVBRDF texture atlas (c) Physically-based rendering
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Figure 1: We present a method which takes multiple photographs of a scene as input (a) and predicts surface materials in the form of material maps corresponding
to each input view. Merging these image-space predictions in texture space yields a texture atlas (b) that can be mapped onto retopologized geometry to produce
digital 3D assets ready for full physically-based rendering, i.e., rendering from any viewpoint, changing/adding lights and objects, for example in (c) the golden
statuette and the white mug have been added to the scene that has modified lighting and is rendered from a viewpoint not in the input.

Learning-based methods for material estimation have fo-
cused on pictures of flat surface patches [3, 4] or on single
images of isolated objects [5] and scenes [6], for which the
prediction can be efficiently performed in image-space using
convolutional neural networks (CNNs). In contrast, approaches
based on inverse rendering compute accurate material parame-
ters in object or texture space [7, 8] to benefit from observations
from multiple viewpoints. But the underlying optimization is
expensive and needs to be recomputed for every new scene.
We present the first method that combines ideas from these two
streams of research. On the one hand, we leverage the strength
of image-space CNNs to predict approximate material param-
eters for each photograph of the scene. On the other hand, we
exploit multi-view information by gathering, for each pixel in a
photograph, observations of the same scene point in other pho-
tographs. Furthermore, we aggregate the predictions given by
each photograph into a common texture space to form the final
texture atlas. Our method thus offers the speed of learning-
based material estimation previously applied for single images,
for the much harder scene-scale material estimation problem.

Our method addresses several difficulties raised by the long-
standing challenge of scene-scale material estimation. First, in
contrast to single-image methods [3][5][6], our multi-view set-
ting receives a varying number of observations per pixel to be
processed by the CNN. We overcome this difficulty by comput-
ing a fixed number of color statistics, which forms the initial
feature maps that we feed to the CNN. Second, photographs of
indoor scenes exhibit complex interactions between geometry,
lighting and materials via indirect illumination. Prior work on
inverse rendering model these interactions using approximate
global illumination (GI) to jointly recover shape, materials and
light [6]. In contrast, we consider a scenario where geometry is
reconstructed with photogrammetry and retopology, such that
we only need to recover material appearance. Rather than ap-
proaching this as an inverse rendering problem where global
illumination must be estimated accurately to match the input
observations, we train an illumination agnostic network to pro-
duce materials maps of similar appearance to the inputs. To
compare the predictions to the ground truth materials, we use a

rendering loss which only operates via local camera-space re-
lighting, avoiding the underconstrained estimation and expen-
sive computation of GI altogether. The third challenge is build-
ing a synthetic training dataset suitable for scene-scale approxi-
mate material estimation; we created a dataset from profession-
ally modeled scenes, and provide a framework that allows the
generation of new datasets for this task.

In summary, our contributions are:
• A deep neural network architecture for material estimation

that exploits scene-scale multi-view input.

• A proof-of-concept solution allowing fast, scene-scale ma-
terial estimation to produce digital assets suitable for phys-
ically based rendering and editing of real indoor scenes,
that integrates seamlessly into the current photogramme-
try workflow.

• A scene-scale synthetic dataset with ground truth
SVBRDF maps and the tools to generate it, used to train
our multi-view material estimation network.

We evaluate and illustrate our method on synthetic scenes that
allow quantitative analysis of our algorithmic choices, and show
first results on captured real scenes. We demonstrate that our
automatically estimated material map atlases – albeit approxi-
mate – are of sufficient quality to allow physically-based ren-
dering of the captured scene with novel lighting conditions and
scene editing (see Fig. 1(c), 9). We will provide the source code
to our system, including all the tools required to generate the
training dataset from commercially-available models.

2. Related Work

We discuss the two domains that inspired our approach –
optimization-based and learning-based methods for practical
material estimation. We refer the interested reader to surveys
on material capture [9, 10] and inverse rendering [11, 12] for
more general discussions of these broad topics.
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2.1. Optimization-based material capture

The recent development of differentiable rendering algo-
rithms has reinvigorated research on inverse rendering, as pio-
neered by Yu et al. [7] for scene-scale material recovery. Given
a 3D model of the scene, modern approaches estimate mate-
rial and lighting by simulating complex global illumination ef-
fects using differentiable path-tracing [13, 8, 14]. We see our
approach as complementary to such optimization-based algo-
rithms that work on scene-scale. On the one hand optimization-
based algorithms are capable of recovering more precise infor-
mation by minimizing the difference between the input images
and the images re-rendered from the estimated materials. On
the other hand, such a minimization typically takes 10-12 hours
to converge due to complex global illumination computations
and is highly sensitive to initialization. Our approach could
speed-up these optimization methods by providing an initial-
ization that is much closer to the end result compared to the
random material maps that are typically used. Methods that
also optimize for geometry have so far been limited to con-
vex isolated objects often with specific lighting/capture con-
straints [15, 16, 17, 18, 19, 20]. In contrast, we take multi-
ple unconstrained sparse viewpoints of the scene resulting in a
variable number of observations for different scene regions and
complex visibility issues due to inexact geometry.

