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Figure 1: Concept sketches are dominated by symmetric strokes both in the shapes they depict, and in the construction lines
employed to draw these shapes in perspective (a). Our algorithm first decomposes the sketch into locally-symmetric groups
of strokes (b), and proceeds to identify pairs of strokes that are symmetric with respect to triplets of axis-aligned planes (c).
At its core, our method selects the stroke correspondences that result in the most symmetric and well connected shape (d). We
only show a subset of the symmetry planes and correspondences for illustration purpose.

ABSTRACT
Concept sketches, ubiquitously used in industrial design, are inher-
ently imprecise yet highly effective at communicating 3D shape to
human observers. We present a new symmetry-driven algorithm for
recovering designer-intended 3D geometry from concept sketches.
We observe that most concept sketches of human-made shapes are
structured around locally symmetric building blocks, defined by
triplets of orthogonal symmetry planes. We identify potential build-
ing blocks using a combination of 2D symmetries and drawing order.
We reconstruct each such building block by leveraging a combina-
tion of perceptual cues and observations about designer drawing
choices. We cast this reconstruction as an integer programming
problem where we seek to identify, among the large set of candidate
symmetry correspondences formed by approximate pen strokes, the
subset that results in the most symmetric and well-connected shape.
We demonstrate the robustness of our approach by reconstructing
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82 sketches, which exhibit significant over-sketching, inaccurate
perspective, partial symmetry, and other imperfections. In a com-
parative study, participants judged our results as superior to the
state-of-the-art by a ratio of 2:1.
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1 INTRODUCTION
Concept sketches are commonly used in industrial design, both
to explore 3D shape ideas during the design process itself and to
communicate these ideas to colleagues and clients via drawings
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that leverage human ability to ideate a shape from a set of de-
scriptive, semantically diverse, yet inexact curves. While humans
can easily parse a concept sketch, reconstructing a 3D shape from
such a sketch remains an open problem. A key element in concept
sketches that artists aim to explore and convey is symmetry. Sym-
metry is ubiquitous in nature, and even more so in human-made
environments; whether it is motivated by aesthetics, ergonomics,
or manufacturability, designers very often create shapes that ex-
hibit multiple degrees of symmetry1. In this paper, we leverage the
abundance of axis-aligned reflective symmetries in concept sketches
to automatically lift these sketches to 3D (Figure 1).

While symmetry has been considered for a number of 3D mod-
eling tasks [Mitra et al. 2013], detecting and exploiting symmetry
in real-world concept sketches raises specific challenges as well
as unique opportunities. On the one hand, concept sketches are
approximate, incomplete representations of 3D shapes, composed
of unstructured, swiftly-drawn pen strokes that only form partial
symmetry correspondences. Notably, many strokes serve as tran-
sient construction lines that designers draw on and around the object
to achieve accurate perspective [Gryaditskaya et al. 2019]. These
construction lines introduce significant visual clutter which further
challenges the automatic detection of symmetries, as individual
strokes often have multiple candidate correspondences with respect
to a given symmetry plane.

On the other hand, construction lines themselves often repre-
sent symmetric primitives – also called scaffolds [Gryaditskaya
et al. 2020; Schmidt et al. 2009] – that approximate the envisioned
shape and serve as anchors for designers to position smooth sur-
face curves. Construction lines thus provide a great amount of
additional symmetry and connectivity cues that we leverage in our
reconstruction algorithm. They also provide a coordinate system
that defines the symmetry axes of both the shape and the scaffold.

Based on the observations above, we propose an algorithm that
takes as input a concept sketch – represented as a sequence of vector
strokes recorded with a pen tablet – and jointly identifies symme-
try correspondences between strokes and deduces the connectivity
and depth of the 3D drawing2. This formulation combines both
binary unknowns (which strokes form a symmetry pair, and which
strokes intersect) and continuous unknowns (where to position the
strokes and their respective symmetry planes along the depth axis
to best satisfy the symmetry and intersection relationships). We
address this combinatorial challenge by casting 3D reconstruction
as a binary assignment problem. Given a large set of candidate sym-
metry correspondences, the core of our method selects the subset
of compatible correspondences that yields the most symmetric and
well-connected 3D drawing, as measured by a score function that
we derived from the analysis of designer practices.

