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A

Figure 1: Our method reconstructs volumetric density fields from sketch inputs using an updater CNN. The efficient reconstruction at test
time enables interactive authoring and editing of arbitrary smoke shapes. From left to right we show results for the smoke jet, puppy and
dissolving character examples.

Abstract
Creative processes of artists often start with hand-drawn sketches illustrating an object. Pre-visualizing these keyframes is
especially challenging when applied to volumetric materials such as smoke. The authored 3D density volumes must capture
realistic flow details and turbulent structures, which is highly non-trivial and remains a manual and time-consuming process.
We therefore present a method to compute a 3D smoke density field directly from 2D artist sketches, bridging the gap between
early-stage prototyping of smoke keyframes and pre-visualization. From the sketch inputs, we compute an initial volume estimate
and optimize the density iteratively with an updater CNN. Our differentiable sketcher is embedded into the end-to-end training,
which results in robust reconstructions. Our training data set and sketch augmentation strategy are designed such that it enables
general applicability. We evaluate the method on synthetic inputs and sketches from artists depicting both realistic smoke
volumes and highly non-physical smoke shapes. The high computational performance and robustness of our method at test time
allows interactive authoring sessions of volumetric density fields for rapid prototyping of ideas by novice users.

CCS Concepts
• Computing methodologies → Shape modeling; Neural networks;

1. Introduction

Digital content creation requires a constant and iterative interplay
between artists and the generated data. At the core of these work-
flows, digital artists first manually generate concept sketches in the
pre-visualization stage, which are then transferred into 3D models.
Creating content in this manner requires a significant and costly
authoring effort. To bridge the gap between early-stage prototyp-
ing and visual realization, sketch-based modeling methods have
been developed that can reconstruct 3D geometries from 2D input
sketches.

Many existing approaches target a particular class of objects and
leverage domain-specific geometric constraints. Accordingly, they
make use of properties such as symmetry, smoothness, or adja-
cency [EBC∗15, MHZ∗15]. To reconstruct non-flat silhouettes or
higher-frequency information, various sketching paradigms have
been explored to inject curvature variation across surfaces or sharp
features [JHR∗15, LPL∗17, LSGV18]. Particularly challenging is
the integration of domain knowledge for creating volumetric den-
sity fields, such that intrinsic flow details are captured. Existing
sketch-based cloud modeling techniques circumvent this by adding
noise to the shape boundary [SBRS10] or by deferring the synthe-
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sis of high-frequency details to the rendering stage [WBC08], at the
cost of reduced control.

We address this limitation by integrating low- and mid-frequency
flow structures already in the modeling step. We focus on the gen-
eral class of turbulent density volumes, including physically plau-
sible smoke keyframes and artistic smoke creatures, and target the
method to early-stage prototyping of effects and communication
of ideas. We impose a shading-based sketching style that follows
the principles of effects drawing depicted in [Gil12]. Our data-
driven method then infers 3D densities from the sketch inputs in
real-time (Figure 1 and Figure 2), allowing on-the-fly testing and
editing. Such a sketch-based reconstruction has to handle a set of
unique challenges, as the problem is ill-posed due to the sparsity
of sketch data and the ambiguity when inferring another dimen-
sion [DAI∗18, WCPM18, LPL∗18]. Previous work indicates that
the use of convolutional neural networks is especially powerful in
such tasks [DAI∗18, LSS∗19, MST∗20].

In our work, we present a neural network architecture that
keeps the artist in the loop. The method uses an iterative strat-
egy [DAI∗18, LTJ18], which alternately refines the shape for each
input viewpoint (e.g., front and side). This design choice further al-
lows an artist to dynamically add sketches from further viewpoints
if needed, and hence enables fine-grained control over the final
shape. As opposed to previous CNN-based reconstruction methods
(such as [DAI∗18]), our method can reconstruct richer flow details
and is more robust to variations of the input. This is attributed to
the following key contributions that are essential for the robust re-
construction of smoke volumes:

• A real-time, iterative refinement method that can handle arbitrary
viewpoints and preserves previous views in the reconstruction.

• A differentiable sketch generator for smoke volumes that mimics
the principles of effects drawing, and corresponding loss func-
tion.

• A data augmentation technique accounting for sketch style varia-
tions that significantly increases the robustness of the reconstruc-
tion.

• A post-processing network based on multi-pass
GAN [WXCT19] that extends the sketched low- and mid-
frequency details with fine structures.

We evaluate the method on synthetically generated sketches, val-
idate the quality of the results and ease of use by accompanying
user studies and comparisons with previous work, and demonstrate
the following demo applications:

• 3D results reconstructed from artist sketches.
• Real-time authoring sessions of artists displaying the ease-of-use

creation and editing of volumetric density fields, which demon-
strates a gentle learning curve even for novices and non-artists.

• Density keyframe generation for smoke animation control.

2. Related Work

We focus our discussion on deep learning based 3D modeling from
sketches. For a more general overview of sketch-based systems we
refer the interested reader to [CSGC16, KYZ14].

A

Figure 2: Screen capture of an interactive authoring session of a
volcanic plume, and the corresponding sketch and rendered result.

Learning-based sketch modeling. For geometric shape model-
ing, Convolutional Neural Networks (CNNs) were used to build
a direct mapping from sketches to procedural 3D shape models
[HKYM16, NGDA∗16, LGK∗17], mostly restricted to pre-defined
object classes and fixed viewpoints. Delanoy et al. [DAI∗18]
trained a CNN to predict occupancy in a voxel grid based on a
single or multiple contour drawings as input. The method first gen-
erates an initial reconstruction with a single-view network, and then
uses a so-called updater network to iteratively refine the prediction
as new drawings from additional views are provided. We follow
their idea of using subsequent refinement steps, but propose signif-
icant changes to the network components, loss functions and train-
ing process for increased robustness and multi-view consistency.

Li et al. [LPL∗18] use a CNN to infer the depth and normal maps
representing the surface of an object. To reduce ambiguity, the net-
work additionally considers the flow field of the surface to generate
a confidence map. The input to the network consists of sketches,
silhouette mask, and optional depth sample points and curvature
hints. Depth and normal maps were also used to reconstruct a dense
point cloud from sketches [LGK∗17]. The decoder captures the ob-
ject’s surface from several viewpoints, which are then fused into a
single 3D point cloud through optimization. To eliminate the need
of well-labeled hand-drawn sketch data during the training process
and hence allow sketch style variations, Wang et al. [WQWF18] in-
troduced an unsupervised learning model. A shape representation
was also learned in a fully self-supervised system in [SBS21] to
prevent non-manifold artifacts in the parametric shapes.