2.2. Learning-based material capture

Recovering material appearance from a few observations is
an ill-posed problem for which machine learning offers prac-
tical solutions. By leveraging large datasets of images paired
with ground truth material maps, deep convolutional networks
can be trained to predict per-pixel material parameters given a
single picture of a flat surface patch [21, 22, 3, 23, 4, 24, 25].
Such methods were later extended to predict material, depth
and normal maps of isolated objects [5, 26] and even of indoor
scenes [6] from a single image. Ours is the first method to take
wide baseline, scene-scale multi-view input under unknown in-
door lighting for material estimation. Most related to our goal
is the concurrent work by Li et al. [27], who take as input a sin-
gle image of an indoor scene along with a 3D model of that
scene, and build upon single view material prediction [6] to
assign procedural material models to object parts. Our work
is complementary, as we explore material prediction in indoor
scenes under a multi-view capture scenario.

Our key insight is that the multiple images that are typi-
cally captured for photogrammetry offer complementary obser-
vations of material appearance. However, such multi-view in-
formation needs to be properly aggregated to be fed to a neural
network, and to be assembled to form a valid texture atlas for
later use in rendering engines. Prior methods on multi-image
material prediction only partially address these challenges since
they focus on small planar patches and assume that each point
is visible in all input images [28, 29, 30], which is not the case
when dealing with complex scenes where parts are frequently
occluded or out of the field of view of many of the input pho-
tographs. While Ye et al. [31] describe how to combine im-
age warping and max pooling to handle videos captured with a

moving camera, they again focus on planar surfaces free of oc-
clusion, and recover material parameters over a reference frame
rather than over all input views of a 3D scene. We propose a so-
lution based on image re-projection and pixel statistics to pro-
cess multi-view inputs with a standard CNN architecture, and
to merge multiple predictions into a single texture atlas.

Neural representations recently emerged as an effective solu-
tion to relight 3D content captured from multiple photographs
[32, 33, 34, 35, 36]. However, these novel representations
are not compatible with the well-established photogrammetry
workflow, where artists seek to create triangular meshes and
texture atlases compatible with downstream industry-standard
rendering engines. While Philip et al. [37] also feeds color
statistics as one of the many multi-view information to a neu-
ral renderer to perform novel-view synthesis with relighting, we
predict explicit material parameters in the form of material tex-
ture maps and we assemble the predictions given by multiple
views in a common texture space which is readily available to
the user for further editing as desired. This post processing flex-
ibility is missing from prior works. More recently, Munkberg et
al. [38] combine neural and traditional representations within a
differentiable rendering framework to recover a triangle mesh,
an SVBRDF texture and an environment map, but their ap-
proach has only been demonstrated on isolated objects.

Training methods like ours require large amounts of photo-
realistic images with ground truth material map labels. Such a
dataset is infeasible to capture so we rendered visually realistic
synthetic scenes with variations in lighting, materials, geom-
etry and viewpoints. While several datasets of indoor scenes
have been described, many only provide images rendered from
pre-defined viewpoints and do not allow the generation of new
images, as is the case for OpenRooms [39]. Other datasets
do not include the labels we are interested in, such as Hyper-
sim [40] that provides diffuse albedo maps and a non-diffuse
residual term, which is not directly compatible with existing
BRDF models suitable for physically-based renderers. We built
a dataset tailored to multi-view material estimation in indoor
scenes, by developing an asset generation system that assem-
bles objects from synthetic scenes modeled in Autodesk 3DS
Max and then rendering with Mitsuba [41]. We hope our dataset
generation tools will help foster research on scene-scale mate-
rial estimation and other scene-scale learning-based tasks.

3. Overview

Our method takes as input multiple casually-captured un-
structured wide-baseline images of a scene from different view-
points using a DSLR camera. This results in multi-view ob-
servations, but in some cases capture is incomplete: In particu-
lar, lighting and some parts of the scene might be unobserved.
Similar to commercial photogrammetry pipelines [2], first we
obtain camera calibration and a rough multi-view stereo mesh
using RealityCapture [42], followed by re-topology where an
artist creates a clean version of the mesh, suitable for rendering
(Fig. 2(a) and 6). This reliable 3D geometry is used as input
to our method. Given the multiple input images and the cor-
responding geometry, our goal is to produce an atlas of mate-



4 Author’s Version /Computers & Graphics (2022)

(a) Input multi-view capture
and retopologized 3D mesh

(b) Per-image multi-view statistics

CNN

(c) Per-image material predictions (d) Material
texture atlas
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Input MaxMedian Di�use Specular Roughness

Figure 2: Overview of our method. We take a multi-view dataset, calibrated cameras and a retopologized mesh as input (a). We re-project information from multiple
views into each input view to compute color statistics for each observed point (b). We feed this multi-view information into a convolutional neural network to predict
material maps for each view (c). We finally merge this ensemble of inferred maps into texture space (d) to form a scene-scale material texture atlas.

rial parameters, i.e., spatially-varying diffuse albedo D, spec-
ular albedo S , and roughness R for a Cook-Torrance BRDF
model [43]. We do not estimate normal maps since we focus
on indoor scenes composed of large surfaces seen at a distance,
for which our retopologized geometry provides sufficiently ac-
curate normals (Fig. 2(a) top and 6).