This approach, however, does not generalize as-is to sketches
of complex shapes which may contain multiple, possibly local, re-
flective symmetries. Moreover, directly solving for the best 3D
reconstruction for all input strokes at once is computationally in-
feasible. We address this challenge by segmenting the inputs into
locally symmetric building blocks. In constructing the blocks we
leverage insights about designer workflow. Each constructed block
1On a random set of 500 models from the ABC dataset [Koch et al. 2019], we found
that only 4% had a part without any axis-aligned symmetry plane.
2Code and data available at https://ns.inria.fr/d3/SymmetrySketch/

exhibits dense symmetry correspondences with respect to a single
triplet of axis-aligned symmetry planes. We integrate our binary
assignment algorithm within a search procedure to find the best
position of the three planes for each triplet. We then reconstruct
the blocks in order of appearance in the drawing sequence, such
that the geometry recovered for a block provides context to anchor
subsequent blocks.

We demonstrate the versatility and robustness of our approach
by reconstructing more than 80 real-world sketches. Our method
significantly improve over the recent work by Gryaditskaya et al.
[2020], as validated by a comparative study where participants
found our results more plausible by a ratio of 2:1.

2 RELATEDWORK
We focus our discussion on methods that lift a single drawing to 3D,
especially those that leverage symmetry for this purpose. We refer
readers to surveys on sketch-based modeling [Bonnici et al. 2019;
Cordier et al. 2016; Olsen et al. 2009] and symmetry-based geometry
processing [Mitra et al. 2013] for more general discussions.

Our method addresses part of the longstanding challenge of as-
signing depth to pen strokes in a drawing, as pioneered by Lipson
and Shpitalni [1996]. Since each stroke point can have arbitrary
depth, additional constraints are necessary to make this problem
well-posed. Early methods focused on polyhedral shapes where
many of the strokes are straight, form planar faces, and are parallel
or perpendicular [Liu et al. 2008; Yang et al. 2013]. Closer to our ap-
plication domain are methods that leverage the drawing techniques
of designers, including cross-section lines that depict curvature di-
rections [Shao et al. 2011; Xu et al. 2014] and construction lines
that form polyhedral scaffolds around space curves [Schmidt et al.
2009]. While we benefit from characteristics of design drawings,
such as the frequent presence of axis-aligned construction lines, we
do not impose any particular technique requirements on the input.

We formulate depth estimation as an optimization problem,
constrained by intersection and symmetry relationships between
strokes. A complementary trend casts 3D reconstruction as a ma-
chine learning problem, using large datasets of synthetic drawings
to train deep neural networks [Delanoy et al. 2018; Guillard et al.
2021; Li et al. 2018; Wang et al. 2020; Zhang et al. 2021; Zhong
et al. 2020a,b]. But Gryaditskaya et al. [2019] showed that deep net-
works trained on synthetic drawings fail on concept sketches due
to the abundance of construction lines that are not well modeled
by existing non-photorealistic rendering algorithms.

Most methods for 3D reconstruction from a single drawing re-
quire precise input or manual annotations to compute geometric
relationships between the pen strokes [Chen et al. 2008; Gingold
et al. 2009; Olsen et al. 2011]. A notable exception is the recent work
by Gryaditskaya et al. [2020] that lifts real-world concept sketches
to 3D by identifying whether two strokes that intersect in the draw-
ing should intersect in 3D, and then deducing the stroke depth from
these intersections. They solve the resulting binary optimization
problem using a tailored search algorithm that progresses over the
drawing sequence to reconstruct small groups of strokes at a time.
Our approach outperforms this state-of-the-art algorithm by jointly
identifying intersections and symmetry correspondences. In addi-
tion to providing strong 3D geometry cues, symmetry allows us to

https://ns.inria.fr/d3/SymmetrySketch/


Symmetry-driven 3D Reconstruction from Concept Sketches SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

(a) Global and local symmetry planes (b) Intersections
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Figure 2: Drawing properties. Concept sketches often ex-
hibit global and local reflective symmetries with respect to
axis-aligned planes (a). Designers use existing intersections
to anchor new strokes, yielding high-valence intersections;
however, some of the intersections are due to occlusion. Fur-
thermore, individual lines are often mis-aligned and over-
sketched (b).

compute multiple candidate 3D reconstructions for many strokes at
once, and then to select the best overall reconstruction from these
candidates using an efficient commercial binary solver.

