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Real-world and CAD2Sketch-generated concept sketches

Fig. 1. We introduce CAD2Sketch to synthesize concept sketches directly from CAD sequences. Our work focuses on reducing the domain gap between
freehand concept sketches and synthetically generated ones. We achieve this by focusing on generating intermediate lines (i.e., scaffold and auxiliary
construction lines used by artists to reduce errors in ‘sighting’ perspective effects) and by recreating drawing style to reflect importance of lines. Here we show

three real-world sketches and three synthetic sketches generated with our approach. Can you tell them apart? (See Section 5 for answers.)

Concept sketches are ubiquitous in industrial design, as they allow designers
to quickly depict imaginary 3D objects. To construct their sketches with
accurate perspective, designers rely on longstanding drawing techniques,
including the use of auxiliary construction lines to identify midpoints of
perspective planes, to align points vertically and horizontally, and to project
planar curves from one perspective plane to another. We present a method
to synthesize such construction lines from CAD sequences. Importantly,
our method balances the presence of construction lines with overall clutter,
such that the resulting sketch is both well-constructed and readable, as
professional designers are trained to do. In addition to generating sketches
that are visually similar to real ones, we apply our method to synthesize
a large quantity of paired sketches and normal maps, and show that the
resulting dataset can be used to train a neural network to infer normals from
concept sketches. !
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1 INTRODUCTION

Industrial designers routinely imagine 3D shapes, and use freehand
concept sketching to crystallize their mental visions and commu-
nicate them to collaborators and clients. Concept sketches often
contain a large number of construction lines that designers draw to
achieve accurate perspective. Early lines represent abstract shape
primitives (cuboids, cylinders) that are easy to draw, and that pro-
vide anchors to trace finer shape details. Intermediate construction
lines also help designers achieve proper alignments and propor-
tions, for instance by locating the midpoint of perspective planes.
Unfortunately, existing work in non-photorealistic rendering (NPR)
focused on reproducing feature lines of 3D models [Bénard and
Hertzmann 2019] and largely ignored the challenge of reproducing
the construction sequences that designers follow to draw such lines,
and that greatly contribute to the unique visual style of concept
sketches.
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In addition to their aesthetic appeal, concept sketches are drawn
to communicate 3D information, and as such form a valuable in-
put for sketch-based modeling systems that hold the promise of
accelerating the transition from freehand sketching to computer-
aided design (CAD). But recovering 3D information from concept
sketches is very challenging due to the inherent ambiguity of sparse
line drawings. As with many ill-posed visual computing tasks, deep
neural networks offer a promising solution to map 2D drawings to
3D information after being trained on large datasets of paired draw-
ings and 3D shapes [Zhong et al. 2020a]. But due to the scarcity of
real-world sketches, existing methods resort to synthetic drawings
generated from 3D models for training. Unfortunately, the domain
gap between synthetic and real data prevents these neural networks
to generalize well to real concept sketches [Gryaditskaya et al. 2019].

Motivated by applications in NPR and in sketch-based modeling,
we propose an algorithm to synthesize human-like concept sketches
from CAD models. Figure 1 showcases several sketches generated
with our method, which are difficult to distinguish from real sketches
drawn by professional designers.

A key insight behind our approach is that concept sketching often
serves as a preliminary step to CAD modeling, to the point where
many similarities exist between the two workflows [Henry 2012].
We distill and leverage these similarities to convert CAD models
into synthetic concept sketches. Working with CAD models brings
multiple advantages compared to 3D meshes: not only the boundary
representation of a CAD model captures precise feature lines of
the shape, the underlying sequence of CAD operations provides the
entire creation history of the shape, which follows similar steps as
the ones followed by designers when sketching. CAD sequences
also encode additional information about design intent in the form
of constraints on alignment and proportion between parts of the
shape, which we exploit to generate the corresponding construction
lines. Furthermore, several large datasets of CAD sequences recently
became available [Koch et al. 2019; Willis et al. 2021], along with
libraries to parse such data [Wu et al. 2021], making the generation
of synthetic sketches from such data timely.

However, while auxiliary construction lines are critical to position
feature lines accurately in freehand drawings, they also introduce
significant clutter if employed systematically. This is why design-
ers introduce construction lines with parsimony, deciding as they
construct their sketch whether a line is necessary to achieve an ac-
curate and legible depiction of the shape. We formulate this decision
problem as a binary optimization. Starting with an overcomplete
set of lines generated from CAD operations, our algorithm selects
which lines to keep such that the resulting drawing sequence trades
construction quality with sketch readability. We also observe that de-
signers reduce visual clutter by varying the opacity of their strokes,
using faint strokes for construction lines and darker strokes for the
final feature lines. We reproduce this style in the last step of our
method by copying the shape and opacity of strokes taken from
real-world sketches.

In a study with design teachers, our synthetic sketches were
judged to be of similar quality as real sketches. As an application,
we show that including stylized construction lines in synthetic
training data improves the performance of a normal predictor when
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tested on synthetic as well as on real sketches. We will release our
source code and data to ease reproduction of our method.

2 RELATED WORK

Our work is motivated by data-driven methods for sketch-based
modeling, and is inspired by NPR algorithms that seek to render
3D shapes as line drawings. We discuss relevant work in these
two domains, and refer readers to recent surveys for more general
discussions [Bénard and Hertzmann 2019; Bonnici et al. 2019].

Sketch-based modeling. Recovering 3D information from line draw-
ings is an ill-posed task for which deep learning allowed significant
progress over the past few years. By training deep learning mod-
els on large datasets of paired drawings and 3D shapes, several
methods succeeded in predicting depth, normal maps, voxel grids,
3D meshes, parametric shapes [Delanoy et al. 2018; Guillard et al.
2021; Huang et al. 2016; Li et al. 2020, 2018; Lun et al. 2017; Nishida
et al. 2016; Su et al. 2018; Zhong et al. 2020a,b]. Because real-world
drawings are costly to collect in large quantities, these methods
rely on NPR algorithms to generate synthetic line drawings from
3D models. Zhang et al. [2021] alleviate the need for paired data by
using differentiable rendering to compare their 3D reconstruction
to the input sketch, but their rendering algorithm only extracts the
silhouette of the object. While the synthetic drawings produced by
existing NPR systems form a reasonable proxy for drawings created
by novices [Wang et al. 2021], the recent study by Gryaditskaya et
al. [2019] reveals that they lack many of the lines that professional
designers draw to construct accurate perspective drawings from
imagination, and that a normal predictor trained with synthetic
lines fails to interpret professional concept sketches.

On the other hand, construction lines have been exploited with
success by algorithms based on geometric optimization, as they pro-
vide strong visual cues of parallelism and orthogonality that help
lift 2D strokes to 3D [Gryaditskaya et al. 2020; Schmidt et al. 2009b].
Our work is most related to the algorithm by Hahnlein et al. [2022],
who leverage properties of concept sketches to reconstruct draw-
ings of symmetric shapes, which they formulate as an assignment
problem. While we target the different task of generating sketches,
we designed our method to reproduce several of the properties they
identified, and we take inspiration from their formulation to define
some of the terms in our score function.

Gryaditskaya et al. [2019] provide a detailed taxonomy of con-
struction lines, along with an analysis of their usage in a dataset
of over 400 industrial design sketches. We augment their study by
highlighting similarities between concept sketching principles and
CAD modeling operations. The similarities between concept sketch-
ing and CAD also inspired the Sketch2CAD modeling system by Li
et al. [2020]. However, Sketch2CAD targets novice users and was
trained on synthetic drawings free of construction lines.

