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In this supplemental document we provide multi-view capture in-

structions, as well as methodology details on camera calibration

and geometry reconstruction. We also present specifics of the FFHQ

alignment process, how to project manifold coordinates to the valid

range and how to sample it, and our definition of a frontal pose.

Finally, we elaborate on our two-stage training procedure, provide

additional comparisons and ablations, and show a comparison to

an encoder-based embedding approach.

1 CAPTURE INSTRUCTIONS

Here we provide the instructions we gave to the non-professional

models and photographerswho helped uswith capturing the datasets.

1.1 Instructions for the Model

• You need to be as static as possible. Sit on a chair and use the

backrest (make sure it is not visible above the shoulders).

• Choose a point in front of you to look at during the entire

session.

• Make a neutral relaxed face, eyes open, mouth closed. No

smiling please.

1.2 Instructions for the Photographer

• Don’t use a flash. Avoid casting hard shadows onto the model

with your body. Lighting should not be too harsh, shades on

the face are fine and even appreciated.

• Have a distance of about 1-2 meters to the model.

• Take 10-25 pictures of the face and full upper body. Frame

every view such that that top of the head is slightly below

the upper image boundary and the belly button marks the

lower image boundary. Please capture:

– One frontal view.

– 5-10 views on an ellipse, about 0.25 to 0.5 meters around

the frontal view (red in Fig.1).

– 5-10 views on an ellipse, about 1.0 to 1.5 meters around the

frontal view (blue in Fig.1).

– Add more views at will.

• Capture positions don’t have to be exact.
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All results in the paper were produced using our own captures, ex-

cept for the first row in Fig. 10, which uses material from Milborrow

et al. [2010].

0.25 - 0.5 m1 - 1.5 m

Fig. 1. Figure provided to the photographer to illustrate the capture dis-

tribution, encouraging a stratified set of camera poses. Yellow dots mark

example capture positions.

2 3D CALIBRATION AND RECONSTRUCTION

We obtain camera calibration and the geometric proxy using off-

the-shelf software [CapturingReality 2016]. First, the virtual input

cameras are calibrated using structure from motion [Snavely et al.

2006], then a multi-view stereo algorithm estimates the 3D shape

using dense pixel correspondences [CapturingReality 2016; Goesele

et al. 2007], followed by a meshing step to obtain a triangle mesh

of the face. We smooth the mesh [Sorkine 2005] to get rid of high-

frequency reconstruction noise. The output of this process are the

reconstructed triangle mesh, the calibrated cameras and possibly

resampled input images with a lens distortion correction applied.

Even though more than 10-25 cameras are usually recommented for

3D reconstruction, quality is high enough for our method, despite

taking the photos casually without a rig.

3 REVIEW OF FFHQ ALIGNMENT

a) b) c)

Fig. 2. The 2D alignment performed in the FFHQ dataset. a) Raw facial fea-

ture points (blue dots) are detected and aggregated to obtain representative

eye and mouth positions (green dots). b) Geometric features are used to

determine the square crop window (grey, not shown to scale) with center c

and vector s giving orientation and size. c) The resulting aligned image.
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The FFHQ dataset was constructed by first collecting images

from Flickr, followed by a cleanup step and alignment, where first

68 facial features are found [Kazemi and Sullivan 2014] (blue dots

in Fig. 2a). Then the eye and mouth features are aggregated to

obtain representative eye positions x𝑙 and x𝑟 , as well as a mouth

position x𝑚 in the image (green dots in Fig. 2a). From these three

points a crop window is computed as follows (Fig. 2b): The center

of the window is computed as a convex combination of the eye

midpoint x𝑐 = 0.5 (x𝑙 + x𝑟 ) and the mouth, as in c = 𝜆x𝑐 + (1−𝜆)x𝑚 ,

where 𝜆 = 0.9 in the reference implementation. The eye and mouth

positions are also used to determine the orientation of the square

crop window:

ŝ = x𝑟 − x𝑙 + rot90° (x𝑚 − x𝑐 )

is used as the horizontal orientation of the crop window, where

rot90° denotes a counter-clockwise rotation of 90°. The size of the

crop window should encompass the entire head, and the heuristic

approach in the reference implementation reads as

s = max (2∥x𝑙 − x𝑟 ∥, 1.8∥x𝑚 − x𝑐 ∥)
ŝ

∥ŝ∥
.

Given the above crop window geometry, the original image is re-

sampled to obtain the final aligned output image (Fig. 2c).