Reflective symmetry has long been used as a geometric con-
straint for sketch-based modeling [Bae et al. 2008; Cordier et al.
2013, 2011; Miao et al. 2015; Öztireli et al. 2011; Plumed et al. 2016].
However, most methods assume the presence of a single global re-
flective symmetry. Furthermore, existing methods typically attempt
to identify a small set of confident symmetry correspondences using
geometric heuristics and then fix these correspondences beforemov-
ing on to 3D reconstruction [Öztireli et al. 2011], or only evaluate
different possible subsets of correspondences over simple draw-
ings [Cordier et al. 2013]. These strategies often fail on real-world
concept sketches that exhibit significant clutter and inaccuracy. In
contrast, we formulate our problem as an integer program, allow-
ing us to robustly and efficiently select symmetry correspondences
based on the quality of the resulting 3D reconstruction.

Reflective symmetry has also inspired computer vision algo-
rithms based on multi-view geometry [Köser et al. 2011; Sinha et al.
2012], or more recently unsupervised learning [Wu et al. 2020].
Our formulation is inspired by the work of Jayadevan et al. [2017]
and Xue et al. [2011], who reconstruct symmetric shapes from pho-
tographs by selecting symmetry correspondences between edges of
the image such that the resulting shape is composed of a small num-
ber of planar faces. Concept sketches, however, contain many more
lines than photographs because designers frequently draw hidden
parts of the object, and draw construction lines on and around
the object. We handle those characteristics of concept sketches by
formulating a tailored score function that we derive from observa-
tions about how designers draw, and that is not restricted to planar
shapes. Our formulation also distinguishes 3D intersections from
occlusions, which is an additional challenge ubiquitous in design
sketches due to the presence of hidden and construction lines.

3 DRAWING PROPERTIES
Our algorithm is motivated by the key visual cues observers employ
to recover 3D shape from concept sketches and is designed to
overcome several challenges posed by such sketches.

Symmetry. Most manufactured objects exhibit a global reflective
symmetry, along with several local symmetries (Fig. 2a). Design-
ers decompose such objects into axis-aligned geometric primitives
that are themselves symmetric with respect to triplets of symmetry
planes (e.g. cuboids and cylinders) [Eissen and Steur 2011; Henry
2012; Robertson and Bertling 2013]. Designers often construct com-
plex shapes by drawing one primitive at a time, such that consecu-
tive strokes depict self-contained locally-symmetric parts.

Anchoring. To draw lines in perspective, designers often leverage
existing intersections as anchors throughwhich they trace new lines.
This strategy results in tightly-connected scaffolds where multiple
strokes meet at high-valence intersections and most strokes are part
of two or more intersections [Gryaditskaya et al. 2020] (Fig. 2b).

Coverage. Designers produce legible sketches by avoiding ex-
tending strokes beyond their intended length. As a consequence,
well-anchored strokes typically do not extend beyond their two
farthest apart 3D intersections [Gryaditskaya et al. 2020].

Inaccuracy and Ambiguity. Concept sketches are often over-
sketched, with multiple intermittent or overlapping strokes depict-
ing the same line. Concept sketches are also drawn under approxi-
mate perspective, with pen strokes that do not intersect precisely
[Gryaditskaya et al. 2020]. Finally, because designers commonly
draw hidden lines, many intersections are due to occlusion (Fig. 2b).

4 METHOD OVERVIEW
Our method takes as input a concept sketch captured with a pen
tablet, where each pen stroke is represented as a pair consisting of a
polyline and a time stamp. We assume that the sketch represents a
shape drawn in perspective, and we apply a vanishing point detec-
tor to calibrate the perspective camera [Gryaditskaya et al. 2020].
Given the camera matrix and a symmetry plane, two strokes that
are symmetric with respect to that plane can be lifted to 3D via stan-
dard multi-view geometry, as detailed in supplemental materials.
Our core reconstruction challenge can therefore be formulated as
identifying all symmetry planes present in the sketch and detecting
the pairs of strokes symmetric with respect to these planes. Once all
such pairs are reconstructed, we use their geometry to reconstruct
the remaining non-symmetric strokes they intersect.