Non-photorealistic rendering (NPR). We developed our approach
by following a popular methodology in NPR, where domain-specific
principles are first derived from textbooks and artworks, and are
then implemented as algorithms [Agrawala et al. 2011]. Representa-
tive instances of this methodology include early work on pen-and-
ink [Winkenbach and Salesin 1994], cutaways [Li et al. 2007], and
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(a) Input CAD sequence

(b) Generated lines
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(c) Selected lines

(d) Stylized lines

Fig. 2. Overview. Our method takes as input a sequence of CAD operations, as common in history-based CAD modeling (a). We first generate a set of
design-inspired construction lines for each operation (b). We then reduce clutter by selecting a subset of the lines, such that the resulting drawing balances
construction quality with readability (c). Finally, we stylize the lines by copying stroke shapes and opacity from a dataset of real design drawings (d).

other technical illustrations [Mitra et al. 2010]. We contribute to this
family of work by focusing on concept sketches (Section 3), which
despite being ubiquitous in industrial design, cannot be faithfully
reproduced by existing NPR methods.

A number of algorithms have been proposed to extract and stylize
lines from 3D surfaces, such as contours and creases [Bénard and
Hertzmann 2019; DeCarlo et al. 2003; Grabli et al. 2004, 2010; Hertz-
mann and Zorin 2000; Judd et al. 2007; Ohtake et al. 2004]. Yet, many
of the construction lines mentioned above do not lie on 3D surfaces,
but rather on imaginary geometric primitives that surround the
surface of interest. Recent methods based on deep learning using
paired [Liu et al. 2021, 2020] or unpaired [Chan et al. 2022] train-
ing data share the same limitation: they reproduce well surface
contours and creases that convey local surface discontinuities, but
they do not model construction lines that convey more global shape
abstractions, alignments and proportions (Figure 18).

Closer to our goal is the work by Hennessey et al. [2016], who
generate sketching tutorials by approximating a segmented 3D mesh
with geometric primitives, and by adjusting these primitives such
that they exhibit easy-to-construct proportions. Segmented meshes
are also used by Liu et al. [2014] to simulate observational drawing
techniques of organic shapes. In contrast, we take as input CAD se-
quences that already contain intermediate geometric primitives, and
we leverage the common visual vocabulary of CAD modeling and
concept sketching to convert CAD operations into sketching steps
not covered by Hennessey et al. [2016]. Our work also relates to the
algorithms proposed by Schmidt et al. [2007] and Gori et al. [2017],
who take inspiration from sketching techniques to depict smooth
surfaces using planar sections and other curvature-aligned curves.
But these methods do not consider the intermediate constructions
lines that characterize concept sketches in industrial design.

3 PRINCIPLES OF CONCEPT SKETCHING

In industrial design, artists typically use freehand drawings during
early exploration phases and switch to analytical CAD models in a
later prototyping phase. In what follows, we use the term concept
sketches to refer to freehand perspective drawings, while we reserve
the term profiles to refer to the parametric 2D shapes that designers

create in CAD software to form 3D shapes via extrusion, revolution,
or lofting. We adapt this terminology to avoid confusion with the
term CAD sketches that is sometimes used instead of profiles in the
CAD community [Willis et al. 2021].

To bridge the domain gap between synthetically-rendered CAD
sequences and artist-drawn concept sketches, we studied the design
workflow as documented in sketching guidebooks [Eissen and Steur
2008, 2011; Henry 2012; Hlavacs 2014; Robertson and Bertling 2013]
and as recorded in datasets of concept sketches [Gryaditskaya et al.
2019] and CAD models [Koch et al. 2019]. The similarities and dif-
ferences between the two mediums result in unique characteristics
of concept sketches and CAD models, both in terms of content and
style. On the one hand, important principles of concept sketching
relate to common CAD operations [Henry 2012]. On the other hand,
while artists are trained to use auxiliary construction lines to create
perspectively-correct sketches in freehand, such lines are redundant
in current CAD workflow, where perspective projection is exact by
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Fig. 3. Freehand drawing in perspective. Tracing diagonals of a per-
spective plane allows to locate its midpoint (a). The rectangle can then
be divided into halves by tracing a vertical or horizontal line through the
midpoint. Vertical and horizontal lines also help align points in perspec-
tive (b). When multiple construction lines intersect, they result in salient
intersections of high valence through which new lines can be anchored (c).
Drawing sequence from [Gryaditskaya et al. 2020].
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construction due to analytical handling of the camera projection.
We thus need to synthesize these lines to mimic freehand sketching.

(i) Anchoring. When sketching freehand, it is easier to accurately
draw a line if it runs through salient points that are already present
in the sketch, such as intersections and (imaginary) vanishing points.
We refer to such points as anchors. As noted by Hahnlein et al. [2022],
this anchoring principle results in tightly-connected sketches with
many high-valence intersections, and with most lines going through
at least two intersections (Figure 3c). Further, these intersections
commonly lie at the extremities of the lines to give designers precise
targets when tracing strokes.

(ii) Alignment and proportions. ‘Sighting’ (i.e., eyeballing) align-
ment and proportions, without guidance, results in errors even by
experienced sketchers (cf., Chapter 8 by Edwards [1979]). Designers
often construct auxiliary lines to avoid ‘sighting’ and its associated
errors. For accurate alignment, they trace axis-aligned lines to po-
sition points that should be aligned horizontally or vertically over
perspective planes (Figure 3b). For accurate proportion, they divide
perspective planes into equal parts by drawing diagonal lines that
intersect at the midpoint of perspective rectangles, and trace vertical
or horizontal lines through these midpoints to divide the rectangles
in quadrants (Figure 3b, [Eissen and Steur 2011; Hennessey et al.
2016]). In contrast, these alignments and proportions are directly
enforced in CAD by specifying constraints on profiles.

(iii) Coarse-to-fine scaffolding. CAD users often construct shapes
by first assembling basic geometry primitives (e.g., cuboids, cylin-
ders) and then progressively add or substract parts to form holes, but-
tons, or rounded edges. A similar coarse-to-fine construction strat-
egy is also common in concept sketching [Eissen and Steur 2011],
as illustrated in Figure 4. We follow the terminology of Schmidt et
al. [2009b] and Gryaditskaya et al. [2020; 2019] and call such inter-
mediate primitives scaffolds. The scaffold planes and intersections
provide support to anchor subsequent lines and curves.

Fig. 4. Scaffold lines. Designers draw and model complex shapes in a
coarse-to-fine manner, where successive operations refine basic shapes
by adding or subtracting parts, and beveling or rounding edges. The lines
employed during intermediate steps form a scaffold to anchor subsequent
lines. Drawing sequence from OpenSketch [Gryaditskaya et al. 2019] and
CAD modeling sequence after a tutorial in OnShape [PTC 2019].
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(iv) Fillets. Many industrial products exhibit rounded edges and
corners, which are created in CAD using the fillet operation. We
measured that fillet is the third most used CAD operation in the
ABC dataset [Koch et al. 2019], after the creation of 2D profiles
and their extrusion. In concept sketching, fillets are constructed
by placing local planes perpendicularly to the corner edges to be
refined, and by drawing circular arcs within these planes (Figure 5).

Fig. 5. Fillets. Designers draw rounded edges by tracing circular arcs over
planes that are perpendicular to these corner edges. Construction sequence
after a sketching handbook [Eissen and Steur 2011].