We achieve this material estimation task in two main steps, il-
lustrated in Fig. 2 (b - d). The first step relies on an image-space
CNN to predict material maps for each input image separately.
For each view, we use the 3D geometry to reproject image col-
ors from other views and deduce color statistics (minimum, me-
dian and maximum color) that summarize the view-dependent
appearance of each pixel. We complement these statistics with
geometry buffers (surface normals and depth). In practice, we
found it beneficial to split the prediction task into two tracks,
one responsible for the prediction of diffuse albedo and one re-
sponsible for the prediction of specular albedo and roughness.

The second step of our method aggregates the per-view pre-
dictions into a common texture space to form the final atlas. We
use simple median filtering to select a consensus from the en-
semble of predictions given by all views where a surface point
appears. Mapping this atlas onto the retopologized mesh gives
a complete asset that is compatible with traditional physically-
based rendering (Fig. 1(c), 9), including full editing capabilities
such as changing the lighting and inserting new objects.

4. Multi-View Aware Deep Material Estimation

Our problem is estimating scene-scale material properties
from a multi-view dataset under unknown lighting, as op-
posed to the several successful deep learning methods for es-
timating SVBRDF maps: These start from one or a few im-
ages [21, 22, 3, 4, 24, 28, 30], typically for small planar patches
of materials lit by a flash. We tackle the scene-scale material
estimation problem by first processing each view with a CNN
similar to the one used by Deschaintre et al. [3, 28]; We explain
how we adapted this architecture to our use-case in Sec. 4.2.

The much harder scene-scale problem precludes the use of
co-located flash lighting; Since we cannot benefit from the rich
visual cues given by this mode of capture, our originality is to
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Figure 3: Overview of our deep learning architecture and training procedure.
We split the material estimation task into two tracks, one for the diffuse albedo
and the other one for specular albedo and roughness (a, b). In addition, we
filter the specular albedo and roughness with a bilateral solver (c). Finally, we
compare the predicted maps with ground truth maps using a L1 loss as well as
with a rendering loss that assesses the appearance of the materials under several
lighting and viewing conditions (d).

instead leverage visual cues provided by multi-view observa-
tions. Figure 3 illustrates the main components of our architec-
ture and its training procedure.

4.1. Network Inputs

While we run our CNN on each input view separately, we
feed it with multi-view information obtained by re-projecting a
set of neighboring views to the current view. For each pixel, we
select at most 12 views where the corresponding point is visible,
and for which the view direction is most closely aligned to the
surface normal, as those views are less prone to grazing angle
observations. We also add a distance term to favor cameras
nearer to the surface.

We rank and pick the top-12 views by minimizing the cost
composed of a view term and a distance term as shown in Fig. 4,
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Figure 4: Camera selection for each surface point p. A cost function is used
to select the 12 best views that consists of a visibility term and a distance term
which favors normal-aligned views and cameras close to the surface.

specifically for an observation at p:

costi = cos αi +
dip

max(d jp)
∀ j ∈ {1,N} (1)

where dip is the distance of point p to camera i, N is the total
number of cameras, and αi is the angle between the normal at
surface point p and view direction of camera i.

Since each pixel might receive a different number of observa-
tions as not all surface may be visible in 12 or more views (this
is frequently observed in the case of background pixels), we
summarize this multi-view information as a fixed set of images
corresponding to simple color statistics, i.e. median, maximum
and minimum.

The maps that form a material map atlas have different char-
acteristics, and can be inferred from different visual cues. On
the one hand, the diffuse albedo map needs to maintain sharp
texture features while being free of view-dependent highlights,
shadows and indirect light. On the other hand, the specular
albedo and roughness values are often nearly constant over parts
of objects made of the same material, and are conveyed by high-
light information from different views. These observations mo-
tivate us to predict the diffuse and specular parameters via two
different tracks, and to feed each track with different visual in-
formation.

For the diffuse albedo, we complement the input image with
the median image, as the median rejects highlights that only
appear in a few images. We also include the maximum image
to help the network locate shiny areas where highlights might
need to be suppressed even if present in many images.

In addition to the images used by the diffuse track, we feed
the specular track with the minimum image as it further helps
locate parts where the color changes significantly across views.
We also provide the specular track with normal and depth maps,
which delineate different objects that often have different spec-
ular values. Our experiments revealed that providing all these
extra images to the diffuse track degrades its prediction, as the
network struggles to select the relevant image structures among
too many visual channels. In addition, reprojection errors due
to the approximations in retopologized geometry can be prob-
lematic (see Sec. 7.1).

Finally, we favor smooth specular maps by post-processing
their predictions with a differentiable bilateral solver [44, 6]
guided by the predicted diffuse albedo. This edge-aware
smoothing attenuates discontinuities due to reprojection mis-
alignments. Unlike Li et al. [6] we do not run our diffuse

albedo maps through the solver as we observed this leads to
over-smoothing of diffuse albedo maps resulting in loss of tex-
ture details.

4.2. Network Architecture

Our network architecture is based on the ones by Deschaintre
et al. [3, 28] which were also designed for material estimation
but works on a single flat patch of size 256x256x3. Their archi-
tectures follow the widely popular U-Net encoder-decoder [45],
to which a fully-connected track responsible for processing and
transmitting global information was added. We maintain the
same U-Net architecture augmented with the global track but
we half the number of feature layers from 8 to 4 to make the
networks lighter with the feature counts in the encoder down-
scaling layers of 64, 128, 256, and 512. We did not observe
any significant degradation in the maps due to this reduction
in network capacity. We follow the same downsampling and
upsampling process as described in [3] with the feature counts
used in reverse order for the decoder. Instance normalization is
used for stability and we also regularize by applying dropout at
50% probability on the last three layers of the decoder.