While we expect all symmetry planes in our sketches to be
aligned with the major axes, we do not a priori know the number
or location of these planes. A key observation behind our method
is that artists typically draw symmetric strokes soon after each
other, and mentally break the objects they draw into blocks where
each block has only one plane of symmetry for each axis; they then
draw these blocks approximately sequentially, first depicting the
content of one block and then the next. Based on this observation
we decompose the drawing into likely symmetric building-blocks,
where each block exhibits symmetry correspondences with respect
to a single triplet of axis-aligned planes. We identify these blocks by
analyzing the local density of symmetry correspondences along the
drawing sequence. We reconstruct each block in sequence, fixing
the reconstruction of previous blocks to anchor new ones.

Even for a single block, the problem of computing the planes
and the symmetric stroke pairs remains highly challenging. We do
not know in advance which strokes form symmetry pairs, nor do
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(a) Correspondences from di�erent planes (b) Correspondences from over-sketching (c) Concurrent reconstructions due to depth ambiguity
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Figure 3: A stroke can have multiple compatible symmetry correspondences, either because it is symmetric to other strokes
with respect to several planes (a), or because it is symmetric to several strokes depicting the same over-sketched line (b). Due to
drawing inaccuracy, the 3D reconstructions given by each correspondence do not perfectly coincide, as depicted in the rotated
views. A stroke can also have multiple incompatible correspondences, each yielding a very different 3D reconstruction (c). In
this example, the black stroke could be reconstructed as lying on the front part of the cube due to its correspondence with the
pink stroke (c, left), or lying far at the back due to its correspondence with the blue stroke (c, right).

we know where to position the triplet of symmetry planes along
their respective axes. We tackle this challenge by predicting and
evaluating multiple plane positions and a large set of candidate
symmetry correspondences. For each position, we reconstruct all
candidate pairs of symmetric strokes and select the compatible
subset that yields the best 3D reconstruction of the entire block.
We formulate the quality of a reconstruction in the form of a score
function that favors the presence of multiple symmetries, and an-
choring of strokes within the block and its predecessors. Combined
with suitable constraints, this formulation is amenable to efficient
maximization as an integer program where symmetry correspon-
dences and stroke intersections are optimization variables. We use
this formulation to obtain the optimal plane triplet and set of stroke
pairs symmetric with respect to each of the triplet’s planes.

Algorithm 1 summarizes the main steps of this approach. In the
sections below, we first describe the integer program that forms the
core of our method and which operates on a triplet of axis-aligned
symmetry planes and a set of candidate stroke correspondences
computed with respect to these planes (Sec. 5). We then describe
the details of our overall workflow including how we find the plane
triplet of each block by searching over the most likely positions of
axis-aligned planes, and how we segment the drawing into symmet-
ric building blocks, each associated with a single triplet of planes
(Sec. 6). The last stage of our method reconstructs non-symmetric
strokes based on their intersections with symmetric ones (Sec. 7).

We refer the interested reader to supplemental materials for
details on how we detect and reconstruct individual candidate
symmetry correspondences between straight, curved, and elliptic
strokes. In a nutshell, we consider all stroke pairs that are aligned
with one of the three vanishing points, and keep the ones for which
we can match the two strokes closely by reflecting, translating and
scaling one of the strokes in the direction of the vanishing point.

5 BLOCK RECONSTRUCTION
The main component of our method is a block reconstruction proce-
dure that, given a triplet of symmetry planes and a set of candidate
symmetry correspondences, identifies the true correspondences to
deduce the 3D position of their respective strokes.

Figure 3 illustrates the main challenges we face when attempting
to solve this task. A single stroke can have multiple symmetry corre-
spondences with respect to the three planes of the triplet, and each
correspondence gives a 3D reconstruction of that stroke. But due

Algorithm 1: Symmetric sketch reconstruction
C ←− Identify candidate symmetry correspondences
B ←− Identify local symmetric building-blocks // Sec.6.1

sketchReconstruction←− ∅
for Building-block ∈ B do
P ←− Identify most likely triplets of planes // Sec.6.4

bestScore←− 0; bestTriplet←− 0; blockReconstruction←− ∅
for Triplet ∈ P do

// Reconstruct and group compatible correspondences

S ←− LiftTo3D(C, Triplet) // Sec.5.1

// Select the best subset of correspondences

(Score, Reconstruction) ←−
IntegerProgram(S, sketchReconstruction)// Sec.5

if Score > bestScore then
bestScore←− Score; bestTriplet←− Triplet
blockReconstruction←− Reconstruction

end
end
Append(sketchReconstruction, blockReconstruction)

end

to drawing inaccuracy, these reconstructions often do not coincide
perfectly. Furthermore, some candidate correspondences might be
erroneous and yield reconstructions that are not compatible with
the reconstructions given by other correspondences. The main goal
of our algorithm is to identify groups of correspondences that pro-
duce compatible stroke reconstructions, and to select among these
groups the ones that yield the best reconstruction of the block.