A deep learning based sketching system has also been used for
3D face and caricature modeling [HGY17]. 2D lines representing
the contours of facial features represent the input to a CNN. An
initial sketching mode is followed by sketch and gesture based re-
finement steps. Deep learning was also used for an interactive mod-
eling tool of 3D hair from 2D sketches [SZF∗20]. Hair contour and
a few strokes indicating the hair growing direction are used by a
first network to generate a 2D hair orientation field, which is then
processed by a second network to output a 3D vector field. For
sketch-based garment design, a joint latent shape space is learnt
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across different modalities representing the draped garment, body
shape parameters and garment parameters [WCPM18].

Noteworthy is also the non-photorealistic rendering system Syn-
Draw that facilitates the generation of synthetic drawings to train
sketch-based modeling systems [WB19], and the work of Zhong et
al. [ZGZS20] that identified the main differences between sketch-
and image-based modeling with respect to style variance, imprecise
perspective and sparsity.

The above discussed CNN-based 3D shape reconstruction meth-
ods fail by design to reconstruct realistic flow details, as they target
different classes of objects compared to our work. In contrast, our
reconstruction is driven by fluid simulation data that captures tur-
bulent structures realistically and maps them to the sketched cues.

Modeling density volumes. To our knowledge, no method exists
that generates 3D reconstructions of density volumes with realis-
tic flow structures from 2D artist sketches. Classical, non-learning
based approaches typically require a mesh or surface as input and
fill the volume with density values or particles. Turbulent struc-
tures can be mimicked by adding noise to the boundary parti-
cles [SBRS10]. The lack of physical plausibility is manifested in
the results, which we address by driving our reconstruction with
simulated flow data. Clouds have also been authored by a skeleton
approach to model the surface shape and by adding details during
rendering [WBC08]. This is opposed to our method, where such
details are included in the 3D representation. While it would be
possible to couple the above mentioned methods with a fluid solver
to achieve physically realistic structures, this would inherently pre-
vent interactive frame rates during authoring and restrict the tool to
artists with expert knowledge in animation and effects.

Less related to our work but noteworthy are reconstruction meth-
ods developed in fluid animation. 3D fluid densities and motion
have been reconstructed from image sequences [EHT18, EUT19,
FST21, QLWQ21] and 3D smoke has been stylized based on 2D
example images [KAGS19, KAGS20]. Sketches have only been
used in form of strokes on selected keyframes to control the motion
of liquids [PHT∗13]. Local editing is computed with an efficient
optimization and propagated spatially and temporally. Sketched
strokes were also used in interactive environments to define shapes
and connections of fluid circuits primarily applied in medicine
[ZIH∗11] and for 2D flow field design using a generative adver-
sarial network [HXF∗19].

3. Overview

The design principles of effects drawing, and in particular of
smoke, provide us a solid foundation for the design of an algo-
rithm that progressively refines a 3D density volume at arbitrary
viewpoints based on artist sketches.

3.1. Fluid Sketch Principles

Sketching fluid objects, such as smoke, requires a specific style
and workflow. The first step towards a tool designed to inter-
pret such drawings is to understand their specificity. We ana-
lyzed smoke drawings from multiple sources, such as the book of

Updater 𝒰𝒰
Postprocess

IVM

+

Rotate for each view

Sketch & Rollback 
Losses

Ground Truth
Density Loss

Training

Sketcher ℛ
Sketcher ℛ

Figure 3: Overview of our method. At inference time, the updater
network U takes as input a sketch and a density volume (initial-
ized by IVM) and computes a residual to correct the volume. By
rotating it to arbitrary viewpoints the result can be iteratively re-
fined. A subsequent post-processing GAN synthesizes additional
fine structures. At training time, our sketcher generates drawings
of our smoke data set. The sketcher is also a key component of the
unsupervised sketch and roll-back losses.

Gilland [Gil12], and summarize the findings that have driven the
development of our tool and that explain the differences to draw-
ings of solid objects.

Strokes. Common to many sketch-based modeling techniques, the
input to our method is a user-drawn sketch. Even with modern dig-
ital tools, the workflow is still close to pen and paper drawing. Our
style is thus made of several strokes with varying shades of grey and
thickness (both properties respectively linked to the pressure and
inclination of the pencil or piece of chalk). The main dark strokes
express the silhouette and the contours of additional inner details.

Generality. Key to the plausibility of natural systems is the chaotic
nature, which forbids any kind of problem simplification with struc-
tures, symmetries, hard edges or parallel strokes. Therefore, our
method does not have to carefully reproduce such geometric fea-
tures, but cannot either rely on them to better reconstruct the object,
as commonly done by previous work [XCS∗14].

Simplicity. Intrinsic to effects drawings are natural design princi-
ples. Instead of filling the drawing with random details, every de-
tail represents a pattern of energy. Fluid energy propagates through
different scales, the so-called Kolmogorov cascade, which results
in turbulence patterns that can visually be clearly distinguished. It
is often advised to keep the drawing simple and to focus on a few
frequencies rather than drawing all intricate details - not least to re-
duce the sketching time that would otherwise grow exponentially.
Our sketch style follows this principle, which at the same time is
also beneficial for machine learning.

Volume. Inner contours are too sparse to fully express the many
variations of the curvature of smoke objects. Additional shading is
used by artists to encode this information, which also gives a better
intuition of the relative placement of smoke structures. To comply
with the simplicity of the strokes guideline, we impose a two-color
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toon shading with a light source placed such that on average 2/3 of
the smoke is in the light. We see this requirement for shading as a
trade-off between a too simplistic sketch that would fail to capture
the intricate details of the smoke and a more complex representa-
tion that might prevent novice users from using our tool. We show
in Section 8.1 that this additional color information, even painted
carelessly and unrealistically, provides a powerful control hint to
solve curvature and depth ambiguities in the reconstructed density.

3.2. Pipeline

One major challenge of sketch-based modeling lies in the depth
ambiguity and occlusions that cannot be captured from a single
viewpoint. We follow [DAI∗18] and allow a user to progressively
refine sketches at different angles and hence iteratively update and
relocate smoke structures. Our pipeline is depicted in Figure 3. The
core of our method is an updater network (Section 4.2), which takes
as input a 3D voxel grid containing smoke densities and a sketch of
the desired output from the target view. The output is a corrected
volume that respects two key properties:

Accuracy The output density volume seen from front view should
correspond to the input sketch.

