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Figure 1: Printing-on-fabric consists in depositing strips of plastic over a pre-stretched piece of fabric. On release, the forces
exerted by the fabric make the overall structure buckle into a 3D shape. Our simulator predicts the 3D shape adopted by a
given pattern of plastic strips by accounting for the physical properties of the fabric and its interactions with the plastic layer.
Starting with this radial pattern to be printed on pre-stretched fabric (a), our simulator produces a toric shape (b) that closely
matches the fabricated result (c).

ABSTRACT
Printing-on-fabric is an affordable and practical method for creating
self-actuated deployable surfaces: thin strips of plastic are deposited
on top of a pre-stretched piece of fabric using a commodity 3D
printer; the structure, once released, morphs to a programmed 3D
shape. Several physics-aware modeling tools have recently been
proposed to help designing such surfaces. However, existing sim-
ulators do not capture well all the deformations these structures
can exhibit. In this work, we propose a new model for simulating
printed-on-fabric composites based on a tailored bilayer formula-
tion for modeling plastic-on-top-of-fabric strips, and an extended
Saint-Venant–Kirchhoff material law for modeling the surrounding
stretchy fabric. We show how to calibrate our model through a se-
ries of standard experiments. Finally, we demonstrate the improved
accuracy of our simulator by conducting various tests.
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1 INTRODUCTION
Freeform surfaces appeal to designers and engineers for the combi-
nation of aesthetic and performance they can offer. But manufac-
turing, storing and transporting freeform surfaces is often more
complex than dealing with flat pieces of material. This challenge
has motivated research on self-actuated structures that can be man-
ufactured flat before morphing to a curved state under the action
of internal stress [Gu et al. 2019; Guseinov et al. 2017; Qamar et al.
2018]. Several research prototypes rely on expensive lab equipment
and custom chemicals to program curvature into flat sheets of mate-
rials, such as liquid crystal elastomers [Aharoni et al. 2018], swelling
gels [Kim et al. 2012], or elastomeric matrices [Boley et al. 2019].
In contrast, design enthusiasts have experimented with extruding
patterns of molten plastic into pre-stretched fabric using commod-
ity 3D printers [Erioli and Naldoni 2017]. This low-cost fabrication
process, which we refer to as printing-on-fabric, allows the rapid
prototyping of lightweight freeform structures that deploy into 3D
when released (Figure 1).

Anticipating the 3D shape that a given structure will adopt under
deployment is a difficult task, as that shape results from complex
interplay between the elastic fabric and the flexible plastic. Practi-
tioners thus need to engage in a tedious trial-and-error procedure
to find patterns that yield interesting shapes once printed. Pérez
et al. [2017] and Jourdan et al. [2020] proposed digital form-finding
tools to assist in this task, but they focused on sparse networks of
plastic strips for the former, and on a specific tiling of 3-pointed
stars for the later. We identified several shortcomings in both of
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these simulators, which prevent them from achieving predictive
simulations for other types of patterns (Figure 12).

As noted by Jourdan et al. [2022], two physical phenomena con-
tribute to the emergence of curvature in printing-on-fabric assem-
blies. First, the presence of incompressible plastic embedded into
the fabric prevents the fabric to contract uniformly when plas-
tic density varies over the surface. This non-uniform contraction
results in a frustration of metric, which the structure accommo-
dates for by buckling into 3D. However, because Pérez et al. [2017]
and Jourdan et al. [2020] represent plastic strips with a reduced
model that ignores their width, they over-estimate fabric contrac-
tion transversely to the strips. Second, by depositing melted plastic
over pre-stretched fabric, the printing process results in a bilayer
structure where the fabric layer exerts stress at its interface with the
plastic layer, which the plastic also accommodates for by buckling
into 3D. While Jourdan et al. [2020] accounted for this bilayer effect
in their model, their solution was specific to thin rods and does not
generalize to arbitrary patterns.

We propose several novel ingredients to accurately simulate
printing-on-fabric assembly. In contrast to the rod-based models
discussed above, we represent plastic strips with a surface-based
representation that reproduces both the thickness as well as the
spatial extent of the deposited plastic. Furthermore, we model this
shell with a bilayer formulation [van Rees et al. 2017] that captures
the interactions between the plastic strips and the underlying fabric.
Finally, because the fabric is stretched well past its linear regime,
we propose a non-linear fabric model that we calibrate via a series
of real-world measurements. We evaluate the accuracy of our ap-
proach by simulating assemblies of increasing complexity, which
we compare to real-world fabricated samples.

