
CASSIE: Curve and Surface Sketching in Immersive Environments
Supplemental Materials

Emilie Yu
Inria, Université Côte d’Azur
Sophia-Antopolis, France

emilie.yu@inria.fr

Rahul Arora
University of Toronto

Toronto, Ontario, Canada
arorar@dgp.toronto.edu

Tibor Stanko
Inria, Université Côte d’Azur
Sophia-Antopolis, France
tibor.stanko@inria.fr

J. Andreas Bærentzen
Technical University of Denmark

Kongens Lyngby, Denmark
janba@dtu.dk

Karan Singh
University of Toronto

Toronto, Ontario, Canada
karan@dgp.toronto.edu

Adrien Bousseau
Inria, Université Côte d’Azur
Sophia-Antopolis, France
adrien.bousseau@inria.fr

This document provides additional implementation details of our
VR sketching system, and additional results from the user study.

1 MATHEMATICAL FORMULATION OF
CURVE BEAUTIFICATION

Intersection constraint. To constrain the poly-Bézier curve𝐵(𝑡)𝑡 ∈[0,1]
to intersect a point 𝑝target, we first compute the closest point on
the curve from 𝑝target :

𝑝∗ = 𝐵(𝑡∗); where 𝑡∗ = arg min
𝑡

∥𝐵(𝑡) − 𝑝target∥. (1)

Then, if we are close to an existing control point 𝑃𝜅0 , such that:
∥𝑃𝜅0 − 𝑝∗∥ < 𝛿/2, we constrain that control point. Otherwise, we
split the input curve at 𝑡∗ using de Casteljau’s algorithm. This yields
a new control point on the curve 𝑃𝜅0 = 𝑝∗. In both cases, we express
the hard constraint 𝑐 as:

𝑐 = 𝑃𝜅0 − 𝑝target = 0. (2)
We rely on the fidelity energy and our greedy constraint selection

strategy to reject constraints that would deform the input too much,
and to select which constraint to apply at a control point if there
are more than one.

Closed curve constraint. We express the constraint that enables
the creation of closed loops the same way as an intersection con-
straint between the endpoints of the curve: 𝑃0

0 the first control point
and 𝑃𝐾−1

3 the last (𝐾 being the total number of cubic Bézier in the
poly-Bézier curve):

𝑐 = 𝑃0
0 − 𝑃𝐾−1

3 = 0. (3)

𝐺1 continuity constraint. We want the poly-Bézier curve to have
𝐺1 continuity even after the beautification process. That is, we
want to satisfy some control point equality and tangent alignment
between successive Bézier segments:

𝑔 = 𝑃𝑘−1
3 − 𝑃𝑘0 = 0 , for 𝑘 ∈ [1, 𝐾 − 1], and (4)

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445158

𝑔 =
(𝑃𝑘−1

3 − 𝑃𝑘−1
2)

∥𝑃𝑘−1
3 − 𝑃𝑘−1

2 ∥
−

(𝑃𝑘1 − 𝑃𝑘0)
∥𝑃𝑘1 − 𝑃𝑘0 ∥

= 0 , for 𝑘 ∈ [1, 𝐾 − 1]. (5)

For the𝐶0 constraint (Equation 4), we simply remove all control
points variables 𝑃𝑘0 , for 𝑘 ∈ [1, 𝐾 − 1] from the optimization.

For the 𝐺1 constraint (Equation 5), we linearize this constraint
by approximating the norms of the control polygon edges by the
initial norms: ∥𝑃𝑘

𝑖
− 𝑃𝑘

𝑖−1∥ ≈ ∥𝑃𝑘
𝑖
− 𝑃𝑘

𝑖−1∥. Making this constraint
linear enables us to solve the optimization efficiently and gives
reasonable results in our use case.

Tangent alignment constraint. We encourage the tangent at a
control point on the curve 𝑃𝑘0 to align with a target direction𝑇target
using the soft constraint:

𝐸tangent = ∥(𝑃𝑘1 − 𝑃𝑘0) ×𝑇target∥2. (6)

Planarity constraint. We encourage all control points to lie in a
plane with normal vector ®𝑛:

𝐸planar =
∑

𝑖∈{0,1,2}, 𝑘∈[0,𝐾−1]
∥(𝑃𝑘𝑖+1 − 𝑃

𝑘
𝑖) · ®𝑛∥

2. (7)

Fidelity energy. Our formulation of the fidelity energy extends
the Projection accuracy energy described by Xu et al. [4], to compare
3D curves, instead of 2D curves.

We want to minimize both variation in absolute position of the
control points 𝑃𝑘

𝑖
from the input positions 𝑃𝑘

𝑖
and variation in the

slope of Bézier polygon edges 𝑒𝑖𝑘 = 𝑃𝑘
𝑖+1 −𝑃

𝑘
𝑖
(see Fig. 1). This leads

us to define the fidelity energy as

𝐸fidelity =
1

|𝑃𝑘
𝑖
|𝛿2

∑
𝑖,𝑘

∥𝑃𝑘𝑖 − 𝑃𝑘𝑖 ∥
2

+ 1
|𝑒𝑖𝑘 |

∑
𝑖,𝑘

∥(𝑃𝑘
𝑖+1 − 𝑃

𝑘
𝑖
) − (𝑃𝑘

𝑖+1 − 𝑃
𝑘
𝑖
)∥2

∥𝑃𝑘
𝑖+1 − 𝑃

𝑘
𝑖
∥2

. (8)