Stability The density parts that are not visible from the front view
should be preserved to ensure multi-view continuity.

The initial density can be user-provided, but we also propose a sim-
ple method to create an initial guess from two sketches in canonical
views (Initial Volume Modeling, or IVM, Section 4.1). We elimi-
nate the need for artists to sketch high-frequency flow structures by
using a variation of multi-pass GAN [WXCT19] that synthesizes
details in a post-processing step (Section 4.4).

We use a semi-supervised training strategy (Figure 3, bottom),
designed to enforce the two properties of the updater detailed
above. The key ingredient is a new synthetic sketcher for smoke
volumes (Section 5), aiming at producing sketches that are compli-
ant with the guidelines of Section 3.1. It has two main functions:
First, to automatically annotate a data set of smoke models (Sec-
tion 6). Second, the differentiability property of the sketcher al-
lows us to incorporate it in the loss functions. This enforces the
accuracy property, which we reformulate as the minimization of
the difference between the input sketch and the synthetic sketch of
the output. Generalizing this to all previous viewpoints leads to the
rollback loss (Section 4.3), which enforces the stability property of
the updater.

4. 2D Sketch to 3D Density Prediction

Sketches are the primary control tool for the artist during the au-
thoring process. They represent the input to our convolutional neu-
ral network (CNN) that computes the corresponding volumetric
density fields. To allow for multi-view sketching, we use a refine-
ment strategy: the volume is rotated to face the sketch viewpoint
and is then corrected by the network.

4.1. Initial Volume Modeling

The initial volume modeling (IVM) computes an initial guess
for the density field d̂0 from the provided input sketches s, i.e.

input initial
volume

f fl flf flfl

Figure 4: From two input sketches depicting the front and left
views, we compute the initial volume and then alternately optimize
the front (f) and left (l) view density reconstructions with an updater
CNN. The intermediate density fields and corresponding sketches
illustrate the convergence.

d̂0 = V(s1, ..,sn). For each sketch, we first extract the contours and
foreground with thresholding and filling operations (note that our
sketching style imposes a different color for the background). From
the inputs of the different viewpoints, we compute a visual hull and
an initial guess of the density distribution. We calculate the inter-
section of these volumes from the different views, blend them and
apply Gaussian blur to smooth the boundaries. The output repre-
sents the initial guess for the subsequent optimization steps, i.e.,
the input to the neural network. The initial volumes are depicted in
Figure 3 and Figure 4. Note that IVM requires at least two view-
points (possibly duplicates of the front view). In all our illustrations
and most examples we use two input sketches indicating the front
and left views, i.e., d̂0 = V(s f ,sl). In practice, arbitrary additional
views can be added if needed.

4.2. Updater CNN

We adopt an updater CNN U that alternately optimizes information
from the different input views. We refer to each of these iterations
as pass p, associated with a camera orientation θp.

Each pass p takes as input an artist sketch sp and a previously
reconstructed density field d̂θp

p−1 = T (d̂θp−1
p−1 ). Note that we need

to rotate (i.e., T (.)) the output of pass p− 1 computed at an angle
θp−1 to obtain the input of the next pass p at an angle θp. The re-
constructed density after p passes, seen from an angle θp, is then
given as d̂θp

p = U(d̂θp
p−1,sp). In the first iteration, the predicted den-

sity field corresponds to the initial density d̂θ0
0 = d̂0 computed with

IVM and no rotation is performed d̂θ1
0 = d̂θ0

0 . During training, we
pick a random view from one of the 24 canonical views in each
pass, as multi-pass/view training results in higher robustness for
the reconstruction when the density field is optimized from multi-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



B. Kim, X. Huang, L. Wuelfroth, J. Tang, G. Cordonnier, M. Gross, B. Solenthaler / Deep Reconstruction of 3D Smoke Densities from Artist Sketches

ple viewpoints. An overview of the training pipeline is shown in
Figure 3.

Figure 4 shows the output of the individual passes at test time for
an example where two sketches are provided. The updater CNN al-
ternately uses the front and left view sketch in the optimization. In
this example, a total of 4 passes are computed (front - left - front
- left). The intermediate density reconstructions and correspond-
ing sketch representations illustrate the convergence after multiple
passes.

The concept of using an updater network is similar to Delanoy
et al. [DAI∗18], but there are significant differences in the network
components, loss functions, and training process that impact recon-
struction quality and robustness of predictions. We train the net-
work to predict the residual (dθp − d̂θp−1

p ) [HZRS16] for correction
instead of predicting the density field directly. Due to the ambigu-
ity of line drawings, [DAI∗18] focuses on a few informative view-
points for training. Although we also use canonical viewpoints, our
differentiable sketcher allows not only less ambiguity on depth with
its shading, but also easy extension to arbitrary viewpoints on the
fly, without any loss of generality.

Sketcherℛ

𝓛𝓛𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑑𝑝𝑝
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…
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Sketch Loss

Figure 5: In addition to the density loss, our training process uses
the sketch loss (left), which compares the input sketch sp to a syn-
thetic sketch created from the output density ŝp. The rollback loss
(right) further rotates the output density back to face the previous
viewpoints to match the corresponding target sketches. In practice,
this enforces that the unseen details are not changed by the updater.

4.3. Loss Functions

In each pass, we calculate view-dependent losses (density loss,
sketch loss, depth variation loss) and a loss over all preceding
passes (rollback loss) for preserving reconstructions of previous in-
put views.

Density Loss. We define our density loss Ld in terms of L1 loss
on the reconstructed field, similar to [KAT∗19]:

Ld(d̂,d) = ||d̂ −d||1, (1)

where d refers to the ground truth density field and d̂ is the recon-
structed field from our updater network.

Sketch Loss. An important difference to previous work is the inte-
gration of a differentiable sketcher R (Section 5) into the network,
which allows us to generate a target sketch sp =R(dp) and a sketch
of the reconstructed density ŝp =R(d̂p) at each pass p during train-
ing. We use this to minimize the distance to the input sketch with a
sketch loss Ls (Figure 5, left) given as

Ls(ŝ,s) = ||ŝ− s||1, (2)

where s is the input sketch and ŝ is the rendered sketch from the
reconstructed density d̂.