Contributions. In summary, we introduce:
• A tailored simulation method capable of accurately repro-
ducing the 3D surfaces obtained when printing plastic strips
over pre-stretched fabric.

• A custom fabric model that reproduces the non-linearity and
anisotropy of real-world stretched fabric.

• A procedure to calibrate the fabric and plastic models using
physical measurements.

2 RELATEDWORK
Printing-on-fabric. The idea of creating curved surfaces by de-

positing a rigid material onto a pre-stretched substrate predates that
of printing-on-fabric, as illustrated with early explorations by Ox-
man and Rosenberg [2007], who cast resin onto latex sheets. Design-
ers Guberan and Clopath [2016] were among the first to deposit plas-
tic onto pre-stretched fabric to create their Active Shoe. Since then,
printing-on-fabric has attracted interest in architecture [Agkathidis
et al. 2019; Berdos et al. 2020; Kycia 2018, 2019], design [Erioli and
Naldoni 2017; Fields 2018], and engineering [Schmelzeisen et al.
2018].

Form-finding printed-on-fabric composites. The first computer-
aidedmethod to design printed-on-fabric patterns [Pérez et al. 2017]
focuses on sparse networks of connected curves, which gives rise
to so-called Kirchhoff-Plateau surfaces that are only but a subset of
the possible geometries that can be reached via printing-on-fabric.

Because of their specific focus, Pérez et al. [2017] could afford
approximations such as neglecting the bending resistance of the
fabric or modeling the printed rods as 1D curves with infinitely
small width, which do not hold for arbitrary patterns. Jourdan
et al. [2020] propose a form-finding tool targeted at predicting the
buckling behavior of arrangements of star-shaped plastic elements.
They incorporated a bending term but they also neglect the fact that
the printed plastic rods have a finite width. Both methods target
specific pattern arrangements, and as such they miss important
physical effects when applied to other designs.

Stapleton et al. [2019] use the FEM software Abaqus to simulate
a simple rectangular shape printed on fabric and compared the
printed results with the simulated one. By modeling explicitly the
surface of the plastic as well as the fabric, their model seems better
suited to accurately track local metric variations induced by the
width of the printed rods. However, they model the fabric as an
isotropic material, while our experiments suggest that stress in
the fabric can double depending on the orientation of stretch (see
Section 5).

Bilayer shell simulation. van Rees et al. [2017] propose a shell
simulation method capable of modeling combinations of layers with
different metrics by defining an elastic energy inner product. They
show how to compute the first and second fundamental forms of
the bilayer at rest as a function of the rest fundamental forms of
the individual layers. Chen et al. [2018] use this method to simulate
environmental effects such as moisture or temperature gradients.
We adopt this framework to model the bilayer formed by the com-
bination of plastic and fabric whose respective first fundamental
forms and material properties can be combined into a reduced shell
representation (see Section 4). Even though their method was based
on a small-strain analysis, we show how to adapt it in our case
where the fabric is stretched well past its linear regime.

Fabric modeling. Accurate reproduction of fabric’s mechanical
behavior has been an active research field. Our work fits in the
category that models fabric as an homogeneous continuum and
represents it as a thin shell. In particular, we draw inspiration from
Volino et al. [2009] who proposed to account for the non-linearity of
textiles’ behavior through the use of custom non-linear stress-strain
relations directly written in terms of the Green-Lagrange strain
tensor. Following this type of approach, other data-driven, and
often more sophisticated, material models were later presented. For
example, Wang et al. [2011] introduce a piecewise linear material
model and account for the bending resistance of the cloth. Miguel
et al. [2012] use non-linear stress-strain laws with strain-dependent
stiffness parameters represented by Hermite splines and fitted to
data acquired using a custom stereo-based measurement system. In
a subsequent work, they propose a stress-strain formulation based
on an isotropic Dahl’s model to reproduce the hysteresis observed
in real fabric [Miguel et al. 2013]. Like us, Miguel et al. [2016]
directly work on the energy density function to guarantee stress
integrability, but their approach requires 3D data for calibration.
By contrast, Clyde et al. [2017] rely on simpler standardized tests
but their multi-stage optimization-based fitting procedure is rather
involved. Closest to our work is that of Sperl et al. [2022] who
also consider an augmented anisotropic Saint-Venant–Kirchhoff
material law for their intermediate thin shell model. However, their
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model leaves aside path-dependent behavior such as hysteresis that
is important for our targeted application.

Our goal is to model stretchy fabric (here, spandex) using an
energy-based formulation that is simple (i.e. relies on a few coeffi-
cients that are easy to fit without resorting to complex optimization),
differentiable, and that can be calibrated from standard tests. More-
over, we want our model to accurately reproduce the behavior of
prestretched spandex under release, a deformation regime that has
been mostly ignored. As far as we know, no previous model satisfies
all these criteria at once.

