
Eurographics Symposium on Rendering 2021
A. Bousseau and M. McGuire
(Guest Editors)

Volume 40 (2021), Number 4

Supplemental for Video-Based Rendering of Dynamic Stationary
Environments from Unsynchronized Inputs

In this supplemental document we present technical details of
various aspects of our method. We first present details on our seam-
less video looping approach, a detailed description of the video
matting approach, details on the linear system used to propagate
depth and finally some additional details on comparisons and abla-
tions.

1. Seamless Video Looping

A naive option to create video loops is to restart the input sequence
when it ends (Fig. 1a). This produces strong visual discontinuities
each time, which is not acceptable in our context. A better approach
is to introduce some overlap and cross-fade progressively between
the end of the sequence and its beginning. While better than naive
looping, this raises the question of how fast to cross-fade: too slow
and ghosting artifacts appear, too fast and discontinuities come
back. Several options based on optimization have been proposed
to address this issue, e.g., [BAAR12, LJH13], and they could pos-
sibly work in our context. However, they all come at a significant
computational cost. Instead, we show that we can make our videos
loop while being efficient, by using temporal Laplacian blending.
As illustrated in Figure 1b, our approach is to have an overlap cor-
responding to half the duration of the input sequence. In this setup,
there is always a transition happening between the first half and the
second half of the sequence, and the output composite is a repeti-
tion of this transition. We generate this transition using multi-scale
blending in the temporal domain, i.e., we apply Equation 1 and
Equation 2, along the time axis instead of in the image plane, and
use a mask that selects the first half of the sequence beginning, i.e.,
M = 1 in the first 25% of the sequence. This resolves the question
of the speed at which to cross-fade by adapting it to each temporal
frequency band. The high frequencies transition sharply in the mid-
dle and the lower frequencies cross-fade over longer time spans.

G[I]0 = I (1a)

for 0 < ` < nL, G[I]` = reduce(G⊗G[I]`−1) (1b)

for 0≤ ` < nL−1, L[I]` = G[I]`− expand(G[I]`+1) (1c)

L[O]` = L[I1]`×G[M]` + L[I2]`× (1−G[M]`) (2)

Discussion. Our adaptation of multi-scale blending to the time
domain implicitly assumes that the observer’s perception of tempo-
ral transitions is similar to their perception of the spatial transitions

for which the original algorithm [BA83] was designed. Our exper-
iments show that it is true to a first approximation and the discon-
tinuities are greatly reduced (Figure 2). However, a slight temporal
discontinuity can still be perceived. We hypothesize that this may
be caused by the high frequencies at all the pixels transitioning at
the same time, which creates a compound effect. We found that
replacing the sharp mask associated to the lowest frequency by a
smooth step over 10 frames produces better results at the cost of
minimal ghosting that is imperceptible unless one pauses the video
on one of these frames.

Input sequence

(a) Naive loop creation (su�ers from discontinuities)

(b) Our loop creation (seamless)

time

alpha

Shifted copy

alpha

Composite
(discontinuous)

Composite
(seamless)

Input sequence

alpha

Shifted copy

alpha

Shifted copy

alpha

Figure 1: Video looping using temporal blending. Naive loop cre-
ation (top) simply plays the video back to back, which creates a
temporal discontinuity at each loop end. Our loop creation (bot-
tom), linearly blends temporally-shifted version of the input video,
using a different blending profile for each temporal frequency band.
The part delimited by the two dashed lines can by seamlessly
played back to back.

c© 2021 The Author(s)
Computer Graphics Forum 40(4) Authors Version



/ Supplemental for Video-Based Rendering of Dynamic Stationary Environments from Unsynchronized Inputs

Time

Figure 2: Video slices. Natural videos played back to back show a
strong temporal discontinuity (middle), while our temporal Lapla-
cian blending scheme produces a seamless video loop (right).
Slices are represented with time on the vertical axis and space on
the horizontal axis. Displayed slices correspond to the zoomed-in
segment (left).