4 MANIFOLD RANGE PROJECTION

Given the rotational components of a manifold coordinate 𝑞 =

[𝜃, 𝜙]𝑇 , the closest point 𝑞∗ in the valid region of the manifold is

𝑞∗ =




𝑞 if 𝑐𝑙 (𝜃 ) ≤ 𝜙 ≤ 𝑐𝑢 (𝜃 )

[𝑔, 𝑐𝑢 (𝑔)]
𝑇 if 𝑐𝑙 (𝜃 ) > 𝜙 > 𝑐𝑢 (𝜃 )

[ℎ𝑢 , 𝑐𝑢 (ℎ𝑢 )]
𝑇 if 𝑐𝑙 (𝜃 ) < 𝑐𝑢 (𝜃 ) < 𝜙

[ℎ𝑙 , 𝑐𝑙 (ℎ𝑙 )]
𝑇 if 𝑐𝑢 (𝜃 ) > 𝑐𝑙 (𝜃 ) > 𝜙

where

𝑔 = sign(𝜃 )
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,
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+

(
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,

with 𝑐𝑖 (𝜃 ) = 𝑎𝑖𝜃
2 + 𝑏𝑖 and 𝑖 ∈ {𝑢, 𝑙}.

5 MANIFOLD SAMPLING

To sample the valid range of the camera manifold during train-

ing, we employ the inverse-CDF method. We observe that 𝑝 (𝜃 ) is

proportional to the difference of the two bounding parabolas:

𝑝 (𝜃 ) =
1

𝑍
(𝑐𝑢 (𝜃 ) − 𝑐𝑙 (𝜃 )) =

1

𝑍

(
Δ𝑎𝜃2 + Δ𝑏

)
,

where Δ𝑎 = 𝑎𝑢 − 𝑎𝑙 and Δ𝑏 = 𝑏𝑢 − 𝑏𝑙 . Further, 𝜃 is defined between

the intersections of the two bounding parabolas, i. e., 𝜃 ∈ [−𝑔,𝑔],

where 𝑔 =

√︃
−Δ𝑏
Δ𝑎 . Therefore,

𝑍 =

∫ 𝑔

−𝑔

(
Δ𝑎𝜃2 + Δ𝑏

)
d𝜃 = 2

(
Δ𝑎

3
𝑔3 + Δ𝑏𝑔

)
.
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Fig. 3. We employ a progressive training schedule. a) In the first stage, we

only use the input images as training data.We trainMLPs thatmapmanifold

coordinates (yellow dot) to the first 6 StyleGAN latents, and we directly

optimize for the remaining static latents (orange triangles). All latents fed

to𝐺 are subject to random perturbations (boxes labelled n) during training.

b) In the second stage, we fine-tune the MLPs by augmenting the training

data with IBR and fix the static latents (grey triangles).

The CDF is given by

𝑃 (𝜃 ) =

∫ 𝜃

−𝑔
𝑝 (𝜃 ′)d𝜃 ′ =

1

𝑍

(
Δ𝑎

3
𝜃3 + Δ𝑏𝜃

)
+
1

2
.

To obtain a valid manifold sample [𝜃, 𝜙, 𝑑]𝑇 , we draw three canoni-

cal uniform random samples 𝝃 . Then 𝜃 = 𝑃−1 (𝜉1), which we eval-

uate numerically, and 𝜙 = 𝜉2 (𝑐𝑙 (𝜃 ) − 𝑐𝑢 (𝜃 )) + 𝑐𝑙 (𝜃 ) . Finally, we

linearly remap 𝜉3 to obtain 𝑑 .

6 FRONTAL POSE CALIBRATION

For the definition of the manifold (Sec. 4.1) and its range (Sec. 4.2),

as well as the 3D alignment of the face mesh (Sec. 4.4), we need

to consistently define how 3D eye and mouth positions are related

to manifold coordinates 𝜃 and 𝜙 . For calibration, we consider the

frontal pose 𝜃 = 𝜙 = 0. The horizontal orientation is straightforward:

We set 𝜃 = 0 when both eye locations have the same depth. For

the vertical orientation, there exists no obvious frontal pose. We

therefore set 𝜙 = 0 when the depth of the mouth is one eighth of

the interocular distance smaller than the depth of the eye midpoint.

This configuration is somewhat arbitrary and could be replaced by

any suitable alternative. Note, however, that the exact orientation

does not change results as long as we are consistent with these

definitions.

7 DETAILS ON THE TRAINING PROCEDURE

We found a progressive training schedule, which splits training into

two stages, to produce results of highest quality.

7.1 Stage 1: Sparse Input Views

In the first stage, we only use the aligned input views as training data

and optimize all trainable parameters (Fig. 3a). Following Karras et al.