3 OVERVIEW

Fabric Bilayer

In contrast to prior work that models
plastic printed on fabric as infinitely-
thin rods embedded into an elastic
membrane [Jourdan et al. 2020; Pérez
et al. 2017], we represent a printing-
on-fabric assembly as an inhomoge-
neous thin shell composed of two
different materials: a fabric material,
and a fabric-plastic bilayer material.
We discretize this shell as a triangu-
lar mesh, where each triangle is assigned one of the two materials
(see inset). This approach allows us to account for the spatial extent
of the plastic areas, which rod-based models ignore.

We model the fabric material with a custom formulation that
accounts for the non-linearity and anisotropy we observed in real-
world fabric, and model the bilayer material using the approach
of van Rees et al. [2017]. We describe these two models in Sec-
tion 4. We then detail how to calibrate our model from real-world
measurements in Section 5.

4 MATERIAL MODELS
4.1 Modeling spandex

Figure 2: Microscope
view of the textile, with
material axes overlaid.

Spandex is a heterogeneous material
made of a multitude of knitted syn-
thetic fibers. The shape and align-
ment of the stitches (see inset fig-
ure) explain the high non-linearity
and anisotropy of the material’s re-
sponse to deformation. Besides, due
to rearrangement of the fibers when
the textile is stretched, this response
is path-dependent. In our case, we
are particularly interested in repro-
ducing the behavior of the material
when unloaded, i.e. released after being pre-stretched.

Rather than modeling spandex at the yarn level, which would
result in accurate but costly simulations [Kaldor et al. 2008], we
approximate its macro-scale behavior thanks to a – non-linear and
orthotropic – custom homogeneous material model. As standard
when modeling textiles [Miguel et al. 2012; Wang et al. 2011], we
consider the in-plane and bending responses separately.

Membrane model. The Saint-Venant–Kirchhoff (StVK) material
model is popular in Computer Graphics for modeling cloth, owing

to its simplicity (see, e.g, [Volino et al. 2009]). However the linear
relation between the second Piola–Kirchhoff stress tensor S and the
Green strain tensor E it models does not capture well the hardening
of knitted fabrics such as spandex when largely stretched (see stress-
strain curves in Fig. 4, right). To address this limitation we propose
to model spandex as an orthotropic StVK material augmented with
two logarithmic terms such that the stress-strain relation, expressed
in Voigt notation, takes the form

S = CE −

2∑
i=1

βi log
(
γi − Eii

γi

)
ei , (1)

where ei , i = 1, 2, are the two axes of a Cartesian coordinate system
aligned with the directions of the stitches (see Fig.2), Eii is the
component of E associated to the direction ei , βi and γi , i = 1, 2,
are material constants to be determined, and C is a fourth-order
tensor, the so-called elasticity tensor, represented here by a 3 × 3
matrix, to be also fitted. Following Li and Barbič [2014], we assume
the elasticity tensor C, that encodes an orthotropic material, can
be written as

C =
1

1 − νf
2
©­«

α1
√
α1α2νf 0

√
α1α2νf α2 0

0 0 α3(1 − νf
2)

ª®¬ (2)

with unknown stiffness parameters α1, α2 and α3 and Poisson’s
ratio νf .

In the small strain regime, i.e. when the components of E are
small, Equation 1 reduces to a typical linear law. The vertical asymp-
tote when Eii tends to γi reproduces well the high increase of the
material resistance when stretch becomes large. When there is no
deformation, the division by γi in the log terms ensures that these
terms do not bring any non-physical stress.

Since S is defined as the partial derivative of the energy density
of the material with respect to E, we recover the corresponding
energy density Ψ by integrating Equation 1 with respect to E, which
gives us

Ψ(E) =
1
2
ETCE︸   ︷︷   ︸
ΨStVK

−

2∑
i=1

βi

(
(Eii − γi ) log

(
γi − Eii

γi

)
− Eii

)
︸                                             ︷︷                                             ︸

Ψlog

. (3)

Note that Ψ is only defined for Eii < γi . For practical purposes, we
linearly extend the law beyond Eii = γi − 10−6.