The main difference lies in the input/output; Specifically our
network architecture differs in two ways. First, we separate out
the network into two tracks one each for diffuse and specular
maps. The two tracks serve different purposes with the diffuse
track predicting only diffuse albedo maps, while the specular
track outputs the specular albedo and roughness maps. The two
tracks are two separate networks. While training, we can ei-
ther train one of the networks without sharing any information
between them or both networks by jointly computing the loss
on output of both networks. We use individual training to train
the networks and joint training to fine-tune the networks post-
training. Please see Sec. 6 for training details. Second, since we
feed the network with multi-view information in the form of im-
age statistics, we have more input channels compared to 3 chan-
nels for the previous networks. Concretely, since we feed the
median, maximum and input image to the diffuse track which
thus has 9 input channels, while for the specular track, we also
provide the minimum image, depth and normal buffers resulting
in 18 input channels.

For the network used to predict confidence channels to guide
the bilateral solver, we follow the same CNN architecture and
hyper-parameters for the solver as used in previous works [6,
44]. We include detailed breakdown of the network architecture
and the parameters used in the supplemental PDF.

4.3. Loss Function

Many inverse rendering methods supervise their predictions
of geometry, material and lighting by comparing re-rendered
images to input images using a differentiable rendering loss
[5, 26]. At scene-scale, such a rendering loss needs to model
global illumination effects present in the input [6]. We depart
from this family of methods by focusing on a scenario where
geometry is given, such that our task boils down to predict-
ing material maps only. In this context, we can supervise our
method by comparing our prediction to ground truth SVBRDF
maps rather than by attempting to reproduce the input. A local
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lighting model is sufficient for this purpose, as was originally
proposed by Deschaintre et al. [3] in the context of planar sur-
face patches. While Deschaintre et al. use point and directional
lights, we improve on their approach by incorporating distant
area lights modeled as spherical Gaussians.

Concretely, we use a simple differentiable renderer that takes
as input the material maps along with the normals of the ge-
ometry. Our goal is to compare the local appearance of our
predicted material maps to the local appearance of the ground
truth SVBRDFs. To do so, we render the prediction and the
ground truth under several viewing and ligthing conditions and
compare the resulting images under the L1 norm and E-LPIPS
perceptual metric LE [46] after applying a log transform (I′ =
log(0.1 + I)) to compress the dynamic range of the renderings.
Following Deschaintre et al., we generate random viewing con-
ditions by sampling view vectors over the hemisphere centered
around the original view direction from which the input image
was rendered. We then generate lighting conditions likely to
produce highlights by positioning a point light in the mirror di-
rection of the view vector. Finally, we also create extended light
sources by generating a mixture of 5 Gaussian lights with ran-
dom width, color and direction distributed over the hemisphere.

We implement the shading of a point under distant area light
sources by using the spherical warp introduced by Wang et
al. [47]. The light, as well as the BRDF, are approximated as
two Spherical Gaussians, for which a fast closed-form convolu-
tion exists. Using this approximation allows us to include ex-
tended light sources in the rendering loss without losing compu-
tational efficiency for training. Our final rendering loss averages
the image differences obtained with three point-wise lighting
conditions and with three extended lighting conditions.

In addition to the rendering loss, we also use L1 and LE

to compare the individual predicted maps to their respective
ground-truth. Denoting I a rendered image, D the diffuse
albedo, R the roughness, and S the specular albedo, the total
loss we use is thus:

L = [LE(I) +L1(I)]
+LE(D) +LE(R) +LE(S )
+ λ(L1(D) +L1(R) +L1(S )) (2)

where λ is 0.1.

4.4. Merged Renderable Scene Assets

The second step of our method merges the material maps pre-
dicted over each input view to form a single, object-space ma-
terial map texture atlas suitable for rendering. We leverage the
retopologized 3D mesh to identify which texel corresponds to
each pixel in all input views. We select the final value of each
texel as the median value of all its predictions. This median
filter is especially effective at removing erroneous predictions
that are not consistent across views (see Sec. 7.3.1) including
the ones due to re-projection artifacts caused by approximate
geometry and camera calibration in real-world scenes.

Figure 5: Renderings from our synthetic dataset used for training our network.
The dataset has a variety of different lightings, materials and viewpoints.

5. Synthetic Training Dataset

We trained our method by generating a dataset of synthetic
renderings with corresponding ground truth material maps. We
use professional artist-modeled assets in Autodesk 3DS Max
with high quality V-Ray materials, that help bridge the gap be-
tween training data and real re-topologized scenes. We pur-
chased a set of scenes 1 and extracted basic environments and
several different objects that we recombined to create new scene
configurations, on which we place objects with different mate-
rials.

We augment the initial artist-generated materials with ma-
terials from Deschaintre et al. [3], hand-picked to correspond
well with the underlying geometry and to cover a wide range
of everyday indoor materials such as wood, metal, plastic, rub-
ber, leather, etc. Each choice of materials and objects provides
a scene configuration, for a total of 160 scene configurations,
created from 5 “base scenes” with a set of random object place-
ments. We place area and point lights in the scene, as well as
environment maps that typically illuminate the scenes through
a window.