We measure the quality of a reconstruction as a function of two
terms: one measuring the degree of symmetry provided by the
reconstruction and the other measuring how well connected the
reconstruction is. The first term depends solely on which correspon-
dences we select, while the second term also depends on whether
the 3D strokes reconstructed from these correspondences intersect.
These terms thus involve two sets of binary variables, one that
indicates for each candidate correspondence if it is selected, and
the other that indicates for each stroke intersection if it occurs in
3D. We formulate this optimization as an integer program, which
we make efficient by expressing all constraints in a linear form, and
only one term of the score function in a quadratic form.
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5.1 Grouping Compatible Reconstructions
We denote 2D entities with lower-case letters (x ), 3D entities with
upper-case letters (X ), and binary variables associated to these enti-
ties with bold typeface (x, X). Given a candidate pair of symmetric
2D strokes sp and sq and a corresponding symmetry plane, we
define their symmetric 3D reconstructions as Spq for sp , and Sqp
for sq . We denote as cpq the binary variable that indicates whether
a pair pq is selected as a symmetry correspondence in the solution.

Since a stroke sp can have multiple candidate correspondences,
we first identify which correspondences form compatible groups
of reconstructions. We denote these groups as Skp , k ∈ [1,Kp ].
We consider two reconstructions Spq and Spr of a stroke to be
compatible if they nearly coincide, i.e. if the maximum distance
between the two reconstructions is below 10% of the length of
the longest candidate reconstruction of sp . For each group, we
compute a representative geometry by averaging its constituent
reconstructions, which we will need later on to detect intersections
between groups and to evaluate the quality of the correspondences
selected for each group.

Equipped with groups of compatible reconstructions for each
stroke, we then must ensure that the group we select for a given
stroke is compatible with the groups we select for all other strokes.
We enforce compatibility of the overall reconstruction by associat-
ing each group with a binary variable Skp , which is equal to 1 if the
kth group is selected. We then add the constraint that at most one
group should be selected per stroke:

∑
k Skp ≤ 1. We also ensure that

a group is only selected if at least one of its correspondences has
been selected, which we express as the constraint Skp ≤

∑
c∈Ckp

c,

where Ckp denotes the set of all correspondences forming group Skp .
Similarly, a group has to be selected if any of its correspondences
has been selected, Skp ≥ c ∀c ∈ Ckp .

5.2 Optimizing for Symmetry
The first term of our score function favors 3D reconstructions that
are symmetric with respect to multiple planes in the given triplet.
To express this property, we associate each stroke sp with a triplet of
auxiliary binary variables xp , yp , zp , where each variable indicates
whether there is at least one correspondence cpq that has been
selected for the corresponding axis-aligned plane. We then seek to
maximize the sum over all strokes

Fsymmetry =
∑
p

xp + yp + zp . (1)

Due to overdrawing, curves in concept drawings are often drawn
as a series of contiguous strokes, with each stroke forming partial
symmetry correspondences with some of the strokes depicting the
symmetric curve. Simply counting such partial correspondences
without accounting for the degree of overlap between the strokes
and the reflections of their counterparts can skew the metric to-
ward pairs with minuscule partial overlaps. To ensure that the 3D
reconstruction of a curved stroke is well supported by its partial
correspondences with other strokes, we measure the overlap be-
tween each partial reconstruction Spq and S ′qp , where S ′qp denotes
the reflection of the symmetric reconstruction Sqp with respect to

its symmetry plane. We measure the support of curved strokes as

Fsupport =
∑
p,q

overlap(Spq , S ′qp )cpq . (2)

This term is not necessary for straight strokes because their ge-
ometry is fully determined by a single correspondence, even if
partial.