It is well known that the StVK material model does not model
high compression well and may lead to undesired inverted elements.
By contrast, Neo-Hookean materials, thanks to their volume pre-
serving term, do not suffer from this issue, as noted by Irving et al.
[2004]. To avoid triangle collapse near the corners of the plastic
strips, we blend our proposed material energy density Ψ with a
standard 2D isotropic Neo-Hookean energy of the form [Bonet and
Wood 1997]

ΨNH =
µ

2
(IC − 2 − 2 log J ) +

λ

2
(log J )2, (4)

where IC = λ2
1 + λ

2
2 and J = λ1λ2, with λ1 and λ2 the membrane

principal stretches. The Lamé parameters λ and µ are derived from
the average Young’s modulus Ef defined in Section 4.2 and the

Poisson’s ratio νf using the relations λ = Ef νf
1−νf 2 and µ =

Ef
2(1+νf )

.
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More specifically, using a small weighting factor ε = 0.01, we define
our final spandex membrane energy as

Ψ̃ = (1 − ε)Ψ + εΨNH . (5)

In summary, our membrane energy density comprises three
terms,ΨStVK,Ψlog andΨNH and is parametrized by the eight param-
eters α1,α2,α3, β1, β2,γ1,γ2 and νf that we will fit to experimental
data as described in Section 5.

In practice, we discretize our energies on a triangle mesh using
linear elements (constant strain triangles) and we compute the total
membrane energy by summing up individual triangle contributions
as

Wmembrane = hf
∑
i

Ψ̃(Ei )Āi , (6)

whereh is the fabric’s height,Ei is the Green strain tensor of triangle
i , and Āi the triangle’s area at rest.

Bending model. We model the fabric’s bending resistance us-
ing the discrete tangent-based bending energy by Tamstorf and
Grinspun [2013] defined as

Wbending = kB
∑
i

3∥ēi ∥2

Āi

(
2 tan

(
θi
2

))2
, (7)

where ēi is the rest length of edge i , Āi is the sum of the areas of
the two incident triangles, θi its dihedral angle and kB is an aver-
age bending stiffness coefficient fitted according to the procedure
described in Section 5.

4.2 Modeling plastic-on-fabric strips
We propose to model plastic-on-fabric strips as bilayers using the
formulation of van Rees et al. [2017]. Considering the fabric and
the plastic as two homogeneous monolayers glued to each other,
with respective Young’s moduli Ef and Ep , thicknesses hf and
hp , and metrics āf and āp , the energy of the equivalent bilayer,
parametrized on a 2D domainU with coordinates (x ,y), reads

Wbilayer =
1
2

∫
U
Ef

[
hf

8
| |ā−1

f a − I| |2 +
h3
f

24
| |ā−1

f b| |2

+
h2
f

8
< ā−1

f a − I, ā−1
f b >

]√
det āf dx dy

+
1
2

∫
U
Ep

[
hp

8
| |ā−1

p a − I| |2 +
h3
p

24
| |ā−1

p b| |2

−
h2
p

8
< ā−1

p a − I, ā−1
p b >

]√
det āp dx dy

(8)

where < A,B >= νb
1−ν 2

b
tr(A) tr(B) + 1

1+νb tr(AB) is the elastic en-
ergy inner product associated to a material with Poisson’s ratio νb
and Young’s modulus pulled out, | |A| |2 =< A,A > is the elastic
energy norm, I is the identity matrix, and a and b are, respectively,
the first and second fundamental forms of the bilayer’s midsurface
in the current configuration.

In our setting, the fabric is uniformly stretched in all directions,
so that āf = 1

s2 I, with s denoting the stretching factor. The plastic
has initially no residual strain, i.e. āp = I.

Note that the model above assumes isotropic linear material
models for both the plastic strips and the fabric underneath. While

modeling the non-linearity of the fabric behavior was important in
areas with fabric alone, the linearity assumption of the fabric in the
case of plastic-fabric assemblies is here reasonable as the in-plane
deformation of the fabric, constrained by the plastic, remains lim-
ited. However, it is essential to account for the pre-stretching of the
cloth. We also need to average the direction-dependent stiffnesses
of the fabric to approximate it as an isotropic material and define
a common Poisson’s ratio νb . Key to our model is therefore the
choice of suitable parameters Ef , Ep and νb . Their estimation will
be detailed in Section 5.

Discretization. We evaluateWbilayer on a triangle mesh with ele-
ments conforming to the shape of the strips, and we assume that a
and b are constant on each face. Following Chen et al. [2018], we
approximate a on the triangle formed by vertices vi , vj , vk as

a =
(

∥vj − vi ∥2 (vj − vi ) · (vk − vi )
(vj − vi ) · (vk − vi ) ∥vk − vi ∥2

)
,

andwe compute b using the “triangle with flaps” stencil of Grinspun
et al. [2006] as

b =
(
(nj − ni ) · (vj − vi ) (nj − ni ) · (vk − vi )
(nk − ni ) · (vj − vi ) (nk − ni ) · (vk − vi )

)
,

where ni ,nj ,nk are normals defined on the edges opposite to
vi , vj , vk respectively, and computed by averaging the normals
of their adjacent faces.