Depth Variation Loss. As the sketch loss only focuses on the ren-
dering of the 3D volume, there is no constraint in the depth di-
rection during training. Although the sketch shading encodes some
depth information, artifacts in depth are still noticeable even with
the density loss (Figure 20). We, therefore, use the total variation
loss in the depth direction as a regularizer to enforce smoothness:

Ltv(d̂) = ||∂d̂
∂z

||1. (3)

Full Objective. We define an auxiliary loss Laux combining sketch
loss and total variation loss in depth as following:

Laux(d̂,d) = wsLs(R(d̂),R(d))+wtvLtv(d̂), (4)

where ws and wtv are weights for the sketch loss and total variation
loss set to 0.03 and 0.1, respectively. We can then define a pass loss
Lp as

Lp = pLd

(
d̂θp

p ,dθp
)
+Laux

(
d̂θp

p ,dθp
)
+wrb

p−1

∑
n=1

Laux

(
d̂θn

p ,dθn
)
.

(5)
We refer to the last term as the rollback loss (Figure 5, right)
weighted by wrb. The rollback loss compares the synthetic sketches
of the generated density and the one of the ground truth from all
previously reconstructed viewpoints. This enforces the updater to
preserve the density in the areas unseen by the current view as
much as possible, which would otherwise be degraded. The roll-
back weight defines how much the updater network preserves the
reconstructions of previous viewpoints. While at the beginning of
the optimization a large degree of freedom is necessary and hence
a lower value for wrb is advantageous, a larger value is important
in later steps to preserve structures reconstructed from other view-
points. Therefore, we progressively increase wrb from 1 to 100 dur-
ing the first epoch.

The total loss is then defined as

Ltotal =
∑pLp

∑p p
. (6)

4.4. Post-processing Network

To alleviate the need for an artist to sketch small-scale structures,
we use a second network to synthesize flow details onto the recon-
structed density. We use the architecture of tempoGAN [XFCT18]
but restrict the model to the spatial discriminator. For the training,
we first add the ground truth velocity to the input data, which dur-
ing inference is the output of the density prediction d̂p. Similar to
multi-pass GAN [WXCT19] we train the network in two passes. In
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Figure 6: Details can be synthesized with multi-pass GAN onto
a density field (left) and controlled by the curl-noise parameters
(middle, right).

each pass we decompose the 3D data into a stack of 2D slices along
an axis, using the z-axis in the first pass and the x-axis in the sec-
ond. The passes are trained separately with the same architecture.
At test time, since we have no velocity information in the sketches
nor the reconstructions, we synthesize turbulent flow fields with
curl-noise [BHN07] onto the reconstructed density fields. The dif-
ferent parameters - octaves for frequency, seed, and velocity scale
- allow control over the visual result as depicted in Figure 6.

5. Differentiable sketcher

Our sketcher aims to generate a stylized representation of a smoke
keyframe that respects the guidelines observed in Section 3.1.

Previous techniques typi-
cally extract contours from
meshes [DFRS03] (inset image,
left) and cannot be directly ap-
plied to amorphous shapes such
as smoke densities. Although
isosurfaces can be extracted from the density grid and converted
into a mesh, the choice of the isovalue is not obvious and typically
low-density details are lost in the process. Therefore, for cartoon
rendering of smoke, particles have been used and traced through
the underlying fluid grid, and then rendered as textured billboards
without [SMC04] and with [MF06] shading and shadow effects.

In contrast to using tracer particles, we work directly with vol-
umetric data and adapt the mesh contour extraction to amorphous
smoke shapes (inset image, right). Our method is inspired by the
absorption in smoke rendering and estimates a normal map. We
average normals for a range of density isosurfaces at the visible
’boundary’ of the smoke (Equation (8)). At each position p in the
volume, the normal of the isosurface is the gradient of the den-
sity field: ∇d(p). We integrate the normals along the viewing rays
while weighting them such that the normals closer to the boundary
have higher importance. For a ray r, the normal nr is given as

nr =
∫ ∞

0
∇d(r(s))w(r(s))ds, (7)

where s is the distance to the camera and w the weighting factor.

A possible choice for the weights is to use the transmittance of
the smoke. Computing the averaged normal would then be equiva-
lent to the rendering of the smoke, where the density gradient is set
as the light emission of each of the voxels. We found, however, that
this strategy results in too smooth variations in normals, leading to
blurred sketches. Therefore, we choose a stricter filtering strategy:

Let τ(s) be the accumulated density along the ray: τ(s) =
∫ s

0 d(t)dt.
We choose our weight as

w(s) = ξ
2 · τ(s)e−ξ·τ(s), (8)

where ξ = 5 is a scale coefficient. This ensures that a small band of
smoke close to the boundary contributes to the final normal while
discarding the low-density voxels that are first encountered by the
ray and which produce noisy normals.

We make two assumptions to discretize Equation 7. First, we
assume that the gradient of the density is constant between two
voxels , and second, that τ varies linearly in a small neighborhood.
The normal can then be defined as

nr =
i=n−1

∑
i=0

∇d(i)+∇d(i+1)
2

∫ i+1

i
w(τ(s))ds+n∞

=
i=n−1

∑
i=0

∇d(i)+∇d(i+1)
2

[−(ξ · τ+1) · e−ξ·τ]
τ(i+1)
τ(i)

τ(i+1)− τ(i)
+n∞,

(9)

where n is the number of cells along the ray (here it is assumed to
have a cell size of 1, without loss of generality). Similarly, n∞ is
the background normal, that we set as opposed to the view direction
v:

n∞ =−v
∫ ∞

n
w(τ(s))ds =−v(ξ · τ(n)+1) · e−ξ·τ(n). (10)

The integral appearing in Equation 10 is also used as a mask that
indicates if the ray intersected the smoke.

We normalize nr, which is then used to extract the contours c as:

c = max(0,min(−nr ·v,δ))/δ, (11)

where δ is a threshold set to 0.8. We then add a two-colors toon
shade t to provide more information about the volumes and we
combine all to compute the sketch s as

s = (1− c) · c+ c · t. (12)

The individual steps of the sketcher R are visualized in Figure 7.

Figure 7: The differentiable sketcher computes normals, contours,
and toon shading (from left to right), and combines them into the
final sketch (right).