(v) Projection. Complex objects are often created by extruding 2D
profiles to form holes and protrusions over existing surfaces, to the
point where recent work on data-driven CAD modeling relies solely
on successive extrusions of profiles to create 3D shapes [Willis
et al. 2021; Wu et al. 2021]. In concept sketching, artists sketch
accurate extrusions by drawing the profile curves over a scaffold
plane and then projecting these curves onto another plane by tracing
projection lines through each salient point of the curves. Further, to
anchor these projection lines in both planes, designers first trace
axis-aligned planar sections going through each point to be extruded,
as illustrated in Figure 6.

Fig. 6. Projection. Starting with the central profile of the chair (left), a
designer traces vertical planar sections to project salient points outward
(right), which act as anchors to trace the curved boundary of the shape.

(vi) Readability. Complete anchoring of all lines and curves may
require drawing many construction lines. While such auxilary con-
struction lines limit sketching error, they often occlude other lines,
and, in the process, introduce spurious intersections in the draw-
ing. The resultant clutter hinders shape perception as observers
need to distinguish true intersections between 3D lines from oc-
clusions [Gryaditskaya et al. 2020]. Hence, to avoid unnecessary
clutter, designers use only essential construction lines and predom-
inantly draw the visible parts of the shape (inset below). As an
indication, we measured that in the 107 first-view concept sketches
from OpenSketch [Gryaditskaya et al. 2019], 43% of the lines were



labeled as visible features, versus 3% of the lines were labeled as
hidden features. Further, designers tend to only draw construction
lines that help anchor multiple subsequent lines, thus restricting
error accumulation.

(vii) Line precision and opacity. To engage
into a creative flow, design educators rec- ( ‘//
ommend practitioners to draw fast and fear- — X\
less [Eissen and Steur 2011; Hlavacs 2014]. = 1
The resulting swiftly-drawn pen strokes of- / P \} (
ten exhibit subtle imprecision, deviating =
from their intended trajectory and over- |
shooting beyond intersections. Designers
also adjust stroke opacity depending on the
uncertainty of the lines they draw. Early in ~ \.
the drawing process, they use faint over- i
shot lines to lay down the main structure
of the shape (inset); subsequently switch
to more precise darker lines to draw details; and finish with dark
lines to draw definite contours [Eissen and Steur 2011; Henry 2012;
Hlavacs 2014].

4 RENDERING CAD SEQUENCES AS CONCEPT
SKETCHES

The principles we distilled in the previous section inform us on
what lines should be drawn for different CAD operations (principle
iii, iv, and v) and for different CAD constraints (principle ii). Other
principles are unique to sketching and tell us how to judge whether
aline is well constructed given preceding lines (principle i), and how
to select and stylize the lines to reduce visual clutter and achieve
the look of hand-drawn sketches (principle vi and vii).

We built on these principles to develop an algorithm composed of
three main steps, illustrated in Figure 2. First, we generate candidate
lines for every operation of a CAD sequence using procedures proper
to each type of operation (Section 4.1). Next, we select a subset of
these lines to achieve a good balance between the overall clutter of
the drawing and the anchoring of each line (Section 4.2). Finally, we
adjust the opacity and shape of each line to achieve the same visual
look as real-world concept sketches (Section 4.3).

4.1 Generating lines

This section describes how we generate lines from the corresponding
CAD operations and constraints (principles ii, iii, iv, and v). Note
that successive CAD operations sometimes generate multiple copies
of the same line. To reduce computation load, we detect such copies
and we only keep the first instance of the line.

Alignment and proportions. We generate lines that depict align-
ment and proportions whenever such constraints are present in a
CAD profile. We depict horizontal and vertical alignments by tracing
axis-aligned lines over the plane in which the profile is embedded.
We depict midpoints on profile segments by generating pairs of
diagonal lines whose crossing points connect to the target midpoint
via an axis-aligned line. We generate these pairs of diagonals from
preceding lines by considering all rectangles adjacent to the segment
to be divided (Figure 7).
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(a) Midpoint constraint (b) Generated construction lines
Fig. 7. Auxilary lines. In the presence of a midpoint constraint in a CAD

profile (a), we generate an over-complete set of construction lines by con-
sidering all rectangles adjacent to the constrained segment (b).

Coarse-to-fine scaffolding. We generate scaffolds by extracting all
the feature curves produced by intermediate operations along the
CAD sequence. To do so, we process one operation at a time and we
identify the curves that the operation introduces in the boundary
representation (BREP) of the CAD model, as illustrated in Figure 8.
We order the lines in the same order as the operations, and we follow
the order of the BREP curves within each operation.

g

Fig. 8. Scaffold lines generation. We generate scaffold lines by detecting
the feature curves introduced by successive operations of the CAD sequence
(highlighted in orange).

Fillets. We generate local planes for each circular arc produced
by a fillet operation, which appear at the extremities of the feature
curves impacted by the fillet. We first draw the planes and then the
circular arcs.

Projection. In the presence of an extrusion operation applied on a
CAD profile, we generate construction lines that help anchor the
profile curves within the sketch (Figure 9). We first create a grid-like
structure within the profile plane by tracing the bounding box of
the profile, and by tracing vertical and horizontal lines that connect
each vertex of the profile to opposite sides of the bounding box. We
then connect this grid to other parts of the sketch by tracing planar
axis-aligned sections across the shape. We locate the section lines
by intersecting the shape with vertical and horizontal planes going
through the aforementioned grid lines. Finally, for each vertex of the
profile, we trace a projection line connecting the start and endpoint
of the extrusion. We deduce the endpoint from the length of the
extrusion when it is specified, or we cast a ray from the start point
along the extrusion direction until we hit a face of the BREP. We
order the lines such that the bounding box is drawn first, followed
by the profile curves, the grid lines and the corresponding section
lines, and finally the projection lines.

4.2 Selecting lines

The procedures introduced in the previous section complement the
feature lines of the CAD sequence with a large number of auxiliary
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(a) Profile (b) Grid (c) Sections (d) Projection
Fig.9. Extruding a profile curve. To extrude a profile curve within a shape
(a, blue), we first trace an axis-aligned grid through the curve vertices (b)
and connect it to other lines by tracing horizontal and vertical cross-sections
(c). The intersections of these sections provide anchoring points to project
the profile onto the opposite face (d, blue).

construction lines. Our goal is now to select among all generated
lines a subset that yields a well-constructed yet readable depiction of
the shape. We formulate this goal as a binary optimization problem,
where we associate each generated line s, € S with a binary selec-
tion variable s, that we set to 1 to indicate that the line should be
kept in the solution, 0 otherwise (we use bold typeface to represent
binary variables throughout the paper). We optimize these selection
variables such that the following objective function is maximized:

F({sp}) = Fvisibility — A1Fconstruction — A2 Felutters (1)

where Fyigpility favors lines that depict visible parts of the shape,
Feonstruction penalizes poorly-constructed lines, and Fgytter penal-
izes visual clutter.

The computational challenge in solving this optimization resides
in the fact that many of the principles listed in Section 3 impose
inter-dependencies between the lines, such that lines cannot be
selected one-by-one, but rather need to be selected in accordance
with other lines. Several approaches exist to make such a challeng-
ing optimization tractable, such as search algorithms that consider
simultaneously different solutions and employ pruning and back-
tracking strategies to manage the exploration/exploitation trade-off.
However, such approaches would require implementing a custom al-
gorithm with dedicated heuristics. Furthermore, inter-dependencies
between distant lines would be computationally challenging for
such sequential algorithms. Our solution is to formulate the op-
timization as an integer program where we express dependency
between lines via mathematical constraints on their respective bi-
nary variables. Importantly, we formulate the objective terms and
constraints in a linear form such that the resulting discrete opti-
mization can be efficiently performed using a commercial solver
[Gurobi Optimization, LLC 2021].