5 MEASUREMENTS AND FITTING
We now describe experiments we conducted to calibrate the simu-
lation model presented above. We conducted these experiments on
an elastic textile and a flexible plastic filament commonly used for
3D printing on stretched fabric. The textile is a finely-knitted span-
dex fabric composed of 80% polyamide and 20% elastane, while the
printing filament material is TPU 95A (thermoplastic polyurethane
with a 95A shore hardness).

The parameters of the membrane energyWmembrane depend on
α1,α2,α3, β1, β2,γ1,γ2 and νf . We fit the stiffness coefficients αi ,
βi and γi , i = 1, 2, using the stress-strain curves obtained from
uniaxial tensile tests (see Section 5.1). We also use these tests to
estimate the fabric’s Poisson’s ratio νf using video data acquired
during the tests. We obtain the shear modulus α3 from the shear
tests described in Section 5.2.

The bending energyWbending of the textile depends on the bend-
ing stiffness coefficientkB .We fit this parameter using the cantilever
tests described in Section 5.3.

5.1 Uniaxial stretch
The uniaxial tensile test consists in stretching a sample of material
along a prescribed direction and recording the resulting stress as a
function of the strain. We prepared material samples in a standard
dogbone shape. The plastic was 3D printed into a 15 cm long by 1
cm wide shape with a similar printing orientation as the printed-
on-fabric curves, while several fabric samples were laser cut out
of a 11 cm long by 2 cm wide template. The fabric samples were
cut out at different orientations to measure the orthotropy of the
material. We measured the tensile response of samples oriented at,
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Figure 3: left: uniaxial stretch testing setup with initial lengths li and displacements di (note that the displacements di can be
negative as is the case for d2), right: the stress-strain curve of a fabric sample forms a cycle because the followed path is not
the same between loading and unloading.

respectively, 0, 15, 30, 45, 60, 75, and 90° with respect to direction
e1 (see Fig. 2).

Fig. 3 (left) shows the rig setup we used to test our material
samples. The tensile measurements were performed by an Instron
5865 machine with a 50 N force sensor which tracks both the dis-
placement d1 of the clamped endpoints and the applied force f
(called the response of the material). While performing these tests,
we also record the material deformation transverse to the sample
by filming the deformation and measuring the width of the sample
at each frame. This data is used to compute the average Poisson’s
ratio of the spandex material.

The testing machine stretches and releases the samples by per-
forming load-unload cycles, which creates loops characteristic of a
hysteresis behavior when plotting the stress-strain curves, as shown
in Fig. 3 (right). This path-dependent behavior is likely caused by
internal friction between fibers of the fabric which rearrange as
the textile gets stretched [Miguel et al. 2013]. Since we want to
model the behavior of the textile once it has been stretched and
gets released, we are interested in the unloading part of the curve
(green in Fig. 3).

Estimation of the Poisson’s ratios νf and νb . We start by estimat-
ing the fabric’s average Poisson’s ratio νf , that will be needed to fit
the other material parameters. Following Volino et al. [2009], we
compute the strains Eii with i = 1, 2 (which correspond to the axial
and transverse directions respectively) the rest lengths li and the
displacements di (see Fig. 3 (left)) as

Eii =
di
li
+

d2
i

2l2i
. (9)

We approximate the Poisson’s ratio for one orientation by averaging
all the − E22

E11
values over the course of the deformation. We then

compute the final Poisson’s ratio νf to be used for the fabric’s
material model as the average over all sampled orientations. This
value is estimated to be about 0.3.

Our bilayer model assumes the two monolayers it is composed
of are made of homogeneous materials with same Poisson’s ratio
νb . Since this is not the case here, we define νb as the average of the
Poisson’s ratios of the two layers: for the fabric, we use the average
Poisson’s ratio νf obtained above; for the plastic we use a value of
0.5 as the material used (thermoplastic polyurethane) is known to
be almost incompressible [Qi and Boyce 2005]. Therefore, νb is set
to 0.4.