We normalize each term by, respectively, the total number of
control points |𝑃𝑘

𝑖
| = 3𝐾 + 1 and the total number of Bézier control

polygon edges |𝑒𝑖𝑘 | = 3𝐾 , 𝐾 being the number of cubic Bézier. As
our Bézier curves are all arbitrarily subdivided, depending on both
input stroke curvature variations and the number of intersection
constraints applied, we normalize these terms so that we can later

https://doi.org/10.1145/3411764.3445158

CHI ’21, May 8–13, 2021, Yokohama, Japan Yu et al.

compare fidelity energy between different candidate results. To
control the scale of the energy, we normalize the first term by the
proximity threshold 𝛿 (with 𝛿 from Sec. 4.4 in the main document)
and the second term by the initial lengths of the control polygon
edges 𝑃𝑘

𝑖+1 − 𝑃
𝑘
𝑖
. This also accounts for the uneven lengths of the

Bézier control polygon edges, allowing greater deviation for longer
edges, as in Xu et al. [4].

Figure 1: Input stroke (gray) and optimized stroke (blue) to
match the intersection constraint 𝑝target.

2 SOLVING THE OPTIMIZATION PROBLEM
The complete optimization problem that we solve, for the control
points position variables {𝑃𝑘

𝑖
}, 𝑖 ∈ [0, 3] , 𝑘 ∈ [0, 𝐾 − 1], the 𝑚ℎ

hard constraints and the𝑚𝑠 soft constraints is:

min
{𝑃𝑘

𝑖
}
𝐸fidelity (𝑃𝑘𝑖) +

∑
𝑗 ∈{0,...,𝑚𝑠−1}

𝐸 𝑗 (𝑃𝑘𝑖)

𝑠𝑡 . 𝑐𝑙 (𝑃𝑘𝑖) = 0 , for 𝑙 ∈ {0, . . . ,𝑚ℎ − 1}.
(9)

We define 𝑃 as a column vector with 3(3𝐾 + 1) lines, correspond-
ing to the control points position variables, with one line per control
point coordinate.

For each hard constraint 𝑙 ∈ {0, . . . ,𝑚ℎ − 1}, we have 𝑛 linear
equations, such that we can write the constraint as: 𝑐𝑙 = 𝐶𝑙𝑃 = 0,
𝐶𝑙 a 𝑛 × 3(3𝐾 + 1) matrix.

The objective function has a linear gradient, and all hard con-
straints are linear so we can find the solution to this optimization
problem by solving a linear system (Equation 10), using the La-
grange multipliers method [2]:[

𝐴 𝐶𝑇

𝐶 0

] [
𝑃

Λ

]
=

[
𝐵

0

]
. (10)

We build 𝐴 and 𝐵 such that 𝐴𝑃 − 𝐵 = 𝜕
𝜕𝑃

(𝐸fidelity +∑
𝐸 𝑗). The

matrix𝐶 corresponds to the vertically stacked𝐶𝑙 blocks of the hard
constraints. Λ is the vector of Lagrange multipliers.

For the linear solve, we use an LU factorization implemented
by the MathNET Numerics library [3]. On Intel machines, we use
the Math Kernel Library [1] as our BLAS backend to speed up the
linear algebra computations.

3 BEAUTIFICATION OF STRAIGHT LINES
We employ a simpler algorithm to beautify straight strokes.

3.1 Selecting the constraints
Since a line is uniquely defined by two points, we cannot apply
more than two intersection constraints along a line segment. We

use a simple heuristic to select the best two constraints, based on the
assumption that users would not draw a stroke longer than it needs
to be. Following this assumption, we select the two constraints
that are closest to the stroke endpoints. In addition, we use the
angular threshold 𝜃 (see Sec. 4.4 in themain document) to determine
whether a line segment is close enough to one of the three world
axes to be constrained to align with it.

3.2 Applying the constraints
To constrain a line segment to one or two intersection constraints,
we simply update one or both endpoints such that the line segment
passes through the constraint(s). If the constraint is close enough
to one of the endpoints (within a distance 𝛿 , with 𝛿 from Sec. 4.4
in the main document), we set the endpoint to be at the constraint
position. If there are two intersection constraints and they are not
near the endpoints, we project both endpoints on the line formed
by the intersection constraints. Finally, if there is one intersection
constraint that is not near one of the endpoints, we translate the
line segment so that it passes through the constraint.

4 ADDITIONAL USER STUDY RESULTS
Fig. 2 shows the results from the six non-professional user study
participants.

REFERENCES
[1] Intel Corporation. 2009. Intel Math Kernel Library. Reference Manual. Intel Corpo-

ration.
[2] Jorge Nocedal and StephenWright. 2006. Numerical optimization. Springer Science

& Business Media, Berlin-Heidelberg, Germany.
[3] Christoph Rüegg et al. 2009. MathNET Numerics. https://numerics.mathdotnet.

com/.
[4] Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and

Karan Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective
regularization. ACM Transactions on Graphics 33, 4, Article 131 (2014), 13 pages.

https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/

CASSIE: Curve and Surface Sketching in Immersive Environments CHI ’21, May 8–13, 2021, Yokohama, Japan

P2

P3

P6

P9

P11

P12

Freehand Armature Patch

Figure 2: Designs created by the six other participants in the study using all three systems.

	1 Mathematical formulation of curve beautification
	2 Solving the optimization problem
	3 Beautification of straight lines
	3.1 Selecting the constraints
	3.2 Applying the constraints

	4 Additional user study results
	References