Finally, since only a subset of the correspondences that form a
group might be selected, we measure whether this subset is repre-
sentative of the entire group. We do so by penalizing the maximum
distance between each selected 3D reconstructions Spq and the
average geometry of the group:

Fproximity =
∑
p,k

∑
cpq ∈Ckp

dist(Skp , Spq )cpq . (3)

5.3 Optimizing for Connectivity
The second part of our score function prioritizes reconstructions
that follow the principles of anchoring and coverage. To evaluate
these properties, we first need to identify intersections between
groups of compatible reconstructions that form the solution. We
denote a 2D intersection between two strokes sp and sr as ipr , and
ipr is the binary variable that indicates whether the two strokes
intersect in 3D. We express ipr in a linear form thanks to symmetric
range constraints, which only allow an intersection to occur if the
depth difference between the groups selected for the two strokes is
small (see supplemental materials for detailed equations).

Stroke Anchoring. We consider a stroke to be well-anchored if
it is part of at least two intersections of high valence. To identify
such intersections, we first group nearby intersections as done by
Gryaditskaya et al. [2020]. We then consider an intersection to be
high valence if it is grouped with intersections between strokes
converging to three different vanishing points, or to two vanishing
points and to a third arbitrary direction. We count the number of
high valence intersections along each stroke sp , and activate an
auxiliary variablewp if the stroke is weakly anchored by being part
of one intersection, and another variable fp if it is fully anchored by
being a part of two intersections. We penalize the strokes inversely
to their degree of anchoring:

Fanchoring = −
∑
p

(
2 −wp − fp

)
sp , (4)

where we activate the binary variable sp if one of the groups of
compatible reconstructions of sp has been selected, sp =

∑
k Skp .

Coverage. We favor 3D interpretations that cover the input strokes
well by maximizing the distance between the first and last intersec-
tions selected along a stroke:

Fcoverage =
∑
p

(
max
i ∈Ip

tp (i) − min
i ∈Ip

tp (i)

)
sp , (5)

where Ip denotes the set of intersections selected along stroke sp ,
and tp (i) denotes the arc-length parameter value of intersection i .

To identify the maximum and minimum arc-length parameters
of selected 3D intersections, we associate each intersection ipr with
two binary variables, aFpr and aLpr , which respectively specify if the
intersection should be considered as the first or last intersection
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(b) Input sketch (c) Segmented blocks (a) Sketch sequence

Figure 4: We segment the stroke sequence into symmetric
building blocks based on the density of local symmetry cor-
respondences (a). We color-code the input strokes by order
of appearance, from blue to yellow (a,b). In this example, the
algorithm identifies one block for the bottom cuboid (green),
one for its rounded edges (orange), and one for the slanted
cuboid (pink).

(a) Input Sketch (b) Global symmetry (c) Auxiliary symmetries

Figure 5: We first reconstruct all strokes that are symmetric
with respect to a global plane (b). We then fix this partial
reconstruction to serve as a scaffold for reconstructing mul-
tiple local symmetries (c).

along the stroke. Accompanying constraints ensure that we select
at most one minimal and one maximal intersection per stroke, that
each intersection cannot be both minimal and maximal at the same
time, and that only selected 3D intersections are considered (see
supplemental materials for detailed equations). Equipped with these
variables, we rewrite the coverage term as:

Fcoverage =
∑
p

∑
ipr ∈Ip

tp (ipr )aLpr −
∑

ipr ∈Ip

tp (ipr )aFpr . (6)

We detail in our supplemental material how we treat the special
case of ellipses, for which coverage cannot be measured since they
do not have a start and end; instead, we favor 3D reconstructions
of ellipses that are most circular.

5.4 Score Function
We combine the terms described above to form the score function
to be maximized subject to the listed constraints:

Ftotal = Fsymmetry+Fsupport+Fproximity+Fanchoring+Fcoverage, (7)

where the binary optimization variables ipq and cpq select intersec-
tions and symmetry correspondences respectively. We solve this op-
timization problem with the commercial solver Gurobi [Gurobi Op-
timization, LLC 2021]. We use a fixed set of weights λsymmetry = 2,
λsupport = 10, λproximity = −100, λanchoring = 5, and λcoverage = 4.

6 ALGORITHM DETAILS
6.1 Computing Building Blocks
We handle complex sketches by grouping strokes that represent
largely independent symmetric parts, or building blocks, each with
its own triplet of symmetry planes. This decomposition breaks the
reconstruction problem into a series of sub-problems, which con-
tributes to the scalability of our method and enables us to process
inputs with multiple symmetry planes per axis.