Before detailing each term of Equation 1, we first introduce the
graph data-structure we rely on to reason about the presence of
various construction techniques and the corresponding line inter-
dependencies in a given selection.

4.2.1 Intersection graph. The quality of a construction sequence
greatly depends on the intersections that any line forms with pre-
ceding lines. We keep track of this information by computing the
directed acyclic graph of intersections between the ordered lines
generated by the above procedures. In this (dual) graph, each node
sp represents a line, and each directed edge i,—,4 represents an
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Fig. 10. Intersection graph. We use intersection graphs to encode ordered
construction sequences of scaffold and auxiliary lines. The graph is com-
puted in pre-process over all generated lines (a). In this example, since line
s5 intersects lines sy, sz, s3 and s4 at its extremities, it has 4 incoming edges
in the intersection graph. During optimization, a subset of lines is selected
by the integer program (b). The intersection graph restricted to selected
lines allows us to test whether a line depends on a preceding line in the
solution, as is the case for s7 that is reachable from s; via s5.

intersection between a line s;, and a subsequent line s4. Figure 10a
illustrates the intersection graph computed for all generated lines
for a simple shape.

For a given assignment of binary variables {s,}, only the sub-
graph composed of selected lines matters, as shown in Figure 10b.
We can identify whether a line s, is used to construct a subsequent
line s4 by detecting whether there exists a path that connects s, to
sq within this sub-graph. If this is the case, we consider that s4 can
be reached from s, in the solution, which we indicate by setting an
auxiliary binary variable rp_,4 to 1. These auxiliary variables will
then serve to evaluate Feopstruction (Section 4.2.3).

We compute rp—4 by using a recursive formulation. We first
consider all lines sq that follow and intersect line sp,ie., for which
there is an edge ip—q in the intersection graph. We impose that
Tp—q is selected if s, and s are selected with the constraint

Sp+8g < 1+Tpg,Vsq € ‘Vpl (2)

where "V[} denotes the outgoing 1-ring neighborhood of node s;,. To
satisfy the inequality, rp—4 needs to be set to 1 if s, and s4 are set
to 1. Note that this constraint alone does not prevent rp_,4 to equal
1 when s, or sq are set to 0. But such a configuration is prevented
implicitly because it would increase the Feopstruction penalty unnec-
essarily, as detailed in Section 4.2.3. We then recursively identify
lines sq4 that depend indirectly on s, via intermediate lines s; by
formulating the constraint

Sp +Trg < 1+Tpsg, Vst € pl 3)

which expresses the fact that s can be reached from s, if s, inter-
sects s; and sq can be reached from s;.

4.2.2  Visibility. We favor drawings that depict visible parts of the
shape by measuring how much of each feature line is occluded



from the camera. We compute the partial visibility v(s) € [0, 1] for
each feature line in preprocessing by shooting rays from the camera
toward samples regularly distributed over the line and by counting
the percentage of rays that reach the line without intersecting any
face of the BREP. We then compute the visibility term of a solution
by summing v(sp) over all selected lines:

Fyisibility = Z spv(sp). 4
P

4.2.3 Construction quality. As detailed in Section 3, designers em-
ploy several techniques to construct perspective sketches, although
they use these techniques with parsimony to avoid clutter. Instead of
enforcing each technique strictly, we encapsulate all techniques into
a single function that penalizes lines that are only supported by few
techniques. Formally, we introduce auxiliary binary variables which
we set to 1 to indicate the presence of specific construction tech-
niques in support of a given line s, and we count how many of these
techniques are present. Three such variables indicate the presence
of anchoring techniques (wp, fp, and hp), two variables indicate the
presence of alignments and midpoints (a, and c,), and one variable
indicates the presence of projections (p,). We test the presence of
a particular technique by implementing linear constraints on the
binary variables associated with the lines involved in the technique.

Furthermore, lines that appear early in the construction sequence
often serve to anchor subsequent lines. Hence, a poorly-constructed
line negatively impacts all lines that are anchored on it. Based on
this observation, we weigh the construction penalty of a line s,
proportionally to the number of lines that can be reached from it,
which we express as Wyependency(Sp) = 2g Ip—q-

Given these terms, we formulate the construction penalty as

Feonstruction = Z (Wdependency(sp) (6 ~Wp— fP - hP —aP —Cp - pP)) :

p
®)

Anchoring. We express the degree of anchoring of a line by test-
ing three complementary criteria, which follow principle (i) from
Section 3. First, we consider that a line is weakly anchored if it in-
tersects at least one preceding line, in which case we set a binary
variable w), to 1. Second, we consider that a line is fully anchored
if it intersects preceding lines at its start and end points, in which
case we set a binary variable f}, to 1. Finally, we favor lines that go
through at least one intersection of valence 3 or higher, for which
we set a binary variable hy, to 1.

To implement the latter criteria, we consider the set of intersec-
tions {i}g} that a line s, forms with any preceding lines, and we
associate each intersection with a binary variable hlg that indicates
whether at least 2 selected lines that precede s, go through that
intersection. Denoting S[’f the set of all lines that precede s, and
go through i, we follow the Big M method [Griva et al. 2008] and
impose the constraint

> sqz2-M(1-hf), )
qES;I,‘

with M a large constant, set to 100 in our implementation. Thanks
to this inequality, at least 2 lines of S}; must be selected for h]; to
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be selected and contribute to the anchoring score. We then test if at
least one intersection of high valence exists along s, by imposing
the constraint Yz hlg > hy.

Alignment. A point on a line s, is well-
aligned with a point on a preceding line s¢ if
at least one third axis-aligned line s; passes Sq

through the two points to be aligned (see in- x7,
set). Let us denote as x! and xé the two points st x
that should be aligned. In preprocessing, we
detect all axis-aligned lines that precede s,
and that pass through the two points, denoted
by the set ﬂ;jq. We repeat that process for all points along s, that
are subject to alignments, which we denote as the set (\’p. We then
set a binary variable a;, to 1 if at least one line from ﬂzi,jq is selected

for each x;,, which we ensure with the constraint

Z st > ap, Vx;, € Xp. 7)

ij
teAq

Midpoints. Tracing a line s, through the
midpoint of a segment s4 requires a pattern of Sp
seven lines, where four lines form a rectangle
adjacent to sg, two lines form the diagonals
of that rectangle, and one line goes over s to /
S

S
join the crossing point of the diagonals with *a q
the midpoints of s4 and its opposite side (see X
inset). A characteristic feature of this pattern X

is that it contains five intersections of valence 3 (the four corners
and the crossing point) and two intersections of valence 2 (the
two midpoints). Our goal is to select seven lines that satisfy this
condition, in which case the binary variable c,, is set to 1.

Our line generation procedure synthesizes multiple lines that
can form the necessary construction sequence (Figure 7). Out of all
generated lines, we first identify the ones that precede s, and that
are eligible to form one of the seven lines of the pattern. Denoting
xfZ and x; the start and end points of the segment to be divided,
and x(’ln its midpoint, we look for all lines that are coincident to Sq
and that extend beyond xfl and xg, all lines parallel to sg, all lines
going through xg, xg or xg" and that are perpendicular to s¢, and all
diagonal (i.e., non-axis-aligned) lines going through x3 or xg. We
denote the resulting seven sets of lines as S}-7.

