
Hybrid Image-based Rendering for Free-view Synthesis

SIDDHANT PRAKASH, Université Côte d’Azur and Inria, France
THOMAS LEIMKÜHLER, Université Côte d’Azur and Inria, France
SIMON RODRIGUEZ, Université Côte d’Azur and Inria, France
GEORGE DRETTAKIS, Université Côte d’Azur and Inria, France

CCS Concepts: • Computing methodologies → Image-based rendering; Image processing; Rasterization;
Texturing.

Additional Key Words and Phrases: interactive rendering, image harmonization, uncertainty

ACM Reference Format:
Siddhant Prakash, Thomas Leimkühler, Simon Rodriguez, and George Drettakis. 2021. Hybrid Image-based
Rendering for Free-view Synthesis. Proc. ACM Comput. Graph. Interact. Tech. 4, 1 (May 2021), 5 pages. https:
//doi.org/10.1145/3451260

1 COMPUTING THE HARMONIZATION MASK
Akin to [Agarwala et al. 2004] we define a cost function 𝐶 (𝑙) for label 𝑙 , where 𝑙 is diffuse or
view-dependent, i.e., 𝑙 ∈ {diff, spec}, with a unary cost 𝐶𝑢 over all pixels 𝑝 and an interaction cost
𝐶𝑖 over all pairs of pixels 𝑝 and 𝑞 in a 4-neighborhood:

𝐶 (𝑙) =
∑︁
𝑝

𝐶𝑢 (𝑝, 𝑙𝑝 ) +
∑︁
𝑝,𝑞

𝐶𝑖 (𝑝, 𝑞, 𝑙𝑝 , 𝑙𝑞). (1)

This unary cost term 𝐶𝑢 identifies view-dependent regions while the interaction cost term 𝐶𝑖

tries to find good seams to minimize visible artifacts. We define

𝐶𝑢 (𝑝, 𝑙𝑝 ) =


∞ if 𝑙𝑝 = spec ∧ 𝑝 ∉ 𝑅

exp (𝜎𝑐 + 𝜆Δ𝑐 ) if 𝑙𝑝 = spec ∧ 𝑝 ∈ 𝑅

exp (1 − (𝜎𝑐 + 𝜆Δ𝑐 )) if 𝑙𝑝 = diff.
The unary cost term considers the global color variance 𝜎𝑐 , the intensity difference between

original and diffuse harmonized image Δ𝑐 , and a spatial confidence region 𝑅. Ideally, we want the
harmonized image to be similar to the original image. High color variance indicates specular regions
[Lin et al. 2002]. Similarly, a high intensity difference between the original and diffuse harmonized
images indicates highlight suppression. The parameter 𝜆 balances the relative importance of these
two goals, and we set it to 2 in all our experiments. The spatial confidence margin penalizes
specularities near the image edges to avoid re-introducing vignetting artifacts.

We define the interaction cost
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𝐶𝑖 (𝑝, 𝑞, 𝑙𝑝 , 𝑙𝑞) =
{
exp

(
∥𝑐𝑝 − 𝑐𝑞 ∥2

)
if 𝑙𝑝 = 𝑙𝑞

exp
(
1 − ∥𝑐𝑝 − 𝑐𝑞 ∥2

)
if 𝑙𝑝 ≠ 𝑙𝑞,

where 𝑐 denote the colors of the original image. If the color difference of neighboring pixels is
high we penalize assigning same labels to both pixels since the pixels may constitute a true edge
that we want to preserve.

2 COMPARISON CODE
We used published implementations for previous work. Specifically, for [Hedman et al. 2018]:
https://sibr.gitlabpages.inria.fr, for [Mildenhall et al. 2020]: https://github.com/bmild/nerf, for
[Riegler and Koltun 2020] https://github.com/intel-isl/FreeViewSynthesis, and for the perceptual
error metric E-LPIPS [Kettunen et al. 2019]: https://github.com/mkettune/elpips.
For NeRF, we had to select a subset of cameras, since if we used all of them the results were

unusable. We tried different combinations of cameras, and kept the one with the best visual result.