We identify self-contained symmetric building blocks by lever-
aging the observations that their strokes are typically drawn con-
secutively, and that they share many internal symmetry correspon-
dences. Treating the input sketch as an ordered sequence of pen
strokes, we say that a correspondence between stroke sp and sq
spans over si if p < i < q. We then count, for each stroke, the num-
ber of correspondence candidates that span over it. We restrict this
computation to correspondences between nearby strokes, i.e. those
that span at most 5 strokes. As illustrated in Figure 4, the resulting
histogram exhibits distinct modes, one for each highly symmetric
part. We segment this histogram at each of its local minima to form
symmetric building blocks. We merge neighboring building blocks
if they are too small (less than 10 strokes), and we split building
blocks in half if they are too large (more than 30 strokes).

6.2 Sequential Block Reconstruction
We reconstruct the building blocks in their order of appearance in
the drawing sequence. We use the reconstruction of each building
block as a scaffold for the next one, such that the selected compatible
reconstructions act as a geometric context for subsequent strokes
with which they share symmetric correspondences and intersec-
tions. We account for this context by computing the score function
using the strokes of all building blocks processed so far, even though
we only optimize for the strokes of the current building block. Note
that while we search for a new triplet of axis-aligned symmetry
planes for each new building block, we always consider the planes
used by preceding building blocks so that several building blocks
can share the same planes if appropriate.

6.3 Enforcing Globally Symmetric
Reconstruction

Typical design sketches contain a mixture of local and global sym-
metries. We assume and enforce the presence of at least one global
symmetry plane. We identify this global symmetry by performing
two passes of our algorithm (Fig. 5). Our first pass enforces global
symmetry: for each major axis, we place an axis-orthogonal plane
Πglobal at the origin and then run our algorithm with the additional
constraint that all reconstructed strokes need to have a symmetry
correspondence with respect to this plane. We keep the best-scoring
solution across these three axes. This first pass yields a globally
symmetric, albeit incomplete, reconstruction of the sketch. In a
second pass, we optimize all remaining strokes while keeping the
globally-symmetric reconstruction fixed, leaving each stroke free
to form correspondences with respect to any of the planes.
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6.4 Computing Plane Triplets per Block
Computing the reconstruction for each block requires a triplet of
symmetry planes. When only one symmetry plane exists, we can
fix the scale of the scene by positioning the plane at the origin.
When a triplet of symmetry planes is present, however, we need to
solve for the position of each plane along its axis.

We find the optimal position for a triplet by fixing the first plane
at the origin, and then searching among candidate positions of
the two other planes the one that yields the best reconstruction
overall, as measured by Equation 7. To obtain these candidate posi-
tions, we first place the three planes at the origin and reconstruct
all symmetric correspondences of each plane separately. We then
leverage the fact that translating a plane along its axis is equivalent
to translating and scaling the 3D reconstruction of the strokes that
are symmetric with respect to that plane. We loop over each 2D
intersection ipr and deduce how to position the planes such that
the reconstructed strokes Skp and Slr effectively intersect in 3D.

Computing a complete reconstruction for each candidate plane
triplet would be prohibitive. Since the set of 3D strokes recon-
structed for each plane is sparse, however, only a few triplets yield
intersections between many strokes. Based on this observation,
we first compute, for each candidate triplet, the coverage term of
all candidate reconstructions of all strokes; this gives us an upper
bound of our score function. We then only run the integer program
for the positions that maximize this upper bound (we keep the best
64 positions in our experiments). We further speed up this iterative
search by providing each run of the integer program with the best
score obtained so far, allowing the branch-and-bound solver to trim
any branch of the solution tree that has a lower score.

7 COMPLETING THE RECONSTRUCTION
Artist drawings contain strokes with no symmetric counterparts,
as well as strokes which have such counterparts but which were
either not matched with these counterparts or assigned different
sub-par symmetric counterparts by our block-level processing. We
complete the reconstruction by addressing both types of strokes.

We improve symmetric correspondences by reevaluating all re-
constructed strokes with low reconstruction confidence. We define
a stroke as low confidence if it is part of only one symmetry corre-
spondence and its coverage term is below 0.5. For any such stroke
s , we go through all symmetry planes and all other strokes s ′; we
reflect each such stroke around the plane and measure the dis-
tance between the 2D projection of the reflected stroke and s . We
reconstruct the stroke s by matching it with s ′ if the computed
projection is within our projection tolerance and the new recon-
struction improves the coverage of s . We reconstruct the remaining
non-symmetric strokes using anchoring and coverage cues, lever-
aging their 2D intersections with previously reconstructed strokes.
We perform this reconstruction using a greedy version of the al-
gorithm by Gryaditskaya et al. [2020], which is sufficient in our
context since few of the non-reconstructed strokes interact.