6. Training Data Generation

The generality of our data set (data set and code will be released af-
ter acceptance) is key for robust and high-quality reconstruction of
diverse scenes sketched by artists, that can include both physically
inspired and non-physical shapes and motions of smoke. There-
fore, we build a new data set consisting of smoke densities, which
captures a large variety of volumetric shapes. We also augment the
output of our synthetic sketcher with several strategies to increase
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the robustness of our network with respect to small variations in
sketching styles.

6.1. Simulation Training Data

Our simulation data set consists of 39,380 density fields (from
1641 simulations) used for training and 600 density fields (25 simu-
lations) for validation. Example snapshots from the training set are
shown in Figure 9 and in the Supplementary Information (SI). Each
simulation contains 20 frames without source and 30 frames with
source computed at a resolution of 1293. We run the simulation
in Houdini with randomly changing temperature diffusion factor,
cooling rate, viscosity, buoyancy strength, and direction, as well as
sharpening and turbulence factors.

For simulations without a source, the pre-generated source is set
as the initial density of the simulation. For the ones with source, we
selected one of the regenerated sources and combined it with a max
operator on the ongoing simulation. The number of sources for each
simulation are [1,2,3,4] with probability [10,5,2,1]/18. The shapes
of the initial sources are generated by computing a random shape
from a set of union or difference of cube, cylinder, and sphere, and
setting the resulting shape as the initial density of a fluid simulation
that we run for 10 frames. We added this supplementary operation
to remove sharp edges and corners found in the initial shapes and
to capture a more diverse range of densities than the original binary
ones.

Based on the density histogram, we find that both simulation
strategies are complementary to each other. No source data are
dominant by small density values, while with source data higher
density values can be observed. In this way, our neural network
model is not biased to learn to output small or large values only. It
also helps to increase variation in the data set so that we can handle
various unseen data, such as simulation with and without sourcing.

6.2. Sketch Training Data and Augmentation

The synthetic sketcher allows us to inexpensively build a large
data set of smoke simulations coupled with sketches. We used
sketch sizes of 2582. Using a larger size compared to the density
fields improves quality and is also more artist-friendly. To increase
the robustness against variations in artist style, we augmented the
sketches used in the training to cover different values for bright-
ness, contrast, contour strength, toon shading color, blurring, and
slurring [SSISI16] in x and y directions as noise addition, and vari-
ations in the light direction in x and y (see SI). Figure 8 illustrates
the different properties.

7. Implementation and Synthetic Results

We first provide additional details on the implementation and then
evaluate our reconstructions on the training and validation data set
and on synthetic scenes.

7.1. Implementation and Performance

We implemented our system in PyTorch and used the Adam opti-
mizer [KB15] with a learning rate of 0.0001. Our network follows

Brightness Contrast Contour width Shade color

Blur Slur Light direction Default

Figure 8: Sketches are augmented to consider variations in sketch-
ing styles to increase robustness of the reconstruction.

a U-Net architecture. The details of the architecture can be found in
the Supplementary Information (SI). In the decoder, we use near-
est neighbor upsampling with flat 2D convolution instead of trans-
posed convolution to avoid checkerboard artifacts [ODO16]. The
network is trained on density fields in the range [−1,1], using the
full objective. In all our examples we used 3 passes in the training
and two subsequent refinement steps (front-left (fl)) at test time.
Different settings are evaluated in the ablation study in Section 9.3.

Our model converges in 10 epochs (see SI), and the training time
with our data set takes up to 3 days using 4 NVIDIA GTX 1080
GPUs. At test time, the IVM computation with front and side in-
put sketches takes ∼ 6.5ms per frame on a single GPU. Similarly,
the update step of our trained updater CNN takes ∼ 3ms per frame.
With refinements on front and left views (fl), the total inference
time is ∼ 12.5ms per frame and hence our method is able to recon-
struct 3D densities in real-time.

The post-processing model is trained with 20 epochs and takes
up to 8 hours to train the first pass and another 8 hours for the
second pass using an NVIDIA RTX 3080 GPU. At test time the
network takes ∼ 2s per frame for the first pass and ∼ 0.5s for the
second pass.

Input sketch Sketch of output Output Ground truth

Figure 9: Density reconstructions of seen (top) and unseen (bot-
tom) examples of our data set. From left to right: input sketch,
sketch of the reconstructed density, reconstructed density, ground
truth density.

7.2. Reconstruction of Training and Validation Data

Figure 9 shows the front view result of a reconstruction of the train-
ing data set (‘seen’, top row) and validation set (‘unseen’, bottom
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row). From left to right we show the sketch of the ground truth
(input sketch), the sketch of the reconstructed density, the recon-
structed density (without post-processing), and the ground truth
density. It can be seen that only minimal differences are visible
between the input sketch and the sketch of the output. The recon-
structed density is - as expected - smoother than the ground truth.
This is because the sketch lacks complete information about the
original density. This implies the ambiguity of several possible den-
sities corresponding to a given sketch. While an alternative could
be to use a sketch style that also encodes fine flow structures, we
preferred to follow the sketching principles outlined in Section 3.1
and, if desired, to synthesize high-frequency details in the post-
processing.

7.3. Reconstruction of Synthetic Scenes

We show that our method generalizes well to various scenes by ap-
plying it to inputs from physically-based simulations and selected
frames from animation sequences including a character, cloud,
and puppy animation. For these examples, we generated synthetic
sketch inputs by applying our sketcher to the given density field. It
is important to note that the given density cannot be directly com-
pared to the reconstructed density: our method infers a density such
that its sketch is close to the input sketch.

7.3.1. Simulated Smoke

We used a selected frame of the smoke jet data set of [KAGS19]
and applied our sketcher to the existing density field to generate
sketch input keyframes for front and left views. Figure 10 shows
the synthetically generated sketch from the given density (input to
our method), the sketch of the reconstructed density field, and the
reconstructed density without and with post-processing. The recon-
structed density closely matches the footprint of the input sketch.
We measure the quality of the inner details by comparing the syn-
thetic sketches of the input with the one of our output, where we
see that the shading and inner contours are well captured.

Front

Left

Input sketch Sketch of output Output Post-processed

Figure 10: Result using a physics-based simulation data set (smoke
jet) of [KAGS19] showing front and left views. From left to right:
input sketch, sketch of the reconstructed density, reconstructed den-
sity, post-processed result.