We first select one and only one line in each set to form a pattern
of seven lines. To achieve this goal, we associate each line sq of each
set with an auxiliary binary variable 84, and we constrain:

D sg <1, Vie {17}, ()
qGSIZ,

We then make sure that the lines forming the pattern are only
selected if they also appear in the final solution:

8q < sq,Vsq. 9)
We constrain that seven lines are selected to form a complete pattern:
Z 8q = 7-M(1-cp). (10)

qeS, "
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We then test the valence of the intersections formed by the seven
lines. Denoting Ipl"7 the set of all possible intersections between

all lines in Sll,'j, we associate each intersection i¥ € Ipl“7 with a

binary variable i¥ set to 1 if at least two selected lines go through
this intersection, and with a binary variable hF set to 1 if at least
three selected lines go through this intersection. These variables
allow us to implement the condition that seven intersections are
selected, including five of valence 3 or higher:

D= 7-M1-cp), (11)
ke

Z b 25— M(1-cp). (12)
ke

Fillets. Our line generation procedure ensures that each fillet arc
comes with four lines forming a local scaffold plane. Yet, other lines
might coincide with these four lines, and our goal is that at least
one line is selected for each side of the plane. We express this goal
by defining an alignment constraint for each pair of vertices that
form the four edges of the supporting plane, and by treating these
constraints as described in the previous paragraph. This strategy can
yield more economical line usage by selecting a single line passing
through multiple local scaffold planes.

Projection lines. A projection line is well con-
structed if there exists a path of lines that form
a planar, axis-aligned section connecting the
start and end points of the projection line (see
inset, where the blue or the purple path can
serve to anchor the orange projection line sp).
For a given projection line, we first identify all
preceding lines that lie in any of the two axis-aligned planes that go
through the projection line. For each plane, we then compute the
directed graph of intersections between all lines it contains. In each
of the two intersection graphs, we test the existence of a path of se-
lected lines that connects the two lines intersected by the projection
line at its extremities. We use the formulation from Problem IP3 in
Magnanti and Mirchandani [1993] to implement this path search
as an integer program. If such a path exists within one of the two
intersection graphs, we set a binary variable p, to 1.

4.2.4  Visual clutter. We penalize clutter by
counting the number of occlusions between
lines once projected in the image plane. We
detect occlusions opq between all generated
lines in preprocessing, and we set a binary
variable 0,4 to 1 when the corresponding
lines s, and sq are selected. To avoid a qua-
dratic constraint of the form oy = sps4, we
identify occlusion by imposing the linear con-
straint s, +s¢ < 2+ Mopq. If both sp and sg get selected, 0pq must
also get selected to ensure the inequality. The number of occlusions
is then given by 2, 4 0pq-

In complement to this measure of occlusion, we also reduce clut-
ter by penalizing the use of unnecessary construction lines. We
achieve this goal by counting the number of construction lines in
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Fig. 11. Balacing between better anchoring versus reduced clutter.
Varying A; and A allows to generate sketches with different amount of
construction lines and clutter. For low values of Ay, few construction lines
are present (a,b,c). Increasing A, trades hidden feature lines for construction
lines (c vs. e). Increasing A, reduces clutter, either by removing lines that
yield occlusions (a vs. b) or by removing hidden lines (f vs. e). For this partic-
ular model, the automatic procedure described in supplemental materials
considers that the best parameter setting is (e).

the solution, Zpe Se Sp, where 8¢ denotes the set of all generated
auxiliary construction lines.
Combining these two terms gives the score function:

Felutter = Zopq te Z Sp> (13)

p.q peSe

where we give a small weight € = 1e — 3 to the second term to act
as a weak regularization.

4.2.5 Optimization. We maximize Equation 1 subject to the listed
constraints (Equations 2, 3, 6, 7, 8, 9, 10, 11, and 12) using the com-
mercial solver Gurobi [Gurobi Optimization, LLC 2021]. We provide
the complete set of equations as supplemental materials. Figure 11
illustrates the visual impact of varying the 1; and A, parameters,
which allow users to adjust the amount of construction lines and
clutter. We describe in supplemental materials a procedure to tune
these parameters automatically for an input CAD sequence.

4.3 Stylizing lines

Designers depict lines by tracing pen strokes on canvas. The shape
of these strokes, their approximate trajectory, as well as their opacity
all contribute to the visual style of concept sketches. We adopt a
data-driven approach to reproduce this style, using the 107 first-
view concept sketches of OpenSketch [Gryaditskaya et al. 2019]
as a stroke library on which we compute statistics about various
visual effects. Depending on the target application, we can restrict
the library to specific participants of OpenSketch to reproduce their
individual style, as shown in Figure 12.



Stroke aim. When sketched quickly, pen strokes often deviate
from their intended trajectory. We compute an estimate of the over-
all imprecision of a real sketch by considering all straight strokes
that converge towards one of the vanishing points, and by measur-
ing the angular deviation between each stroke and the line joining
the starting point of the stroke to its vanishing point. We fit a nor-
mal distribution on these measurements, which we sample to apply
similar deviation to our synthetic strokes. We use the calibrated
perspective cameras provided in OpenSketch to locate the three
dominant vanishing points for each sketch.

Stroke overshooting. We define overshooting as the ratio between
the length of a line and the length of the stroke used to depict that
line. We measure this ratio on strokes of OpenSketch by assuming
that the line that a given stroke depicts joins the first and last in-
tersections along the stroke. Figure 13 plots the value of this ratio
as a function of the relative position of the stroke in the sketching
sequence, averaged over all sketches of a participant of OpenSketch
and discretized over 100 bins. To reproduce an artist’s overshooting
style, we extend each stroke by the average ratio measured at the
same relative position in the sequence.

Stroke shape. Pen strokes in real drawings are never perfectly
straight, or elliptic, but rather exhibit subtle imprecision in their
execution. Inspired by the sketch stylization approach by Berger
et al. [2013], we reproduce the shape of real pen strokes by copying
and transforming strokes from OpenSketch. For each synthetic
line, we select the k = 10 best-fitting strokes by performing an ICP
registration against all strokes in the library, and we randomly select
one of these strokes for rendering. Compared to selecting the best
stroke overall, taking one of the k best strokes yields more plausible
sketches as it introduces a small amount of imperfection.

Stroke opacity. Designers draw strokes using different levels of
pressure depending on the line type [Eissen and Steur 2011; Henry
2012], and pen pressure also varies along an individual stroke as
the pen is pressed and lifted. We reproduce these effects in two
steps. We first model the distribution of opacity per line type in
OpenSketch as a normal distribution, and we sample from these

Fig. 12. Stroke statistics. Given labeled sketches of professional designers
from OpenSketch [Gryaditskaya et al. 2019] (top), we measure stroke sta-
tistics (opacity, overshooting) proper to individual designers to reproduce
their style using CAD2Sketch (bottom).
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Fig. 13. Overshooting statistics. Ratio of overshooting as a function of
the relative position of a stroke in the sketching sequence, measured for a
specific participant of the OpenSketch dataset [Gryaditskaya et al. 2019].
The plot reveals that this participant overshoots more the early strokes.

0.0 1.0 0.0 1.0

Fig. 14. Stroke opacity statistics. Histogram of stroke opacity for different
line types for a participant of OpenSketch (Scaffold lines, Hidden feature
lines, Visible feature lines, Silhouette lines). We fit a normal distribution
over each histogram and sample from these distributions to assign opacity
to synthetic strokes according to their type.

distributions to obtain an opacity value for each synthetic stroke
depending on its type (Figure 14). We then generate variations
of opacity along each stroke by copying opacity profiles of real
strokes from OpenSketch. For a given synthetic stroke, we select the
opacity profile whose median value is closest to the value sampled
in the first step. Care must be taken when measuring opacity in
real-world sketches, because lines that appear dark might actually
been drawn with multiple faint, overlapping strokes. In contrast,
when generating our synthetic sketches, we use a single stroke to
trace a given line. We account for this characteristic of real sketches
by measuring their opacity in raster form, where the value of a pixel
corresponds to the accumulated opacity of all strokes running over
that pixel. We assign the opacity value of a pixel to the last stroke
drawn over that pixel, as it corresponds to the amount of darkness
that the designer intended to obtain when tracing that stroke.