8 EVALUATION AND RESULTS
Fig. 6 compares our results to the ones obtained by Gryaditskaya
et al. [2020]. Overall, our reconstructions are more faithful to the

input sketch, with fewer dangling strokes and non-symmetric dis-
tortions. We provide additional results and comparisons on 82
sketches as supplemental materials, in the form of turntable videos.
These sketches correspond to the subset of first-impression concept
sketches from OpenSketch [Gryaditskaya et al. 2019] on which we
managed to calibrate a perspective camera using the algorithm of
Gryaditskaya et al. [2020]; this calibration failed on 21 sketches due
to lack of axes-aligned lines. Our algorithm takes a few minutes
for simple sketches (Fig. 4) to a dozen of minutes for complex ones
(Fig. 1).

Comparative study. We conducted a perceptual study to quantify
our improvement over prior work. We recruited 10 participants,
which we distributed in two groups that assessed 26 sketches each.
For each sketch, we presented the input along with our reconstruc-
tion and the reconstruction by Gryaditskaya et al. [2020]. The two
reconstructions were colored to highlight their differences, simi-
lar to Fig. 6. They were displayed in the form of looping videos
showing slight view changes, and were ordered randomly. The par-
ticipants were asked to indicate whether the first reconstruction is
more plausible, the second reconstruction is more plausible, both
are equally plausible, or both are equally implausible. The plot be-
low visualizes the 5 answers over all 52 sketches. Our results were
judged more plausible 51% of the time, while the results of Gryadit-
skaya et al. [2020] were judged more plausible 23% of the time. Both
reconstructions were judged equally plausible 14% of the time, and
equally implausible 12% of the time. We conducted a paired samples
t-test on these results, which showed that this improvement over
prior work is highly statistically significant (p-value of 1.0e-07).

Ours [Gryaditskaya et al. 2020]Both plausible Both implausible

Limitations. Our method is sensitive to the detection of the ini-
tial set of candidate symmetry correspondences. If the detection is
too permissive, the integer program can get overwhelmed by too
many erroneous correspondences. If the selection is too strict, it
might miss correct correspondences. We describe in supplemental
materials the heuristics we use to select likely correspondences.
Future work might improve on these heuristics, possibly using ma-
chine learning. Symmetry correspondences are especially difficult
to detect on long, over-sketched curves drawn under strong fore-
shortening. We improved the quality of our reconstruction on some
over-sketched drawings by running the method of Liu et al. [2018]
to aggregate nearby strokes. But we observed that such filtering
can degrade results on other sketches as it tends to merge strokes
that correspond to different parts of the shape. A potential avenue
for future work would be to also treat stroke aggregation as part
of the optimization, letting the binary solver decide if two strokes
should be merged to improve the reconstruction.

9 CONCLUSION
We have presented the first algorithm that leverages the abundance
of multiple axis-aligned reflective symmetries in concept sketches
to automatically reconstruct such sketches. By casting the joint
selection of symmetry correspondences and stroke intersections
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Input Ours [Gryaditskaya et al. 2020]Input  [Gryaditskaya et al. 2020] Ours Input Ours [Gryaditskaya et al. 2020]

Figure 6: Comparison to themethod byGryaditskaya et al. [2020].Wehighlight the strongest differences in red, and provide for
each sketch the answers from our comparative study (Ours, Gryaditskaya et al. [2020], Both plausible). Our method produces
fewer dangling strokes (sofa) and can reconstruct disconnected strokes (trash bin, blue strokes). Our results were judged more
plausible on the majority of cases, although a few were judged inferior, such as the house (right) where our method wrongly
interprets two diagonal lines as symmetric, which stands out in the otherwise correct reconstruction.

as an integer program, our method successfully reconstructs real-
world sketches despite significant clutter and imprecision in such
input. Our formulation solves for the depth of the pen strokes but
keeps their position in the drawing plane fixed. Yet, the structural
information we recover holds great potential to regularize the 3D re-
construction, for instance by snapping nearby symmetry planes and
intersections while enforcing the selected symmetry relationships.
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