Estimation of the fabric’s membrane stiffness parameters α1, α2,
β1, β2, γ1 and γ2. In Section 4, we defined the stress-strain relation
of the spandex material in terms of the entries of the second Piola-
Kirchhoff stress tensor S and the non-linear Green strain tensor E,
better suited to model large deformations than the more conven-
tional Cauchy stress and Cauchy strain tensors (see Equation 1).
More specifically, letting Sii and Eii denote the normal components
associated to the direction ei of, respectively, the stress tensor S
and the strain tensor E, the relations between S1, S2, E11 and E22
read

S11 =
1

1 − νf
2

(
α1E11 +

√
α1α2νf E22

)
− β1 log

(
γ1 − E11

γ1

)
(10)

S22 =
1

1 − νf
2

(
α2E22 +

√
α1α2νf E11

)
− β2 log

(
γ2 − E22

γ2

)
. (11)

To fully decouple the stress-strain response along each material
axis, and, in doing so, ease fitting of the stiffness parameters, we
assume that the current transverse to axial strain ratio −

Eii
Ej j , i , j,

can be approximated by the average Poisson’s ratio νf . This allows
us to write the relation between Sii and Eii as

Sii = α̃iEii−βi log
(
γi − Eii

γi

)
, with α̃i = αi−

√
α1α2νf

2, i = 1, 2.

(12)
After converting the measured force-displacement pairs on the
0° and 90° swatches into stress-strain data points using relations
provided by Volino et al. [2009], we fit the ai , βi and γi parameters
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Figure 4: left: stress-strain curve for the plastic material, the
slope of its tangent at 0 is the material’s Young’s modulus;
right: stress-strain curve for the fabric material, here we are
interested in the slope of the tangent upon unloading.

to the stress-strain data using non-linear least squares. Finally, we
compute α1 and α2 from a1 and a2 by solving the 2 × 2 system of
equations.

Note that all these parameters depend on the stretching factor s of
the fabric. In practice we fit them using fabric swatches stretched up
to 45% and 70% of their initial lengths, and use linearly interpolated
values when we need to model the fabric for different pre-stretching
rates.

Estimation of the fabric’s and plastic’s Young’s moduli Ef and
Ep . We use the stress-strain curves of the plastic and the different
fabric samples to calibrate the bilayer material model (Equation 8),
and in particular, to measure the Young’s moduli Ef and Ep of the
two layers. To measure the Young’s modulus Ep of the plastic, we
find the tangent at 0 of the stress-strain curve (Fig. 4, left), the
slope of that tangent being the value of Ep . 3D printed objects are
generally anisotropic and their response may vary depending on
the orientation of the toolpaths used to fabricate them. We make
sure that the toolpaths used for the measured sample are parallel
to its main axis as it is the case for typical curves printed on fabric.

To estimate the Young’s modulus of the fabric substrate Ef ,
we follow a different procedure. Since the fabric material is pre-
stretched to high strains when the plastic-fabric bilayer is formed,
we are interested in its response for the full range of deforma-
tions, not just for strains close to zero. In fact, because the fabric
is bounded by the plastic layer, it might never reach its original
length. We account for such large deformations by computing the
slope of a straight line approximating the full unloading part of the
stress-strain curve (Fig. 4, right) for each sample orientation. The
final value of Ef is thus computed as the average of all the slopes
for each sample orientation.

5.2 Shear tests
The last coefficient needed for the membrane parametric model
is α3 which corresponds to the shear modulus. To measure this
coefficient we clamp two parallel edges of a square sample and
move one of its edges laterally while probing the response (Fig. 5,
left). We performed the measurement twice on the same sample
according to two different orientations, 90° from each other. The
results at 0° and 90° show an approximately linear response which
corresponds well with the choice of expressing shear stress as a
function of shear strain in our parametric stress-strain model (1).
The two shearing experiments correspond to the same shear strain
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Figure 5: left: shear testing setup right: stress-strain curves
for a square sample oriented at 0Âř and 90Âř, and α3 as a
linear approximation of the average of both curves.
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Figure 6: Matching measurements of cantilevered shapes
against the “master curve” of Romero et al. [2021].

value and, as expected, lead to the same shear stress response in the
linear regime, as evidenced by the common slope of the 2 curves
at the origin. However, the behaviors of the 0° and 90° samples
diverge for larger strain rates. We suspect this to be due, at least in
part, to the anisotropy of the material. Our model cannot reproduce
this orientation-dependent behavior and requires a single shear
modulus α3, that we compute as the average linear regression of
each curve.