2. Video matting

The dynamic regions in the scenes we are interested in such as wa-
ter and flames are often semi-transparent. In such cases, the color
of a pixel in the dynamic region can be modeled as a mixture of
the static background color and the dynamic object color using the
compositing equation commonly used in natural image matting. If
we consider the pixel p in a single frame from a single viewpoint,
the compositing equation is written as:

cp = αpfp +(1−αp)bp, (3)

where αp is the opacity of the dynamic foreground, and cp, fp and
bP are the observed pixel, dynamic foreground and static back-
ground colors in RGB, respectively. As αp, fp and bP are all un-
known in this equation, this is a highly under-constrained problem.
This is typically solved using significant user intervention in the
natural matting literature. Instead, we simplify the problem by tak-
ing advantage of our particular setup. One assumption we make is
about fp. Since the foreground objects we consider are quite uni-
form in color, we use a single color f in the initial steps of our
method. Also, given the static camera setup, we exploit the tem-
poral information on the background to reliably determine bp in a
majority of the pixels. This way, we are able to get a clear opac-
ity estimation with very little user input. We give the step-by-step
explanation of our matting pipeline in the rest of this section.

Our matting pipeline requires a foreground color f as the only
user input. This color is determined once for each dataset. For a
given input frame (Fig. 4(a)), we use the binary mask (Fig. 4(b))
that marks the dynamic regions from the 3-D reconstruction as de-
scribed in sections 5.2 and 5.3 in the paper, and proceed with opac-
ity estimations for each viewpoint independently.

We first start by determining the fully foreground (i.e., opaque)
and dynamic foreground regions in all the frames of a viewpoint
using color-based segmentation. The dynamic foreground mask
(Fig. 4(d)) represents the regions where the background is visi-
ble in some of the frames behind the dynamic objects. We reason
about the dynamic and static (Fig. 4(c)) foreground regions by us-
ing the temporal median frame, i.e., the median color of each pixel
in the temporal dimension (Fig. 4(e)), together with the input frame
(Fig. 4(a)). Intuitively, a pixel is in the static foreground if its color

is close to the median and close to the user-provided foreground
color f.

(b)(a)

(c) (d)

Figure 3: Alpha-matte extraction: (a) Initial temporally inpainted
background. (b) Refined inpainted background. (c) Initial back-
ground with spatial inpainting. (d) Alpha matte αp.

We mark the pixels that have a very similar color to f in both the
median and the current frame as static foreground and reason that
since αp is likely unity in these regions, estimating bp is of little
importance.

The dynamic foreground regions, determined by good color
matches to either the median or current frame, are used to deter-
mine regions (i.e., black pixels in Fig. 3(a)) for temporal inpainting
of the background. This has the effect of adding a few additional
background color pixels where available, Fig. 3(b).

In this setup, bp is a determining factor for a reliable matte es-
timation. We therefore refine our temporal inpainting of the back-
ground in a second step. We first fill in the pixels where the back-
ground was never fully observed by a simple nearest-neighbor in-
painting (Fig. 3(c)). We then use this intermediate background im-
age for opacity estimation by solving (3) for αp (Fig. 3(d)) We
repeat the temporal inpainting of the background using this refined
map by filling in bp when αp = 0 in a frame, providing a small
improvement to background estimation. This more complete back-
ground image is then ready for the final opacity estimation.

We determine the per-pixel per-frame opacities using this re-
fined static background image. While we have modeled the fore-
ground as a single color until now, for realistic rendering of the
dynamic regions, we would like to determine the subtle color vari-
ations around the semi-transparent regions. For this purpose, we
use a modified version of the information-flow layer color esti-
mation (IFL) method [AAP17, AOAP17]. Layer color estimation
methods typically aim to estimate fp and bp given the alpha matte
and the original image. IFL defines a linear system of equations
that includes energy definitions that target spatial consistency as
well as nonlocal consistency between pixels based on color sim-
ilarity for better stability in this under-constrained problem. The
problem is better constrained in our case since we already have a

c© 2021 The Author(s)
Computer Graphics Forum 40(4) Authors Version



/ Supplemental for Video-Based Rendering of Dynamic Stationary Environments from Unsynchronized Inputs

(a) (d)(c)(b) (d) (e)

f

Figure 4: Color-Based Segmentation: (a) Input video frame and user-provided color f. (b) Binary mask for dynamic regions (c) Static
foreground (opaque) (d) Dynamic foreground (e) Temporal median.

reliable estimation of the background colors. Hence, we replace
the nonlocal energy terms in the IFL formulation with a quadratic
cost, which encourages fidelity towards the estimated background
colors. We keep the original no-transition flow term to encourage
spatial smoothness in regions with small color and alpha gradients,
and the original quadradic term that measures deviation from the
compositing equation (Eq. (3)).

The final result of the matting process is shown in Figure 5.
Our matting results are overall satisfactory. Further, since the mat-
ting does not use any background geometry information, it is suffi-
ciently versatile to handle dynamic phenomena e.g., occluding the
sky.