5 EVALUATION AND RESULTS

Figure 1 combines real sketches from OpenSketch [Gryaditskaya
etal. 2019] with synthetic sketches generated by our method. Sketches
(b), (d) and (f) are the synthetic ones. Figure 15 presents a gallery of
sketches generated from CAD sequences in the ABC dataset [Koch
etal. 2019]. For each model, we show three sketches produced by our
method with different parameter settings and stroke styles, along
with one sketch generated by a naive method that only renders all
the intermediate feature lines of the CAD sequence. We also provide
animated drawing sequences of some of our results as a supple-
mental video, which highlights the construction steps produced by
our method. Finally, Figure 16 illustrates the various types of lines
generated by our system for several CAD models.

Table 1 provides runtime statistics for the main steps of our
method on three representative examples. The total time remains
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/11 =0.5
A2 =0.01

(e) Ours3

(a) CAD sequence (b) Only feature lines (c) Ours1 (d) Ours2
Fig. 15. Results gallery. ABC models rendered as concept sketches using CAD2Sketch. Compared to a naive method that only draws feature lines of

each CAD operation (b), our method generates and selects scaffold and auxiliary lines to support the construction of accurate alignment, proportions, and
projections (c,d,e). The balance between construction lines and clutter can be adjusted via the parameters A; and A; (c vs. d), and lines can be rendered

according to the style of different artists (d vs. e).
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Fig. 16. Different line types. We show the different line types generated
for the results from Fig.15 2nd row (c) and Fig.15 last row (c). For illustration
purposes, we show the synthetic lines before stylization. Also, since a line
can have been generated by multiple techniques, here we only show the
first technique which created a specific line. The color code is: Profile lines,
Midpoint lines, Projection lines, Fillet lines, Grid lines, Feature lines.

Table 1. Performance statistics. Runtime of the different steps of our
method, in seconds. Note that the complexity varies with the number of
lines, the chosen viewpoint, as well as with the number of intersections.

Li Inter. h|I
Shape | #Lines ine | Inter gr.a ph | Integer Stylization
gen. | calculation |program
Fig. 11| 143 | 13s 2s 2s 26s
Fig. 12| 263 | 26s 11s 15s 48s
Fig.1| 374 | 52s 6s 4s 72s

in the order of minutes for all models we tested, varying with the
number of generated lines, the number of intersections, and the
viewpoint. Our implementation of stylization is slow because it
performs an ICP registration between each line and all strokes in
the library, which could be accelerated by using shape descriptors
[Berger et al. 2013].

5.1 Comparison with non-photorealistic rendering and
with image stylization

Our work follows the tradition of NPR research as it attempts to re-
produce principles of construction lines — an artistic practice that is
ubiquitous in design sketching and yet has been largely overlooked
by prior work on line drawing generation. Figure 17 provides a
visual comparison to the two NPR systems we felt closest to our
work in their attempt to synthesize construction lines. FreeStyle
[Grabli et al. 2004, 2010] emulates 2D construction techniques by
approximating curved strokes with straight lines and geometric
primitives (squares, circles)?. The resulting lines do not resemble
the 3D construction techniques we observed in real-world concept
sketches. How2Sketch [Hennessey et al. 2016] generates step-by-step
tutorials that are easy to follow by novices, but these tutorials only
include a subset of the lines we generate (scaffolds, alignments and
proportions). Furthermore, How2Sketch does not consider the clutter
produced when drawing the construction lines generated for all
steps of the tutorial. In summary, our system is the first to target the

2We used the implementation of FreeStyle available in Blender, https://docs.blender.
org/manual/en/latest/render/freestyle/introduction.html
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Input 3D model
*

Generated lines

(a) How2Sketch (b) FreeStyle

(c) Ours
Fig. 17. Comparison with NPR methods. Existing NPR systems focus on

generating easy-to-follow step-by-step drawing tutorials rather than a read-
able final sketch (a, input 3D model and generated lines from [Hennessey
et al. 2016]), or only generate 2D construction lines (b, [Grabli et al. 2010]).
Ours is the first to balance constructability of 3D lines with readability (c).

s

-

|
/

\
\

/

)

(a) Input (b) Ours (c) Chan et al.
Fig. 18. Comparison with translation network. Comparison with
image-to-image translation [Chan et al. 2022]. Given a CAD sequence (a),
our method can generate construction lines in different styles (b). In contrast,
a convolutional neural network trained to translate images into sketches
only traces salient feature lines of the shape (c). Note that we feed the neural
network with a shaded image of the CAD model (marked with a %).

generation of well-constructed yet readable 3D concept sketches
that look like real drawings.

Our approach implements longstanding principles of concept
sketching in the form of a line generation and optimization proce-
dure. This methodology contrasts with recent work in image styl-
ization that relies on machine learning to translate images to line
drawings without an explicit formalization of the underlying princi-
ples. We compare to the state-of-the-art image-to-image translation
method by Chan et al. [2022] in Figure 18. Similarly to ours, this
method has been developed to generate drawings that reproduce
the visual style of OpenSketch while conveying well the geometry
of the depicted objects, which the authors achieved by combining
an adversarial loss for style and a depth estimation loss for geome-
try. However, their method takes photographs as input rather than
CAD sequences. We thus perform the comparison by feeding their
pre-trained method with shaded renderings of the CAD model (Fig.
18ax). While their method captures salient feature lines of the shape
and reproduces the stroke texture, it does not generate construction
lines. We hypothesize that this limitation of their method is due to
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Fig. 19. Evaluation study by design teachers. Real and synthetic sketches used in our evaluation study, along with a boxplot summarizing the ratings
aggregated over shapes and evaluators. The real-world sketches were drawn by designers selected from OpenSketch (D1, D2 and D3), while the synthetic
sketches were generated by variants of our method (M7 with random opacity, M2 without auxiliary construction lines nor line selection, and Ours). In the plot,
the top and bottom of the box correspond to the first and third quartile, the whiskers correspond to the min and max scores, and the cross denotes the mean
score. Our method (green) is on par with real designers, and even outperforms some of them in terms of construction, amount of detail and line execution.

the fact that construction lines often lie away from the input image
edges, and as such are difficult to model by the restricted receptive
field of generative convolutional neural networks. The temporal
dependency inherent to construction lines is also challenging to
infer from a single image.