We rendered each image using a Cook-Torrance BRDF
model with a Beckmann normal distribution, which we have
implemented in the Mitsuba physically-based path tracer for
full global illumination [41]. We subsequently denoised each
rendering using the Optix denoiser [48]. For each image, we
also generate the ground truth SVBRDF maps, i.e., diffuse
albedo, roughness and specular albedo rendered as images. Fi-
nally, we pre-compute the per-pixel re-projected color statis-
tics (minimum, median and maximum) for each image in our
dataset.

We render each scene configuration under 40 different view-
points, yielding a total of 6400 images at resolution 640 × 384
pixels (see Fig. 5 for a small selection). At training time, we
extract random crops of 256×256 pixels from each image to be

1From https://evermotion.org/shop/cat/355/all_scenes/0/0,
Volume 1, 8 and 30.

https://evermotion.org/shop/cat/355/all_scenes/0/0
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Figure 6: Retopologized geometry with selected input images for real
kitchen (left) and real hallway (right) scenes.

fed to the network, which effectively augments the size of the
dataset, to around 45,000 individual crops.

6. Implementation Details

We have implemented our method in python using the Py-
Torch [49] framework for deep learning and C++/OpenGL
shaders for all steps that require reprojection.

At inference, we run the CNN over images in 640 × 384 res-
olution. If the aspect ratio does not match, we zero-pad to fit to
the nearest multiple resolution. We expect input images in lin-
ear color space, and we apply a log transformation followed by
a normalization to [−1, 1] to flatten the dynamic range before
processing by the CNN. For real images, we assume gamma
correction of 2.2 to convert to linear space.

Our system for dataset generation includes a plug-in for 3DS
Max that exports materials into Mitsuba-compatible format us-
ing our BRDF model. To handle complex material graphs, we
evaluate them in 3DS Max and save texture layers subsequently
used by Mitsuba.

We first train the diffuse track and then the specular track
separately over 15 epochs each, using ground truth maps for
the missing components when evaluating the rendering loss.
We then fine-tune the two tracks jointly for 15 epochs. Over-
all training takes 18 hours on a 4 RTX8000 GPU cluster node.
The confidence networks for roughness and specular maps are
trained for 100 iterations. We use the Adam optimizer [50] with
a fixed learning rate of 2e − 5 for all training.

We will release all source code for our method, including the
dataset generation system, and all training images used for our
results.

7. Results and Evaluation

We show results and evaluations on two synthetic scenes
(Veach Ajar, and Dining Room), and three real captured scene
(Real Office, Real Kitchen, and Real Hallway). The cap-
ture details and scene lighting conditions are provided in Ta-
ble 1. We also provide comparisons on two additional synthetic
scenes (Living Room, and Kitchen). We provide a supplemen-
tal video showing view dependent effects over paths and image
sequences. We strongly encourage the reader to view the videos

to appreciate how our automatically created material maps are
directly usable for physically-based rendering and scene edit-
ing.

For synthetic scenes, we render a set of views of the scene,
and then use these as if they were photographs to run our entire
pipeline; we use the original geometry in this case. Note that as
a result the ground truth materials are encoded as a single ma-
terial map texture atlas to be comparable with the results of our
method. For real scenes, we take a set of photos of the scene,
paying attention to capture highlights in several views, then run
structure-from-motion and multi-view stereo to obtain an initial
3D reconstruction. We hired a professional artist to turn these
reconstructions into a retopologized mesh (shown in Fig. 2(a)
and 6). We use Blender automatic UV-unwrapper to unwrap
the meshes into texture atlas. The resolution of the texture atlas
is 16Kx16K pixels for the scenes we considered.

Synthetic data allows quantitative comparisons on both the
material maps and the renderings; for real scenes we can only
show qualitative results due to the lack of ground truth maps.

7.1. Results
In Fig. 7 and 8, we show the scene geometry textured with

final approximate material maps obtained by our method. For
synthetic scenes we also show the ground truth maps. Addition-
ally, for both synthetic and real scenes, we show the re-rendered
image, i.e., we generate the material map texture atlases us-
ing our method and then provide them to a path tracer along
with the geometry to render the scene with full global illumi-
nation effects. To achieve a result as close as possible to the
input image, we place the lights manually to match input con-
ditions as much as possible. Despite these approximations, our
re-renderings are plausible renditions of the input images, illus-
trating the efficacy of the approximate material maps we obtain.

Our method manages to capture the overall material proper-
ties of the objects even in real scenes, e.g., in the Real Office
scene the desktop and the red box are shiny while the yellow
box on the right and the orange are more diffuse.

In Fig. 9 we show results with modified lighting conditions
and object insertion from different viewpoints on real scenes.
This figure shows that we achieve our goal of creating plausible
material assets for photorealistic scene editing. For each scene,
we show a view in input lighting condition and the same view
with modified lighting condition. We are able to remove and
move shadows and highlights on most surfaces. We further aug-
ment the scene by inserting complex objects, such as a metallic
statuette in the Real Office scene and a transparent water gob-
let and wine bottles in the Real Kitchen scene. Our material
maps, together with the retopologized geometry are complete
digital assets, and thus allow renderings with full GI interac-
tions between real and virtual objects, such as color bleeding,
refraction, caustics and internal reflections when rendered using
a path tracer. We emphasize that such effects are not possible to
reproduce using relighting based object insertion methods such
as [51, 52, 53].

