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1. Derivation of probability-based depth

Following from the discussion in Sec. 3.3 in the main paper, we
assume Dj, follows distribution DF based on a mixture model with
density DFp, (d). We first assume that there exists at least one such
point (thus the symbol J):
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With:
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where f(d,d, ;,Gp,) is the pdf of a distribution that describes the
likelihood of point p,; being at depth d. This can be an arbitrary
single mode distribution such as a uniform or normal distribution.
The distribution of Eq. 1 does not integrate to one, because there is
also a probability that no points exist at that pixel for that view:

b, = T1 (1= i) = Buoo
iEN,

We thus complete D]-"la)" (d) with a point at infinity to make it
a probability density function. In order to simplify the remaining
derivations we keep the notation A/, for the set of splats from input
view n completed with that point at infinity, and use the correspond-
ing Br,00 for this point, leading to:
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Note that implementation-wise adding the point at infinity is im-
portant to avoid corner cases. We can then compute the probability
that the (projected) depth of a view n is smaller than all of the other
views:
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We have:
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Thus:
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A natural candidate for f would be a normal distribution. Unfor-
tunately this expression would be very costly to compute and does
not have a closed form solution. Instead we use a simple symmetric
triangle distribution of support 26, which is easy to evaluate. Ex-
ample plots of these distributions are presented in Fig. 1. This gives
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This functional still has no simple closed form formula, so we ap-
proximate it with numerical integration:
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With:
t

s(t)=dyi—0o+ m, and S the number of samples

In our experiments, we found that setting S = 1 provided satisfac-
tory results in all our tests. This computation is done in parallel per
pixel using CUDA.
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Figure 1: Simplified example of two pdfs of a pixel for view Iy and
1. Our soft depth test is the computation of the probability of the
random variable D; drawn by its corresponding PDF, DF p, shown
above, to have a smaller depth than all other D -

2. Multi-view Harmonization details

In Fig. 2, we illustrate the evolution of the optimization of y;.

3. Additional Results and Comparisons

In Fig. 3 we show comparisons of our method with two baseline
methods, ULR and Textured Mesh.

In Fig. 4 we see that lowering the size of the model often does
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Figure 2: The optimization of the y; for each view for 10k itera-
tions during training of "Ponche" scene. Each line with a different
color corresponds to a different input view; we clearly see a group
of three images that are brighter (see Fig. 7 in the main paper).

Figure 3: Left to right: Unstructured Lumigraph Rendering, Tex-
tured Mesh, and our method.

not affect the results substantially and higher number of cameras
used for rendering in the same time/memory budget compensates
for the smaller neural renderer.
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Figure 4: In this challenging indoor scene, we use the small neural
network to use a larger number of cameras.

Table 1: Quantitative analysis for the full rendering pipeline
against the interactive approximation in the paper. For this ex-
periment both methods use a smaller model to allow the latter for
interactive frame-rates and isolate the impact of the point splat-
ting approximation.

| [ MSE |

Museum 0.007
Ponche 0.004
Stairs 0.006
Street 0.008
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