5.2 Comparison with real-world sketches

Our primary goal is to generate concept sketches that look like real
ones. To evaluate whether we achieved this goal, we asked three
design teachers to rate a set of 18 sketches, without telling them
that half of the sketches were synthetically generated. All three
evaluators were experienced in this task, one being a sketching
instructor for more than 7 years (R2), the two others being teaching
assistant for 4 and 5 years respectively (R3 and R1). They rated each
sketch according to four criteria that they commonly use when
evaluating students, and that reflect the key features of our method:
1. Construction, 2. Amount of detail, 3. Line weight, 4. Line exe-
cution. Each criteria was evaluated on a 4-point scale that reflects
the expected level of a design student at the end of a 5-years study
curriculum, where 1 corresponds to “clearly below graduation level”
and 4 corresponds to “better than graduation level ”. The evaluators
spent between 30 minutes and one hour to perform this task.
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Figure 19(top) shows 12 of the sketches used in the study, and the
3 other real sketches appear in Figure 1. To meaningfully interpret
the evaluation results, we need to be able to assess how the teachers’
grades vary among (a) sketches from the same designer/algorithm
and (b) sketches from different designers/algorithms depicting the
same object. Given these constraints and the available sketches
from OpenSketch, we could only choose among 6 designers who
all drew the same 12 objects. We chose 3 designers with different
drawing styles (choice of lines and line stylization), denoted as D1,
D2 and D3. We then chose 3 objects that we could re-model using
CAD operations that are supported by our system. In addition to
the three real sketches, we generated three other sketches for each
object using variants of our method. The first variant — denoted M1
- contains our selected feature and construction lines but rendered
with random opacity and overshooting. The second variant - M2 -
renders the lines using our stylization procedure, but only displays
intermediate feature lines (i.e., scaffolds) without any auxiliary con-
struction lines and without selecting a subset of lines according to
Equation 1. M1 and M2 serve as naive baselines compared to our full
approach — denoted Ours — that includes the generation, selection
and stylization of various auxiliary construction lines to achieve a
balance between construction quality and visual clutter. We used



the automatic procedure described in supplemental materials to
select the values of A; and A, in our results, and we use sketches
from D3 to build the stroke library used for stylization.

Note that we do not model the error that designers do when
tracing lines that are not well anchored [Schmidt et al. 2009a]. As a
result, the sketches produced by M2 exhibit as perfect a perspective
as ours, even though it is likely that they would suffer from more
distortion if drawn by hand, as was reported by Gryaditskaya et al.
[2019] who measured a positive correlation between sketch accuracy
and presence of construction lines in OpenSketch.

Figure 19(bottom) summarizes the ratings obtained by each real-
world designer and by each variant of our method, aggregated over
all 3 shapes and 3 raters. Overall, the method with random stylization
(M1) is judged inferior compared to other methods and to real-
world sketches. In contrast, both M2 and Ours are on par with real
designers, with Ours being slightly superior even over some of
the designers in terms of construction and amount of detail. Our
method was also judged stronger than real designers in terms of line
execution, which might be due to the lack of a realistic distortion
model as mentioned above.

The three evaluators sometimes disagreed on specific cases, such
as for our vacuum cleaner that R3 judged “well constructed with
the right amount of lines”, while R1 criticized that vertical lines are
not vertical, which might be due to our choice of viewpoint. The
comments by R and R3 also highlight the strengths and weaknesses
of our method. For instance, RI noted that our sketch of the house
is missing midpoint lines, which is actually due to the fact that
the corresponding constraint was not present in the version of the
CAD model we used for the study. For the box, R3 appreciated
that “rounded edges are constructed pretty well” in our result, but
both R1 and R3 would have liked to see an elliptic arc to clarify
the movement of the lid, as can be seen in the sketches by D1,
D2 and D3. When commenting on line weight for our results, R3
appreciated that “the drawing uses an appropriate distinction between
construction and finalized shape” and R1 stressed the “clear division
of construction lines and product outline”, although R1 suggests the
need for more variation as “some line weight difference can be made
at certain edges”. We provide the full evaluation grids by the three
evaluators as supplemental materials, along with a visualization of
their ratings for each sketch.

5.3 Application to normal map prediction

Our research is partly motivated by the need to synthesize large
quantities of synthetic data to train deep learning models to interpret
real-world sketches. We demonstrate this application of our work on
the task of predicting normal maps from concept sketches, by which
we also evaluate the impact of our method’s different ingredients.

Network structure. We built our neural network implementation
upon Sketch2Normal [Su et al. 2018]. The only changes we made
was to encode the sketch as a 1-channel gray-level image rather
than a 3-channel color image, and to remove the input channel they
used to provide normal hints.

Dataset generation. We implemented a simple shape grammar to
generate synthetic CAD sequences, which we detail in supplemental
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materials. We used this grammar to create 2000 models for training,
and 300 for testing, some of which can be seen in Figure 20. For
each model, we generated 3 sketches from different 3/4 viewpoints
to obtain a total of 6000 paired sketches and normal maps. To avoid
the cost of testing many parameter values, we fixed A; = 0.5 and
A2 = 0.01, which we found to produce more construction lines.

In complement to this synthetic data, we also generated a dataset
of 108 sketches of ABC models [Koch et al. 2019] to test the gener-
alization of the trained neural networks over real-world shapes. We
selected these models to have a similar aspect ratio as ours, and to
not involve imported geometry, nor the OnShape shell feature that
converts solids into surfaces of constant thickness.

Finally, we also created two test sets from OpenSketch [Gryadit-
skaya et al. 2019], each composed of 6 sketches drawn by the same
designers D1 and D3 as in Section 5.2. We selected these sketches to
represent shapes similar to the ones produced by our shape gram-
mar, rather than freeform surfaces we do not support. These test
sets allow us to evaluate the generalization of the trained networks
to real-world sketches.

Ablation study. We generated training datasets with several vari-
ants of our method to evaluate the impact of including construction
lines and their selection, as well as the impact of stroke stylization:

® By. Only the feature lines of the final shape, rendered with
stylized strokes. The resulting line drawings are similar to
the ones produced by standard NPR algorithms

o Bj. All intermediate feature lines (i.e., scaffolds), no auxiliary
lines, rendered as black lines.

Fig. 20. Synthetic data generation. Example synthetic shapes (normal
maps shown here) generated with our shape grammar along with the re-
sulting synthetic sketches produced by CAD2Sketch.
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Fig. 21. Error distribution on the ABC dataset. In the context of the normal prediction task, we tested a prediction network trained on concept sketches
generated using CAD sequences from a shape grammar on sketches produced using the ABC dataset [Koch et al. 2019]. We picked 200 random models from
the ABC dataset, limited to those involving CAD commands supported in our implementation. Here we present the error histogram, x-axis shows error range
in degrees, along with representative examples from each error group. Ground truth normal maps are provided for reference.
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Fig. 22. Ablation setting. Example sketches produced by different training
settings used in our ablation study. Refer to the text for details.

e By. All intermediate feature lines (i.e., scaffolds), no auxiliary
lines, rendered with stylized strokes.

e Ours. Intermediate feature lines and auxiliary construction
lines selected by our optimization and rendered with stylized
strokes. We created three versions of this dataset of increasing
size to evaluate the benefit of synthesizing more sketches.

We used the style statistics from designer D3 to render strokes
for By, By and Ours, as well as to render the synthetic and ABC test

sets using our full method. Figure 22 shows the visual difference
between all four training datasets.

Metrics. We measure the quality of normal prediction according
to two metrics. First, we test whether the shape predicted by the
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Table 2. Normal map prediction accuracy. Performance of the normal
prediction neural network when trained with different datasets and tested
on synthetic shapes and models from ABC [Koch et al. 2019]. As expected,
performance increases with access to larger dataset. More interesting is
that a network trained using synthetic sketches, obtained using our shape
grammar and CAD2Sketch, continues to produce good results on sketches
obtained using CAD sequencs from the ABC dataset.