7.2. Evaluation
The only other methods designed to handle our input at

scene-scale are differentiable rendering approaches [8, 14]; un-
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Figure 7: Results on two synthetic scenes where the ground truth is available. For each scene, in the first row we show an input view and the ground truth diffuse,
roughness and specular maps for that view. The second row shows the re-rendering followed by the maps obtained using our method for the input view shown. We
are able to reproduce renderings which are close to the input view using the approximate material maps generated by our method.

Scenes #images Resolution Pre-processing Prediction Texturing (×3) Total
Veach Ajar 160 640 × 384 7.56 3.93 3.12 20.85
Dining Room 105 640 × 384 4.56 3.26 1.32 9.14
Real Office 245 640 × 355 11.48 5.84 4.77 31.63
Real Kitchen 296 640 × 411 32.05 25.25 7.91 81.03
Real Hallway 226 640 × 414 16.10 10.26 7.03 47.45
Mean 14.35 9.71 4.83 38.02

Table 1: Timing breakdown for each step of our method on the scenes used for our experiments. All times are reported in minutes.

fortunately neither code nor data (in the form of input images
we can use for SfM/MVS) is available, precluding direct com-
parison. In any case, our method can be seen as complementary
and could be used as an initialization for these methods, poten-
tially accelerating their process. We report the timings for dif-
ferent steps of our method and compare with timings reported
by these previous works to support our claims. Additionally,
we present best-effort evaluation using two baselines. We also
present a set of ablation studies to analyse the effect of our var-
ious design choices.

7.2.1. Speed
We show the timing breakdown of each step for our

method (pre-processing (Pre-processing), single-view predic-
tion (Prediction), and texture atlas generation (Texturing) on a

system with an Intel Xeon Gold 5218 2.30GHz Processor and
Quadro RTX 5000 GPU, in Tab. 1. We observe that it is pos-
sible to create renderable assets from a multi-view dataset with
approximately 30 minutes to an hour of computation depending
on number of images and their resolution. Previous works deal-
ing with scene-scale material estimation [8, 14] report around
10 − 12 hours for a complete scene optimization. Thus, our
method is able to produce renderable material maps in a frac-
tion of time as compared to previous works. Note that the tim-
ings reported do not include the time taken for reconstruction
and re-topology of the mesh.

7.2.2. Comparisons
We compare to two baselines: The first mimics current prac-

tice in digital content creation and uses the retopologized geom-
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Figure 8: Results on real scenes. For each scene, we show the re-rendering in closest matched capture conditions and the maps obtained for the given input view
using our method.

etry to project the input images into texture space, using median
filtering to create an RGB atlas (Texture), while the second
is based on the single image method of Li et al. [6] (LiEtAl).
Specifically, we run the method of Li and colleagues to generate
maps for each input view, then we run the same pipeline as for
our method to create a material texture atlas for the scene from
the multiple predicted maps. We implement their BRDF model
in Mitsuba to generate the re-renderings.

We perform quantitative and qualitative comparisons for our
method compared to the two baselines. Since the first baseline
does not estimate maps, and LiEtAl infers maps for a differ-
ent BRDF model, we only compare re-renderings, i.e., we re-
render the scene for a set of views. We perform quantitative
comparisons by computing PSNR and DSSIM error [54]. We
show the numerical results in Tab. 2, and a visual comparison
in Fig. 10 and 11. For the visual comparison, we show the input
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Figure 9: Scene editing with our method on real scenes from input and novel viewpoints. From left to right, we show the scene re-rendered with capture
configurations, the same view re-rendered with modified lighting, with a virtual object inserted along with modified lights, and the modified scene from a novel
viewpoint which is never captured. For example, for the real office scene we have added the statuette; notice how shadows underneath the red book and orange fruit
have been (re)moved correctly on modifying lights (first row, blue and red inset) and the color bleeding of the red box and orange on the statuette (first row, green
and yellow inset) due to correct interaction between real and virtual objects which cannot be achieved by relighting based object-insertion methods. Our method
enables insertion of objects with highly complex materials such as in the real kitchen scene, we have inserted a goblet of water and two bottles of wine. Since our
method produces digital assets that can be directly used for rendering, our renderings exhibit complex lighting phenomena such as caustics (second row, red inset)
and internal reflection (second row, green and yellow inset) which is enabled by our method while removing shadows (second row, blue inset; third row red inset)
and correctly predicting the specular material e.g., on the knives and the red shoe-stone in real hallway scene as illustrated by the rendered highlights (second row,
red inset; third row, blue inset). Please see the supplementary video for results with moving paths and lights to better appreciate these effects.