[2020], we initialize all latents with 𝜇w = Ez𝐻 (z). This initializes

the optimization with the łaverage facež in latent space𝑊 and is

obtained by running 1000 random codes z through the mapping

network𝐻 . We run our optimization for 7500 iterations using Adam

[Kingma and Ba 2014] with default parameters and a batch size of

2. We start with a learning rate of 0.005 and decay it exponentially

ACM Trans. Graph., Vol. 40, No. 6, Article 224. Publication date: December 2021.



FreeStyleGAN: Free-view Editable Portrait Rendering with the Camera Manifold - Supplemental Materials • 224:3

by a factor of 0.98 every 200 iterations. Again following Karras

et al. [2020], we allow the optimization to escape local minima by

adding stochastic Gaussian random noise to the latents in each

training iteration. The optimization starts with a noise standard

deviation of 𝜎 = 0.1 and decays as described in Karras et al. We

use the following weights for our loss terms: 𝜆LPIPS = 100, and

𝜆id = 1. Following ideas from Tewari et al. [2020], we vary 𝜆prior
over time: For the first 2500 iterations we set 𝜆prior = 10 to ensure

a reasonable embedding close to𝑊 . For the remaining iterations

we set 𝜆prior = 0.1, which allows the optimization to explore the

extended space𝑊 +. Intuitively, this training stage provides sparse

anchors for the MLP, which is responsible for pose changes and at

the same time optimizes the latents of the static GAN layers with

the highest-possible quality training data. Training this stage takes

35 minutes on an NVIDIA RTX6000.

7.2 Stage 2: Dense Manifold

In the second stage, we provide samples from the entire manifold

as training data using a mixture of ULR renderings (85%) and input

views (15%). Now we fix the latents of the static detail layers to

prevent high-frequency IBR artifacts from impacting them (Fig. 3b).

Only the MLP weights are refined at this stage, essentially filling

in the pose gaps between the input views. We run this stage for

750 iterations with the same optimization parameters as before,

but omitting the random noise and using the following (constant)

weights for our loss terms: 𝜆LPIPS = 0, 𝜆id = 1.5, and 𝜆prior = 0.1.

Disabling the LPIPS loss term is motivated by the fact that it is very

sensitive to IBR artifacts and no obvious way exists to incorporate

uncertainty akin to Eq. 6 into the multiscale VGG architecture [Liu

et al. 2018] without altering its perceptual prediction quality. How-

ever, we found Lℓ1 as the sole image quality loss sufficient for this

fine-tuning stage. Training this stage takes 4 minutes.

8 ADDITIONAL COMPARISONS

In addition to the comparisons shown in the main paper, we present

more details on the comparisons to other image-based rendering

methods in Fig. 4 and Tbl. 1. We compute image quality using the

PSNR, SSIM [Wang et al. 2004], and E-LPIPS [Kettunen et al. 2019]

metrics of the facial region. We see that - not surprisingly - the

neural IBR methods win most of the competitions. This comes at the

cost of static scenes, which cannot be edited. Due to time constraints,

we did not train a separate NeRF++ model for each leave-one-out

image set. The numerical results on facial landmarks and image

quality are therefore heavily skewed in favor of the method. Please

see the supplemental video for novel-view camera paths.

The method of Siarohin et al., which allows semantic editing in

the form of facial expressions, does not perform well in the free-

viewpoint setting for the metrics we considered. We observe that

our approach allows free-view synthesis with camera accuracy in

the order of magnitude of the IBR methods, while obtaining decent

image quality and facial identity scores ś while inheriting the full

editing potential of StyleGAN. Note that the comparison to IBR is

only possible because our method for the first time allows precice

camera control of GAN imagery.
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Fig. 4. Comparisons to free-viewpoint rendering methods.

9 LOSS TERM ABLATIONS

Fig. 5 shows the effect of our individual loss terms. Excluding the

LPIPS term reduces image sharpness, while the identity loss pre-

serves slight face identity shifts. The prior loss increases photo-

realism. We observe that all of our loss terms are necessary to

produce results of high fidelity.

10 ENCODER-BASED EMBEDDINGS

General embedding strategies have been explored, which do not

require face-specific optimizations to obtain latent codes [Richard-

son et al. 2021]. While these encoder-based approaches open up

exciting research directions, the quality of the resulting embeddings

is currently insufficient (see Fig. 6).
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Table 1. Comparing camera accuracy (measured using facial landmarks), image quality, and face recognition error against free-view rendering methods.
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1 Due to time constraints, we did not train a separate model for each leave-one-out image set, but only one model using all images per subject.
2 Editing is restricted to facial animations using a driving video.
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Fig. 5. Loss term ablation. Only our full loss formulation gives best results.
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Fig. 6. Comparing our optimization-based embedding strategy (center) with

the state-of-the-art encoder-basedmethod of Richardson et al. [2021] (right).

We observe that our approach produces a more faithful reconstruction of

the target (left).
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