‘ Metric ‘ By ‘ By ‘ By ‘Ours—15k‘Ours-30k‘0urs—60k

o | UT | 09 095[ 093] 094 0.95 0.96
Y01 Ange,r || 967 [1142] 879 | 1275 9.45 8.31
Apc| UT [087[088] 09 [ 036 0.9 0.91

Angerr | |14.63|18.82|14.01| 184 1571 | 13.24

neural network overlaps well with the ground truth, as measured
by the Intersection over Union (IoU) over the binary masks ob-
tained by thresholding background pixels. This metric penalizes
both holes inside the shape and spurious surfaces hallucinated over
the background. Second, we measure the angular error between the
predicted normals and the ground truth. Since stroke stylization
can introduce a slight misalignment between the sketch and the
ground truth normal map, we search for each pixel of the ground
truth the best predicted normal in a 5 X 5 window.
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Fig. 23. Normal prediction from sketches. Qualitative results of the normal prediction network trained with different datasets, always produced from
our synthetic grammar only, and tested on synthetic sketches generated from our shape grammar and from ABC shapes, and on real-world sketches. The
network trained with our sketches produces normal maps closer to ground truth, while networks trained without auxiliary construction lines or stylized
strokes misinterpret construction lines as feature lines of the surface. Refer to the text for details on By, B;, and Bs.

Results. Table 2 summarizes the performance of the different net- even though performance degrades when tested on the ABC models,
works according to the two metrics, when tested on our synthetic which are more diverse than the shapes in our training set.
dataset and ABC dataset. The network trained with sketches gen- Figure 21 visualizes this trend by plotting the number of ABC
erated by our method outperforms all baselines on both metrics, models for different error ranges, along with representative mod-

els in each category. The neural network performs best on simple
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Fig. 24. Handling real world sketches. Qualitative results of the normal prediction network for two designers from OpenSketch. In each case, we trained
the network using synthetic sketches proper to the designer. The network succeeds in recovering the overall surface orientations, even thought it struggles
with configurations that are rare in our synthetic sketches, such as the isolated horizontal line at the front of the shape in the 379 sketch of Dy, and the cubic
corner of the scaffold that is accidentally aligned with the dark feature curve of the shape in the 37¢ sketch of Ds. In both cases, the network interprets these
construction lines as feature lines of the final shape and creates spurious surfaces.

models similar to our training set, capturing well the overall face
orientations, rounded edges and corners, and holes. However, error
increases for complex models, which are rare. We provide visual
results on all 108 models of this test set as supplemental materials.

Figure 23 provides a visual comparison between the predictions
of the different networks when tested on synthetic sketches pro-
duced by our method as well as on real sketches by designer D3.
The network trained with our full method predicts normals closer
to the ground truth, with fewer spurious surfaces around the shape
compared to other networks that tend to confuse construction lines
with feature lines of the shape. The improvement is especially no-
ticeable when comparing our results to By, which only contains
feature lines as produced by existing NPR systems.

Finally, Figure 24 shows results obtained by training two neural
networks, one with sketches rendered in the style of designer D1 and
one with sketches rendered in the style of designer D3, and tested
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on real sketches of these two designers. The network specialized for
D3 performs better on the respective sketches, which exhibit higher
contrast between faint construction lines and dark feature lines.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

Despite the prevalence of freehand concept sketches in industrial
design, no generative model exists to synthesize human-like concept
sketches from 3D shapes. After studying how designers draw in
perspective, we identified two major sources of the domain gap be-
tween synthetic drawings and real-world concept sketches. First, in
addition to drawing the feature curves of the final shape, designers
sketch a variety of auxiliary lines that they carefully order to achieve
proper perspective. Second, designers strategically introduce and
stylize these lines to construct the sketch without obscuring the final
depiction of the shape. Building on these observations, and lever-
aging the design intent encoded in history-based CAD sequences,



(b) Ours

(a) Input CAD model

Fig. 25. Non-supported operations. The surface of this computer mouse
has been constructed using sweep and loft operations (a). Since our system
does not add any construction lines for these operators, the result is solely
made out of profile lines, grid lines and feature lines (b). Professional de-
signers typically add curvature-aligned flow-lines to depict such smooth
surfaces [Gori et al. 2017].

our method combines discrete optimization and data-driven styliza-
tion to generates legible concept sketches. We have shown through
qualitative and quantitative evaluation that our synthetic sketches
are useful both for convincing non-photorealistic rendering and for
challenging downstream sketch interpretation tasks. We see this
contribution as an important step towards the generation of large
datasets for sketch-based design applications, just as photorealis-
tic rendering has been key to the generation of large datasets for
computer vision applications [Greff et al. 2022; Wood et al. 2021].
We envision several directions to extend and leverage our method:

CAD and sketching operations. While our system supports com-
mon CAD operations and the corresponding construction lines, it
could be extended to cover more diverse shapes. In particular, free-
form shapes are often created by lofting CAD profiles, which design-
ers typically sketch using planar cross-sections and other flow-lines
[Gori et al. 2017]. Currently, we only render grid and feature lines
for such operations, see Fig.25. CAD profiles also contain constraints
we do not support yet, such as concentricity. Nevertheless, these
constraints are typically sketched using the same construction tech-
niques as the ones we implemented for alignments and proportions.
Other construction techniques we do not support yet include elliptic
arcs to depict equal length on hinge mechanisms, as present in the
real sketches of the box (Figure 19). Finally, we assume that all nec-
essary constraints are specified in the input CAD model. Progress
in automatic detection of constraints in CAD profiles would benefit
our approach [Para et al. 2021; Seff et al. 2022].

CAD and sketching datasets. While our approach benefits from the
availability of CAD datasets, current datasets come with limitations.
Fusion360 Gallery [Willis et al. 2021] focuses solely on sequences
composed of 2D profiles and extrusion operations, while ABC [Koch
et al. 2019] does not provide ready access to the CAD sequence for
each model. While we could access ABC sequences via OnShape’s
API [PTC 2019], the induced computational load limited us to a
few hundred sequences out of the 1 million CAD models present
in the original dataset. Similarly, the limited size of OpenSketch
[Gryaditskaya et al. 2019] prevented us from conducting a large-
scale evaluation on real sketches of diverse shapes.
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Modeling sketching errors. In our three-stage pipeline, we only
mimic the limited motor skills of humans by perturbing stroke
trajectory during the final stylization stage. In reality, an error made
on a pen stroke propagates to subsequent strokes anchored on it. For
example, a distorted scaffold typically results in distorted feature
curves. However, modeling such error propagation raises numerous
challenges, including developing a motor model of how designers
trace strokes [Cao and Zhai 2007], and keeping track of tracing
errors for different selections of lines during optimization.

Reproducing over-sketching. Our stylization procedure does not
reproduce over-sketching, where a single line is drawn with inter-
mittent or overlapping strokes. To mimic this effect, one major chal-
lenge is to detect and quantify over-sketching in real-world sketches.
One approach would consist in aggregating nearby strokes that are
likely to represent the same line [Liu et al. 2018], although existing
aggregation algorithms tend to merge construction and feature lines
in concept sketches [Gryaditskaya et al. 2020].

Analysis by synthesis. An exciting direction for future work would
be to solve for the A; and A3 parameters that yield the best reproduc-
tion of a target sketch given a CAD sequence of the shape depicted
in the sketch. Our synthesis method could then be used end-to-
end with sketch analysis methods, for instance to predict a CAD
sequence from a concept sketch [Li et al. 2022].

Applications to sketch-based design. Our synthetic sketches could
serve many applications beyond normal estimation. By following
the same construction principles as real designers, our method also
synthesizes an ordering of the strokes, opening the door for training
sequential models that exploit this temporal information. In addition
to sketch-based modeling, potential applications include suggestive
auto-completion from partial sketches [Lee et al. 2011].
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