5.3 Bending tests
The last coefficient needed for the fabric’s material model is the
flexural coefficient kB of the bending energy. This coefficient, for a
homogeneous material with Young’s modulus Ef , thickness hf and
Poisson’s ratio νf , is usually expressed as [Tamstorf and Grinspun
2013]

kB =
Ef h

3
f

12(1 − νf
2)
,

but we can directly measure it by performing a cantilever test in
which a fabric ribbon sample is clamped horizontally and a length
L of itself is subjected to gravity. Romero et al. [2021] show the
relationship between a unitless gravito-bending parameter Γ =
ρдhf
kB

L3 – where ρ is the mass density and д is the acceleration of
gravity – and the aspect ratio y/x of the bounding rectangle of the
cantilevered sample (see Fig. 6, inset). This relationship is universal
in the sense that the pair (Γ,y/x) will always be on a specific curve,
called the master curve, no matter the material properties of the
sample.
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To find the value of kB , we therefore measure y/x for different
values of L and find the coefficient kB such that the different points
(
ρдhf
kB

L3,y/x) are as close as possible to the curve in the least
squares sense. We performed the test on two different orientations
of the fabric (0° and 90°) and tested them both front side up and
back side up, for a total of 4 different experiments. The results
(Fig. 6) show a difference in kB between the 0° and 90° orientation,
which is not surprising given the structure of the knitted textile.
The difference between bending front side up and back side up
was found to be negligible in the 0° case – meaning the resistance
to bending is essentially symmetric in that direction – but for the
90° case the flexural coefficient is almost 3 times bigger on one
side compared to the other, which can be explained by the fact
that knitted textiles, in general, do not exhibit mirror symmetry
between their front and back sides and therefore can have fairly
different responses between bending upwards and downwards.
The Discrete Shells model that we use to model bending does not
account for these orientation and direction-dependent effects and is
only weighted by one flexural coefficient kB . Therefore, in practice,
we compute kB as the mean value between the 4 measured ones.

All the different parameters used in the bilayer model (Ef , Ep ,
νb ), the membrane energy (α1, α2, α3, β1, β2, γ1, γ2, νf ) and the
bending energy (kB ) are summed up in table 1.

6 VALIDATION
We now describe several numerical experiments comparing the
results of our simulator against real-world fabricated samples. We
order the experiments by complexity, starting with empty fabric,
then moving to the simulation of a single plastic strip, all the way
to the simulation of doubly-curved surfaces.

Fabric model. Fig. 7 plots the forces integrated along each edge
of a rectangular fabric sample undergoing uniaxial stretch, which
reproduces the experiment shown in Fig. 3. Our simulator yields
different forces depending on the orientation of the fabric sample,
which matches the measurements well.
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Figure 7: Comparison between simulated force values and
measurements for different orientations of a fabric sample
undergoing uniaxial strain.

Single plastic strip. We first eval-
uate our simulator on a simple as-
sembly composed of a single plastic
strip printed on pre-stretched fabric,

which curves to form a circular arc when released, as shown as
inset. We keep the length and width of the strip fixed and vary
its thickness. As shown in Fig. 8, our simulator predicts that the
curvature of the arc decreases as plastic thickness increases, and
the curvature magnitude matches measurements on real samples.
Note that the real-world measurements exhibit variance, especially
at low thickness due to printing imprecision.
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Figure 8: Evolution of the curvature of a plastic strip printed
on fabric as a function of plastic thickness. Error bars were
computed over 5 measured samples.

Multiple parallel plastic strips. We next evaluate the ability of our
simulator to account for the interactions between fabric and plastic
in the presence of multiple strips. We focus on the same pattern of
staggered parallel strips as used by Jourdan et al. [2022], which yield
cylindrical surfaces as the assembly rolls on itself when released
(Fig. 9a,b). We keep the length and width of the strips fixed and vary
their thickness hp and spacing µ. Fig. 10 plots the average curvature
of the strips produced by our simulator against the curvature of
real samples, which we measured by fitting a circle onto front-view
pictures of the cylinders (Fig. 9c). We measured the curvature of
samples printed on the front side as well as on the back side of the
fabric, as we observed that fabric side impacts curvature, possibly
because a different quantity of plastic is deposited depending on
the roughness of the fabric surface (Fig. 11). Overall, our simulator
reproduces well the curvature of real samples. First, curvature de-
creases as plastic thickness increases. Second, curvature increases
as spacing between the strips increases, because more fabric exerts
forces on each strip.