view on which the maps are predicted. In line with our aim of
generating plausible material assets for scene editing, we gener-
ate ground truth re-renderings of a modified scene by rendering
the scene with modified lighting using ground truth SVBRDF
maps. To show how our method compares against the two base-
line for this task, we re-render the scene with modified lighting
but with the material maps obtained by the three methods. We
see that our approach shows much better variations of appear-
ance, i.e., shiny materials, compared to the LiEtAl that strug-
gles to identify shiny materials and Texture where everything

is diffuse by construction. Our method works well for novel
views which we show by re-rendering a novel view for each
scene. This view was never seen by the network and no maps
were predicted for this viewpoint. The quantitative results are
computed on 10 views of each scene selected from a rendered
path; we also show a video comparison on the rendered path
along with the ground truth in the supplemental video. We see
in Tab. 2 that our method is numerically best for both synthetic
scenes on both PSNR and DSSIM metrics. In Veach Ajar scene
our method performs significantly better than the baselines as
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Figure 10: Comparisons with baselines on synthetic scenes; For each scene, we show an input view and a novel view; in the first row we show the viewpoint with
original input lighting condition (Original Light GT). From second row onwards we modify the lighting in the scene and show the same view re-rendered with
modified lighting condition using ground truth maps (Modified Light GT), our maps (Ours), maps produced by LiEtAl and the baseline static Texture generated
using the input images. Column 1 and 3 corresponds to an input view while column 2 and 4 corresponds to a novel view for which no maps were predicted. Notice
how LiEtAl fails to reconstruct highlight properly and the Texture is composed of pre-baked highlights and shadows from original lighting condition.

PSNR ↑ DSSIM ↓
Method LiEtAl Texture Ours LiEtAl Texture Ours
Veach Ajar 12.97 18.70 21.53 0.37 0.30 0.27
Dining Room 21.33 15.12 21.77 0.36 0.62 0.34
Living Room 13.67 19.97 25.61 0.44 0.44 0.16
Kitchen 9.06 16.54 21.28 0.52 0.42 0.30
Mean 14.26 17.58 22.55 0.42 0.44 0.27

Table 2: Quantitative comparison on 4 synthetic scenes. Our method performs
best across the scenes which supports our qualitative observations (see also
Fig. 10 and 11).

we can see how our method is able to approximately recover
the gradation in specularity between the teapots while both the
baselines fails to do so. In Dining Room scene, numerically
our results are better yet close to LiEtAl, although it’s worth

noticing that visually our method is able to do much better. For
example, we are able to recover the spatial variation in rough-
ness of the table top which LiEtAl fails to do and ends up over-
smoothing the diffuse albedo. This shows the advantage of us-
ing multi-view information which helps the network infer the
spatially-varying nature of roughness locally as well as glob-
ally for each surface point.

Since we do not have ground truth for real scenes, we show
qualitative results on Real Office scene in Figure 12. We show
5 re-renderings of the scene with modified lighting using our
method and the baselines. In line with our observations on syn-
thetic scenes, we observe that our method is able to predict the
variations more accurately than LiEtAl which fails to recon-
struct highlights on glossy surfaces such as the tabletop and red
box. Compared to Texture we can easily see that the surfaces
do not reflect the change in lighting and the baked-in shadows
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Figure 11: More comparisons with baselines on synthetic scenes; The layout is the same as for Fig. 10. Similarly as in Fig. 10 we see that our approach shows
much better variations of appearance, i.e., shiny materials, compared to the LiEtAl that struggles with shiny material sand texture details and Texture that contains
pre-baked highlights and shadows from input images owing to its diffuse and static nature.

and highlights are still present due to the static and diffuse na-
ture of the texture; please see the video to appreciate the visual
importance of this effect.

7.3. Ablations
7.3.1. Multi-view Reprojections

We perform a first ablation on the two main components of
our algorithm: 1) we remove the statistics reprojected from
other views (No RP) and 2) we remove the merging of maps
in texture space (Ours Im.). We show quantitative comparisons,
where we provide error in form of Mean Squared Error (MSE)
for the three maps computed for 10 randomly selected input
views.

We show quantitative results in Tab. 3,4 and an example of
the visual effect of the different cases of increasing multi-view
information with each step in Fig. 13. Using all our compo-
nents improves results in the majority of cases. The use of the
reprojected image statistics makes a very significant difference

in the quality of the maps. While merging in texture space may
not significantly improve quality, it helps with increasing con-
sistency between different views for the underlying surface ma-
terial properties (especially for roughness and specular maps)
and thus helps improve quality of the final re-rendering. Repro-
jection improves roughness on most of the objects in the scene,
but sometimes has a negative effect on background parts that
lack observations (see Fig. 13); this explains why No-RP has
better MSE for roughness in Dining Room in Tab. 3.

7.3.2. Inaccurate Geometry
We study the robustness of our method for inaccurate geom-

etry by running our pipeline on the degraded mesh obtained
directly from multi-view stereo (MVS) [42] which consists of
large holes and bumpy surfaces. The bumpy surfaces are an in-
stance of extreme vertex perturbation. We show a qualitative
comparison in Fig. 14. From the figure we can confirm that the
maps obtained from the MVS mesh is only slightly degraded
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Figure 12: Comparison with baselines in Real Office scene. We render a novel viewpoint with changing lighting conditions and show 5 frames with different
lighting conditions. Notice how our method (re)move shadows (red arrow) and reconstruct highlights (green arrow) accurately while both LiEtAl and Texture fail
to do so. Please see the supplemental video to appreciate the smooth transition of the highlights and shadows as a result of movement of the light sources.