3 ADDITIONAL RESULTS AND PREPROCESSING STATISTICS
3.1 Runtime Comparisons
We compare the total runtime of different algorithms on the 2 machines described in the main
paper for a given dataset in Table 1.

Table 1. Comparison of total runtime of different algorithms over a sequence of 100 frames on 2 different
machines with 2 datasets for a rendering resolution of 1280x720.

IBR Algorithms Desktop Laptop
Hugo Dr Johnson Hugo Dr Johnson

ULR 0.06𝑚𝑠 7.32𝑚𝑠 0.01𝑚𝑠 14.45𝑚𝑠

InsideOut 8.37𝑚𝑠 12.93𝑚𝑠 10.63𝑚𝑠 18.24𝑚𝑠

Deep Blending 64𝑚𝑠 68.78𝑚𝑠 79.89𝑚𝑠 98.88𝑚𝑠

Ours 21.11𝑚𝑠 31.59𝑚𝑠 27.12𝑚𝑠 52.03𝑚𝑠

3.2 Test Image Set
We show all images used for testing with ground truth from the Ponche dataset in Figure 1 and
from the Synthetic Attic dataset in Figure 2.

3.3 Pre-processing Time
We also report the pre-processing time with a breakdown of each component in Table 2. The
pre-processing time varies based on number of images and resolution of original images. Hence,
we provide the numbers for 3 different datasets to give a better insight into pre-processing time.

3.4 Dataset Statistics
We provide additional information on our datasets reporting total number of images, input image
resolutions, and total processing time in Table 3. All input images are Low Dynamic Range (LDR)
captured using commercial hand-held devices (typical SLR Cameras) in an unconstrained or casual
acquisition process. We resize the input images to 1920px in the dominant resolution maintaining
the aspect ratio to fit all data on the GPU VRAM. We do not support datasets which scale above
the GPU VRAM limit but a future extension by using streaming architectures is an interesting
follow-up to our method.
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TM ULR IO DB Ours GT

Fig. 1. Held-out test images with their ground truth input image from Ponche. TM: Textured Mesh [Reality
2018]; ULR: Unstructured Lumigraph [Buehler et al. 2001]; IO: Inside Out [Hedman et al. 2016]; DB: Deep
Blending [Hedman et al. 2018]; GT: Ground Truth.

Table 2. Pre-processing time for Hugo (24 images, 3216X2136), Creepy Attic (246 images, 1228X816), and
Library (222 images, 3552X2000) on a system with Intel Xeon Gold 5218 2.30GHz Processor and Quadro RTX
5000 GPU.

Component Hugo Creepy Attic Library
Harmonization Step 1 4m 6m 38m
Harmonization Step 2 9m 14m 1h 58m
Spec Mask Texturing 26s 1m 13s 1m 21s
Tiling and Storing 16s 1m 33s 1m 37s
Total 14m 26m 2h 40m

Table 3. Statistics for all datasets presented in the paper.

Dataset #Images Image Res. Preprocess Time (Total)
Hugo 24 3216�2136 14 min
Ponche 50 2016�1344 19 min
Library 222 3552�2000 2h 40 min
Playroom 226 1264�832 25 min
Creepy Attic 246 1228�816 26 min
Dr Johnson 264 1296�864 31 min
Syn. Attic 283 1920�1080 57 min
Train 301 1920�1080 2h 8 min
Salon 344 3000�2000 3h 45 min
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Fig. 2. Novel view test images with their path traced ground truth from Synthetic Attic. TM: Textured
Mesh [Reality 2018]; ULR: Unstructured Lumigraph [Buehler et al. 2001]; IO: Inside Out [Hedman et al. 2016];
DB: Deep Blending [Hedman et al. 2018]; GT: Ground Truth.
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