7.3.2. Animation Data

To evaluate the model on unseen (non-smoke) shapes, we used se-
lected keyframes of animation sequences as input and show the
corresponding reconstructions in Figure 11, without and with post-
processing. The top row shows the results using the dancing char-
acter animation data set from Adobe’s Mixamo Gallery [MG]. This
data is not only difficult because no comparable examples were
part of the training data set, but also because of thin extremities
and occlusions. The remaining rows show results using the cloud
data [CL] and a keyframe of a running puppy animation [Nit]. For
the character and puppy examples, we first converted the original
meshes into volumes before computing the input sketches. Only
minimal differences are visible when comparing the input sketch
to the reconstruction sketch, demonstrating that our method is not
only able to reliably reconstruct unseen shapes, but especially also
handle non-physical (non-smoke) inputs.

Input sketch Sketch of output Output Post-processed

Figure 11: Results using keyframes of three unseen animation se-
quences: dancing character, clouds, and puppy. From left to right:
input sketch, sketch of reconstructed density, reconstructed density,
post-processed result.

7.3.3. Arbitrary Viewpoints

In most of our examples, we show results where the sketches are
prescribed from canonical viewpoints (front and left views). We
believe that this is one of the most complicated cases for density
reconstruction because no information is shared between the dif-
ferent views. But we also show that our method can be applied
efficiently to sketches from arbitrary viewpoints. The main - clas-
sical - issue is that the corners of the domain are cropped during
rotation. We chose not to increase the size of the volume, but in-
stead we reduce the domain to a sphere inscribed inside the 1293

cube. A quick computation shows that proportionally less volume
is wasted with this strategy. Figure 12 shows an example where the
puppy model was reconstructed from sketches drawn from arbitrary
viewpoints. The last row demonstrates again the effect of the neural
post-processing to synthesize turbulence details.

8. Application Demos

We demonstrate our approach on three real-world applications. We
first present 3D smoke results generated by artists, introduce our in-
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Figure 12: Our method can seamlessly handle progressive gen-
eration from arbitrary viewpoints despite training with canonical
views. From top to bottom: input sketches, reconstructed densities,
and post-processed densities.

teractive authoring tool for smoke keyframe prototyping and show
how the 3D models could be used in animation.

8.1. Results on Artist Sketches

We used sketches drawn by multiple different artists to evaluate our
method at test time. We instructed the artists to sketch keyframes of
smoke or an imaginary smoke-like object. For each example, we re-
quested a front and side view sketch. We provided specific instruc-
tions for image size (256x256), light direction (front-right, slightly
up), shading (toon, white, and grey), colors (grey-black lines, white
background), and line width and style (up to 5px with Gaussian
falloff).

Figure 14 depicts different keyframes drawn by artists and the
corresponding reconstructions, without (left) and with (right) post-
processing. The scenes illustrate a dissolving character that trans-
forms into a rising smoke cloud, a shape of a lion that transforms
into a rhino, and a smoke plume that transforms into a bird-like ob-
ject. A sequence depicting the dissolving character can be seen in
Figure 13. Further sequences, as well as sketches and renderings
from other viewpoints, are provided in the SI.

Our method works surprisingly well for such highly non-
physical examples. The reconstructed density and sketches thereof
closely match the input sketches from the artists. Note that the re-
construction is also robust to variations from the prescribed sketch
style and can handle inconsistencies of shape and shading between
the different views.

We observed that artists took advantage of our sketch style to
draw in a coarse-to-fine manner (Figure 15). First, they specify the
silhouette, giving a global sense of the resulting volume. They sub-
sequently refine with sketches detailing the inner contours, which
result in interior volumes where the direction of curvature or rel-
ative depth is not the one desired by the artists. Fortunately, this
can be effectively corrected by a last stroke with shade informa-
tion. Interestingly, our system proved robust to unrealistic shading,
and even non-artists intuitively used this tool as an extra hint for
the network to solve ambiguities in the reconstruction.

8.2. Real-time Authoring in Houdini

We have implemented a Houdini plugin for interactive smoke field
authoring. For two selected authoring sessions with different artists,
we show a screen capture, the generated sketch, and final rendering
in Figure 16 and Figure 2. It took the untrained artists only a cou-
ple of minutes to create, iteratively edit the shape, and render the
final result. Noteworthy is that our sketcher provides the artist with
an estimate of sketches as guidance from unseen viewpoints. The
accompanying video shows additional examples by novice users. It
can be seen that the sketched front and side view inputs do not per-
fectly correspond and that some artists even varied the sketch style
or introduced imperfections such as gaps between strokes. Even
in such challenging cases, our method could reliably infer the 3D
shape. In Figure 17 we used an image from [Gil12] as input to our
tool. We duplicated the front view, edited the resulting side view,
computed the 3D reconstruction, and rendered the result with a liq-
uid texture.

8.3. Keyframe Control of Smoke Simulations

A further application of our method is the authoring of density vol-
umes that can then be used as target keyframes in fluid simulation
control methods. We use the most recent approach for keyframe
control [TACS21] that employs a differentiable fluid solver to com-
pute derivatives of the objective indicating target density matching
quality with respect to control parameters, to generate animations
that match the targets. We take the reconstructed densities as target
keyframes from the dancing character (Figure 11), top row) and
dissolving character (Figure 14, top row) scenes, and use the ear-
liest frame as the initial state and the later two frames as targets.
Selected frames from the keyframe control animation can be seen
in Figure 18. The resulting animation sequences show that the sim-
ulation matches the target density keyframes (inset images) while
generating intrinsic flow structures and filaments due to the dynam-
ics computed with the underlying physics solver (see also the ac-
companying video).

9. Evaluation

We compare our method to previous work and evaluate the results
in a user study with viewers. We additionally discuss the results of a
user study with artists to answer questions related to our authoring
tool and sketch style. Lastly, we evaluate the design choices of our
network and method in an ablation study.

9.1. Comparison with Previous Work

We compare our approach (without post-processing) to a previous
CNN-based shape reconstruction method [DAI∗18] that predicts
occupancy in a voxel grid based on a single or multiple contour
drawings as input. Similar to our method, an updater network is
used to iteratively refine the result. Since the previous work tar-
gets solid geometry reconstruction, we retrained the model on con-
tour drawings of our data set with the density loss (Equation (1)) to
make the results comparable. Figure 19 shows the superiority of our
method in terms of reconstruction quality of outer and inner struc-
tures, which is attributed to the network design and differentiable
sketcher.
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A

Figure 13: A sequence depicting a dissolving character sketched by an artist and reconstructed with our method. Our efficient sketch-to-
density computation is especially useful for rapid prototyping and communication of ideas.