Complex strip pattern. Finally, we evaluate our simulator on a
more complex assembly of radially-oriented strips with varying
spacing, which should shape as a torus on release. Fig. 12 shows that
our simulator effectively achieves a toric shape, while the simulator
of Jourdan et al. [2020] under-estimates the curvature of the torus
as it does not account for how the fabric contracts by a different
amount transversely to the strips depending on strip density. While
we used a procedural radial pattern for this experiment, Figure 1
demonstrates successful simulation of a pattern computed with
the inverse-design method of Jourdan et al. [2022], achieving a
good prediction of the shape obtained when printing the same
pattern. Figure 13 provides additional visual comparisons between
our simulations and fabricated assemblies obtained with patterns
from Jourdan et al. [2022].
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E1 (MPa) E2 (MPa) νf α1 α2 α3 β1 β2 γ1 γ2 kB (N.m)

72.3 1.05 0.3 24161 90890 63419 29676 20512 0.9626 0.9637 9.57 × 10−6

Table 1: Parameters measured on a TPU95A filament and a spandex textile stretched up to 70% of its initial length.

(a) Pattern of parallel strips (b) Simulation (c) Real samples with varying thickness and spacing

1cm

+

+μ

Figure 9: We focused our evaluation on a pattern of parallel plastic strips (a), which rolls as a cylinder when released. Our
simulation reproduces well this behavior (b). We fabricated multiple such cylinders by varying the thickness hp and spacing
µ of the strips (c), and measured their curvature by fitting a circle on their silhouette (c, orange circle).
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Figure 10: Evolution of the curvature of parallel plastic strips printed on fabric as a function of plastic thickness hp and strip
spacing µ. Our simulator reproduces well the variations of curvature measured on real samples.
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Figure 11: We hypothesize that fabric has a different rough-
ness on each side. As a consequence, a different quantity of
plastic is deposited, which would explain why we measured
a different curvature depending on printing side (Fig. 10).

7 CONCLUSION
We have presented a physical model and calibration procedure
dedicated to printing-on-fabric. By relying on a data-driven non-
linear model for fabric, and on a bilayer shell for the plastic parts,
our simulator better reproduces real-world fabricated artifacts than
previous rod-based models. In particular, our model captures both
the extrinsic curvature produced by plastic strips that bend as
circular arcs, and the intrinsic curvature produced by the fabric
that contracts non-uniformly depending on plastic density (Fig. 12).

We tested our model on patterns of locally-parallel strips, as
proposed by Jourdan et al. [2022]. Yet, our model is generic and

should also work for other patterns demonstrated in prior work,
such as tilings of 3-pointed stars [Jourdan et al. 2020], curve net-
works [Pérez et al. 2017], or tilings of hexagons [Fields 2018]. An
exciting direction for future work would be to integrate our simula-
tor within an inverse-design algorithm, for instance to optimize the
layout and thickness of plastic elements to best reproduce a target
shape [Jourdan et al. 2022]. Indeed, accurate simulation has been
critical for inverse design of other types of deployable structures,
such as grid shells [Panetta et al. 2019] and inflatables [Panetta et al.
2021].

Our formulation and calibration protocol should also apply to
other types of fabric, plastic, and amount of stretch. Our model
might also be extended to capture other phenomena, such as plas-
ticity of the material. While Jourdan et al. [2020] accounted for
plasticity to reproduce the curvature of plastic rods, we did not find
this effect necessary in our experiments. In addition, the bilayer
model we rely on assumes isotropic plastic and fabric materials. It
could be extended to account for the anisotropy of the fabric and
further increase accuracy.

Finally, printing-on-fabric is a low-cost fabrication process that
exhibits significant imprecision. In particular, it is common that the
plastic extruded by the 3D printer does not adhere well to fabric
due to under-extrusion, or leaks from one printed element to the
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(b) Rod-based simulation [Jourdan et al. 2020] (c) Surface-based simulation (ours)(a) Initial pattern

Figure 12: Existing rod-based models fail to capture the intrinsic curvature induced by varying density of plastic strips over
the surface. Starting with a procedural radial pattern of spatially-varying density (a), the simulator by Jourdan et al. [2020]
contracts the pattern uniformly and only reproduces extrinsic curvature along the strips (b). In contrast, by modeling the
plastic-fabric bilayer with a surface-basedmodel, our approach captures well the non-uniform contraction transversely to the
strip pattern, yielding the expected toric shape as the pattern contracts more along the inner boundary than along the outer
one.

(a) Input pattern (b) Simulated shape (c) Fabricated shape

Figure 13: Visual comparison between the results of our simulator (b) and fabricated assemblies (c), using patterns computed
with the inverse-design method of Jourdan et al. [2022] (a). The Skirt pattern (bottom row) contains strips printed on the back
side of the fabric to produce negative extrinsic curvature.
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next due to over-extrusion as the printing head moves over the
surface. Such imprecision could be modeled explicitly by using a
thermo-mechanical simulation of the plastic extrusion process, or
implicitly by computing statistics about the frequency of various
defects, and by propagating such uncertainty within the simulation
of the fabric-plastic assembly.
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