Figure 5: Final result of matting. Left: final background result;
Right: pre-multiplied foreground for a given frame.

3. Depth propagation

This section describes the depth propagation step as part of the per-
view geometries computation, as described in section 5.2 in the
paper. We use a linear solver to solve the following least-squares
system, with a data term Ed and a smoothness term Es:

E(dp) = Ed(p)+∑q∈Np
Es(p,q) (4a)

Ed(p) =

λfg

(
dp−dfg

p

)2
if dfg is available

λbg

(
dp−dbg

p

)2
otherwise

(4b)

Es(p,q) = λs(TVp ·TVq)
2 (4c)

where dp is the unknown per-pixel depth, dfg
p is the foreground

depth obtained from the voxel grid if available, dbg
p is the back-

ground depth obtained from the static part of the MVS reconstruc-
tion, TVp is the per-pixel RGB total variation L1 norm, and Np
is the 4 neighborhood in image space, discarding neighbors across
foreground occlusion edges. We use λfg = 100,λbg = 1,λs = 0.01
in all our experiments.

4. Comparisons

We present in Fig. 6, 5 frames replicating Fig. 18 in the main paper
that shows 3 frames.

The full set of ablations is shown in Table 1. For the Beach and
Seaside scenes the method with the proxy and our solution are the
same and thus are not included; we label this as case 1 in the table.
Also, 3D localization and matting are not used for these scenes, so
the corresponding ablations cannot be performed, labeled as case
2. The scenarios are:

1. Our blending using only MVS geometry and input videos.
2. Our dynamic element localization and our matting technique but

using simple ULR blending.
3. Our method, but taking the closest depth in the voxel grid ray-

cast instead of the media.
4. Discard of the depth propagation step.
5. Looped ULR blending.

Fire Beach Cave Seaside
(1) x 1 x 1
(2) x x x x
(3) x 2 x 2
(4) x 2 x 2
(5) x x x x

Table 1: Ablation study cases. All cases shown are marked with
"x". For scenes with water there is no localization (case 1), so our
method is the same as (1), and comparisons (3) and (4) do not apply
(case 2).

References
[AAP17] AKSOY Y., AYDIN T. O., POLLEFEYS M.: Information-flow

matting, 2017. arXiv:1707.05055. 2

[AOAP17] AKSOY Y., OZAN AYDIN T., POLLEFEYS M.: Designing
effective inter-pixel information flow for natural image matting. In CVPR
(2017). 2

[BA83] BURT P. J., ADELSON E. H.: A multiresolution spline with ap-
plication to image mosaics. ACM Trans. on Graphics 2, 4 (1983), 217–
236. 1

[BAAR12] BAI J., AGARWALA A., AGRAWALA M., RAMAMOORTHI
R.: Selectively de-animating video. ACM Trans. Graph. 31, 4 (2012),
66–1. 1

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S.,
COHEN M.: Unstructured lumigraph rendering. In Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques (2001), ACM, pp. 425–432. 4

c© 2021 The Author(s)
Computer Graphics Forum 40(4) Authors Version

http://arxiv.org/abs/1707.05055


/ Supplemental for Video-Based Rendering of Dynamic Stationary Environments from Unsynchronized Inputs

ULR [BBM∗01] Soft3D [PZ17] Super-SloMo [JSJ∗18] Our Result

Figure 6: Interpolation path between two viewpoints for the Fire scene. From left to right: Our per-frame improved version of ULR
[BBM∗01] (left) only using the two input viewpoints, Soft3D [PZ17] using all median videos for consensus pre-computation and all videos
at runtime, the learning based Super-SloMo method [JSJ∗18], used to generate an intermediate frame between two videos aligned using an
homography, and our result using only the background and matting videos associated to the two input viewpoints.

[JSJ∗18] JIANG H., SUN D., JAMPANI V., YANG M.-H., LEARNED-
MILLER E., KAUTZ J.: Super slomo: High quality estimation of multi-
ple intermediate frames for video interpolation. In CVPR (2018). 4

[LJH13] LIAO Z., JOSHI N., HOPPE H.: Automated video looping with
progressive dynamism. ACM Trans. on Graphics (TOG) 32, 4 (2013),
77. 1

[PZ17] PENNER E., ZHANG L.: Soft 3d reconstruction for view synthe-
sis. ACM Trans. on Graphics (TOG) 36, 6 (2017), 235. 4

c© 2021 The Author(s)
Computer Graphics Forum 40(4) Authors Version