A

A

A

Figure 14: Reconstructed results without (left) and with (right)
post-processing using sketches from three different artists. From top
to bottom: dissolving character, lion to rhino, and bird.

The same figure shows the results of a classical, non-learning-
based approach for density authoring. The cloud modeling method
[SBRS10] first computes a surface mesh, which is then filled with
particles. By adding noise to the particles, finer structures are gen-
erated. The results indicate that our approach can reconstruct flow
details more realistically and accordingly suggest the advantage of
driving the modeling by simulated flow structures rather than noise.

9.2. User Study

9.2.1. Evaluation with Viewers

We conducted a user study with 53 viewers to evaluate how they
perceive our results in comparison to previous work (A) [DAI∗18]
and (B) [SBRS10] (Section 9.1). For 8 different scenes, we showed
the rendered images of the three methods side-by-side in random
order. Table 1 summarizes the statistics for the three scenes shown
in Figure 19. We asked the users to rate the image with the best

A

Figure 15: Our sketch style naturally guides the users to a global-
local approach, where the silhouette (left) defines the boundaries
of the objects, inner contours (middle) specifies some details, and
shading provides an extra level of control on the direction of cur-
vature.

A

Figure 16: Interactive authoring session with an artist. The front
and side views of a smoke volume are sketched and edited in our
Houdini plugin with a real-time preview of the density field (left)
created in only a few minutes. The final rendering (without post-
processing) is shown on the right.

overall similarity to the input sketch, outer contours, inner contours,
shading (normal information), and similarity to real-world smoke.
We choose that specific order for the questions to minimize the bias
induced in the subsequent analyses. We observed another bias in
the appearance of the results, especially of method (B), for which
we rescaled the densities so that they resemble ours. The remaining
difference in appearance comes from the structure of the details
and the thicker boundaries inherent to method (B). In all questions
our method clearly outperforms the previous work, except for one
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A

Figure 17: Sketched splash of [Gil12] reconstructed with our
method and rendered with a liquid texture.

Figure 18: Selected frames of five different smoke simulations
where our reconstructed densities are used as keyframes (inset im-
ages) to artistically control the motion of the smoke [TACS21]. Due
to the underlying fluid solver, intrinsic flow details appear.

where the users found that method (A) better resembles real smoke
(Figure 19, top row).

User study (Ours [%], A [%], B [%])
Smoke data Cloud Character

Similarity (86.8, 13.2, 0) (75.4, 20.8, 3.8) (84.9, 11.3, 3.8)
Outer (98.1, 1.9, 0) (85, 7.5, 7.5) (86.8, 3.8, 9.4)
Inner (100, 0, 0) (94.3, 5.7, 0) (90.6, 7.5, 1.9)
Shading (90.6, 7.5, 1.9) (86.8, 7.5, 5.7) (69.8, 9.4, 20.8)
Reality (34.6, 40.4, 25) (54.8, 35.8, 9.4) (52.8, 32.1, 15.1)

Table 1: User study statistics for the three scenes of Figure 19.
We asked 53 participants to rate the best reconstruction (Ours,
A [DAI∗18], B [SBRS10]) with respect to overall similarity, outer
contours, inner contours, shading (normals), and similarity to real
smoke structures.

9.2.2. Evaluation with Users

We have evaluated the authoring tool with 14 users (7 non-artists,
5 hobbyists, 2 professional artists), who either tested the authoring
tool or contributed with sketches to our work. All users have at least
basic experience with image editing and 3D modeling tools. They
read our instructions on the sketch style (see SI) and were able to
adopt the style already in their very first design tests.

100% found that the method is targeting artists that need to pro-
totype and communicate ideas, while 57% and 42% could see the
tool also for high-end products and non-artist use, respectively.
62% reported that the tool is useful for early-stage prototyping,
while the remaining 38% find it somewhat useful. 85% rated the

Input sketch Ours Contour only
sketch

A B

Figure 19: Comparison with (A) a previous CNN-based recon-
struction method [DAI∗18] that uses contours as input and (B) a
surface-based cloud modeling approach [SBRS10].

reconstruction quality as good, while 60% found that the result
matches the expected intent either good or very good. They all
rated the time to generate the result as average to fast. Only 1 user
reported that the tool is unsatisfactory. The 2 users who had expe-
rience with alternative strategies to create density keyframes both
reported that they prefer our method over alternatives.

The question of whether the sketch style is intuitive was an-
swered by 64% as good to very good. Only 1 user reported that
it took too long to adapt to the imposed style, the others all gave
neutral or positive scores. Similarly, only 1 user mentioned that the
sketch style negatively impacts artistic creativity. The most nega-
tive point was attributed to the sketching of different views, which
40% found difficult, and 30% somewhat difficult or not difficult.

Ls : 0.08
Ld : 0.05

Ls : 0.06
Ld : 0.14

Ls : 0.03
Ld : 0.06

Ls : 0.03
Ld : 0.04

Ls : 0.09 Ls : 0.1 Ls : 0.05 Ls : 0.05

Density loss Sketch loss D.+S. loss Ours

Figure 20: Evaluation of loss functions. From left to right: den-
sity loss, sketch loss, density+sketch losses, density+sketch+depth
variation losses (ours). We use the input sketches of Figure 4.

9.3. Ablation Study

9.3.1. Loss Functions

We evaluated the impact of the different loss functions and illus-
trate the results in Figure 20. Using only the density loss (Equation
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1) like in previous work [DAI∗18] we observe large discrepancies
between the input sketch and the sketch of the reconstructed density
(see also SI). When using only the sketch loss (Equation 2) results
are very detailed but at the cost of depth ambiguity. If both density
and sketch losses are used, the sketch correspondence, as well as
the depth reconstruction, are improved, but noise is well visible.
Adding the total variation loss in the depth direction (Equation 3)
eliminates these artifacts and generates the best results (our model).
Figure 20 also embeds a quantitative quality measure (value of den-
sity and sketch loss). Lower values stand for higher accuracy.

9.3.2. Recursive Passes

We evaluate our network with various numbers of passes at training
and test time. We show the results on front view only in Figure 21,
where each row corresponds to 1, 2, and 3 passes during training,
respectively, and each column to 1, 3, and 6 successive refinements
at test time that we denote by ‘f’, ‘fff’ and ‘ffffff’. We observed
that the difference between training pass 3 and 4 is marginal; we
therefore used 3 passes in all our examples. They result in a clearly
better reconstruction than the single-pass version, which justifies
the use of our rollback loss.