Synthetic Veach Ajar
MSE ↓

Method Diffuse Roughness Specular
Ours 0.022135 0.055563 0.016522
Ours Im. 0.030718 0.064362 0.049969
No RP 0.141682 0.372725 0.055459

Synthetic Dining Room
MSE ↓

Method Diffuse Roughness Specular
Ours 0.026491 0.071609 0.028250
Ours Im. 0.026642 0.077578 0.024123
No RP 0.053104 0.048222 0.032385

Table 3: Quantitative evaluation for the ablation on the synthetic scenes on
the material maps, with 1) no reprojected statistics, 2) no multi-view merge in
texture space. We see an increase in multi-view information helps improve the
maps quality and/or consistency across views (see also Tab. 4 and Fig. 13).

Veach Ajar Dining Room
Method PSNR ↑ DSSIM ↓ PSNR ↑ DSSIM ↓

Ours 19.520969 0.190185 19.35363 0.244253
No RP 11.338421 0.413321 17.675568 0.343187

Table 4: Quantitative evaluation for the ablation on the synthetic scenes on
the re-renderings, with 1) no reprojected statistics, 2) no multi-view merge in
texture space. Using multi-view statistics achieves better re-rendering quality
than using only a single view (see also Tab. 3 and Fig. 13).

compared to the re-topologized mesh. Thus, our material esti-
mation is robust to geometrical inaccuracies. While the maps
obtained are similar, the final image obtained after re-rendering
is highly degraded when rendered since the MVS geometry
has bumps and holes. To obtain high quality re-renderings we
need good geometry, justifying our design choice of using re-
topology. In future work, it may be possible to adapt previous
methods (e.g., [55, 56]) to provide geometry that corrects these
errors for flat surfaces, but it would be necessary to preserve the

relatively well reconstructed irregular objects (such as the fruit
on the table).

8. Limitations and Future Work

Despite yielding convincing re-
renderings on synthetic and on real
scenes, our method still has sev-
eral limitations. Our final texture-
space maps often suffer from lim-
ited resolution, since the texture atlas
can provide only limited space for a
given object (see inset, where the texture of the red box cov-
ers only a very small part of the texture atlas). This is an in-
herent problem with texture-space methods, and alternative ap-
proaches (e.g., see [57]) could be a good direction for future
work. While reprojection error may be a contributing factor
for blurriness in results, we believe our use of median filter to
merge and obtain texture-space maps alleviates this problem.
We focused on estimating BRDF parameters for each texel of
a texture atlas. A natural extension would be to also estimate
per-texel normals expressed in a local coordinate frame, which
would allow the reproduction of small geometric details not
modeled in the retopologized mesh. However, such small-scale
relief is often difficult to perceive when captured from far away.

In some cases, e.g., the banana and pear,
our method predicts glossiness that is high;
we hypothesize that this is due to the re-
projection errors due to the mismatch be-
tween the re-topologized and real scene ge-
ometry. The effect of this is visible in the
reprojected min image (see inset).

The dataset we created to demonstrate our approach of-
fers limited variability, which in turns limits the ability of our
method to handle diverse scenes. While we provide our toolbox
to generate additional training images, rendering large datasets
is costly and could benefit from strategies to reuse computation
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Figure 13: Example images from Synthetic Dining Room showing the effect of increasing multi-view information on results. Note how the quality of the maps is
significantly improved by using the reprojected statistics observed in our image space predicted maps as compared to no reprojection, i.e. using only a single image.
Furthermore, gathering the image space maps in texture space helps improve the consistency of the maps across views and thus improves re-rendering by assigning
same material in local regions (esp. in roughness and specular maps). As a result, re-rendering is closer to ground truth.
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Figure 14: Effect of inaccurate geometry. We run our pipeline on the MVS
mesh obtained directly from [42]. The results from the MVS mesh is on the
left column and our re-topologized mesh on the right column. We show a re-
rendering in the first row, followed by the albedo, roughness and specular maps
obtained using our method in subsequent rows respectively.

across views [58]; we hypothesize that augmenting the variety
and the number of training images seen by our network will
improve results overall, possibly helping remove shadow and
incorrect color residuals that are sometimes still present in our
albedo maps.

We rely on fixed color statistics to aggregate the multi-view
information that we feed to our per-view CNNs, and we employ
a fixed median filter to merge the resulting per-view predictions
into texture space. Replacing these two operations by differen-
tiable pooling in a learned feature space could yield improved
predictions, as has been done in other applications [59, 60].
However, training such an architecture end-to-end raises spe-
cific challenges, such as storing multiple CNN tracks in mem-
ory and performing differentiable re-projection in the texture
atlas while doing per-image processing.

9. Conclusion

We have presented the first attempt at creating scene-scale
material map textures of indoor environments using deep learn-
ing. Our solution retains the strength of image-space CNNs,
which have proven successful at recovering material parameters
for close-up photographs of flat surfaces and isolated objects.
To apply such CNNs at scene scale, we first inject multi-view
information by computing statistics about a pixel color when
re-projected into neighboring views. We then move to texture

space to merge per-view predictions into a single texture atlas
suitable for rendering.

Our method allows automatic generation of material maps
that allow plausible renderings, retaining the overall look of
multiple objects in a scene, both for synthetic scenes with avail-
able ground truth and for real scenes. Our results demonstrate
that by exploiting reprojected multi-view data, improving the
rendering loss and exploiting state-of-the-art components it is
possible to provide an operational pipeline to extract convinc-
ing materials at scene-scale from a set of images as input.
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