On the other hand, with 3 and more passes during training, the
number of successive optimization passes at test time has less in-
fluence. The results in ‘f’ already recovered most of the features
of the input sketches and are slightly improved by ‘fff’, which is
hardly distinguishable from ‘ffffff’. Next, we alternate front and
left view refinement steps (f, fl, flf, flfl) and show the impact on the
reconstruction quality in Figure 4. For most examples, a front view
optimization followed by a left view refinement (fl) is sufficient;
for some examples (i.e., simulated smoke) the quality was further
improved by additional passes (flfl).

1 pass (training)
Ls : 0.04

Ls : 0.07 Ls : 0.09

2 passes
Ls : 0.06

Ls : 0.03 Ls : 0.04

3 passes
Ls : 0.05

Ls : 0.020 Ls : 0.016

Test time: f fff ffffff

Figure 21: Evaluation of recursive passes (during training) and
inference sequence (at test time). We use 3 passes in practice.

9.3.3. Sketch Augmentation

We argue that using augmented sketches in the training favors gen-
erality. We evaluate this property in Figure 22 and show compar-
isons of reconstructions from different sketches modified to be far
from our initial parameters. On the top row, we input our synthetic
sketch of the character scene, where we reduced the brightness and
the line width. On the bottom row, we use one of the artist examples
that is far from the prescribed style. The middle column shows our
results with data augmentation, while the right one shows the re-
sults without. Several parts of the sketches were not reconstructed,
which shows the need for data augmentation for more generality in
the sketch style.

Ls : 0.014 Ls : 0.020

A Ls : 0.030 Ls : 0.031

Input Ours No augmentation

Figure 22: Using sketch variations in the training improves the
robustness of the reconstruction quality. We reduced the bright-
ness and contour width of the sketch of the character example (top
row) and evaluated the bird scene that deviates from the prescribed
sketch style (bottom row). From left to right: sketch input, results
after training with sketch augmentation, results without augmenta-
tion.

9.3.4. Different Data Set

We justify the need for a new data set by training our model with
the state-of-the-art Scalarflow data set [EUT19] captured from real
smoke. We show in Figure 23 our results with the character scene
(top), and the ones obtained after training with Scalarflow (bottom).
The results indicate that although Scalarflow exhibits smoke vol-
umes of extremely good quality, it does not embed enough vari-
ability to reconstruct arbitrary scenes.

10. Discussion and Conclusion

We presented a method for reconstructing 3D density fields from
2D artist sketches. Our technique fills the currently existing gap be-
tween hand-drawn sketches and 3D pre-visualization, allowing an
artist for the first time to prototype interactively 3D smoke volumes
for testing and communicating ideas. Accordingly, our method tar-
gets the early design stage of 3D smoke rather than high-end pro-
duction. We proposed an updater CNN architecture for optimizing
density fields from arbitrary viewpoints, synergistically combined
with a differentiable sketch renderer in an end-to-end training. The
loss functions are specifically designed for the sketch-to-density
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Ls : 0.012 Ls : 0.016 Ls : 0.014

Ls : 0.020 Ls : 0.025 Ls : 0.019

Figure 23: 3D reconstructions computed with a model trained on
our data set (top) and Scalarflow (bottom), highlighting the impor-
tance of using a well-designed training data set for generic appli-
cations.

problem. The training data set was carefully designed for gen-
eral applicability, demonstrated by applying the method to diverse
density volumes ranging from physics simulations, captured real-
world flows, procedural clouds, character animation, and highly
non-physical artist sketches.

During the algorithm design, we had in mind that the method
must be efficient at test time to enable interactive prototyping, edit-
ing, and pre-visualization of smoke animations. This is a prerequi-
site for future integration into workflows and tools used by artists.
Our total inference time per frame is 12.5ms and hence enables
real-time previews during sketching. We have implemented a Hou-
dini plugin and demonstrated in interactive authoring sessions that
a volumetric smoke shape can be authored by an untrained artist in
only a couple of minutes.

We decided to use a high-level sketch style inspired by effects
drawing principles, which is easy to use and that allows rapid proto-
typing of ideas. A general problem of sketch-based modeling is that
the simplified representation used in the sketches introduces ambi-
guities since several possible density fields correspond to a given
input sketch. This limitation is especially pronounced when com-
paring the reconstructed densities with their ground truth counter-
parts, showing that the reconstructions are smoother than the origi-
nal volumetric field. The neural post-processing step alleviates this
to some extent; it synthesizes details that are visually important but,
on the other hand, are physically incorrect (and hence deviate from
the ground truth density fields).

Another limitation of our work is that arbitrary drawing styles
of artists are not supported. We rely on the fact that artists follow
our design principles for the sketching style, which is, for example,
using clean contours and two-color toon shading. Due to our sketch
augmentation strategy during training, we get a robust reconstruc-
tion even if an artist’s style slightly deviates from the prescribed
one, such as using different contour widths, brightness, or light
direction. Since imposing a certain sketch style may hinder cre-
ative freedom, future work may address possibilities to relax this
constraint, e.g., using a pre-processing network that converts any
sketch to our style.

We have evaluated the artists’ experience with our method and
their perception of its usefulness in production pipelines. The
artists were very enthusiastic about the overall idea, the result they
achieved, and the potential impact on industrial workflows. They
especially liked the idea to use it as a tool to communicate early
ideas with the client or art director. As the main drawback the
prescribed style and sketching with multiple viewpoints was men-
tioned. While the sketch style is a limitation of our method, all
artists responded positively to the simple use of the system and the
robustness of the reconstructions, which can be accounted to the
prescribed style.

We have further demonstrated a potential application beyond
density keyframe authoring. We used our reconstructed densities
as target shapes to guide a physics simulation with the most re-
cent fluid control technique. The resulting animation sequences are
smooth and generate realistic flow patterns due to the underlying
dynamics.

For production quality authoring higher resolution density fields
are needed. Our method does not readily extend to higher resolu-
tions because of memory requirements during training, especially
because of our recursive rollback loss. Enabling scalability of the
method to higher-resolution settings, for example by using patch-
based approaches, could be an interesting avenue for future re-
search.
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