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1. Derivation of probability-based depth

Following from the discussion in Sec. 3.3 in the main paper, we
assume Dn follows distributionDF based on a mixture model with
densityDFDn(d). We first assume that there exists at least one such
point (thus the symbol ∃):

DF∃Dn(d) = ∑
i∈Nn

f (d,dn,i)

(
αn,i

i−1

∏
j=1

(1−αn, j)

)

DF∃Dn(d) = ∑
i∈Nn

f (d,dn,i)βn,i (1)

With:

βn,i = αn,i

i−1

∏
j=1

(1−αn, j)

where f (d,dn,i,σni,) is the pdf of a distribution that describes the
likelihood of point ρn,i being at depth d. This can be an arbitrary
single mode distribution such as a uniform or normal distribution.
The distribution of Eq. 1 does not integrate to one, because there is
also a probability that no points exist at that pixel for that view:

p∅Dn
= ∏

i∈Nn

(1−αn,i) = βn,∞

We thus complete DF∃Dn
(d) with a point at infinity to make it

a probability density function. In order to simplify the remaining
derivations we keep the notationNn for the set of splats from input
view n completed with that point at infinity, and use the correspond-
ing βn,∞ for this point, leading to:

DFDn(d) = ∑
i∈Nn

fi(d,dn,i)βn,i

Note that implementation-wise adding the point at infinity is im-
portant to avoid corner cases. We can then compute the probability
that the (projected) depth of a view n is smaller than all of the other
views:

P(Dn < min
m6=n

(Dm)) =∫ +∞

−∞
P(t < min

m6=n
(Dm)|Dn = t)DFDn(t) dt

We have:

P(Dn < min
m6=n

(Dm)) =∫ +∞

−∞
P(t < min

m6=n
(Dm)|Dn = t)DFDn(t) dt

P(Dn < min
m6=n

(Dm)) =∫ +∞

−∞
∏
m6=n

P(t < Dm)DFDn(t) dt

P(Dn < min
m6=n

(Dm)) =

∑
i∈Nn

βn,i

∫ +∞

−∞
∏
m6=n

P(t < Dm) fi(t,dn,i) dt

P(Dn < min
m6=n

(Dm)) =

∑
i∈Nn

βn,i

∫ +∞

−∞
∏
m6=n

(∫ ∞
t

∑
j∈Nm

f j(s,dm, j)βm, jds

)
fi(t,dn,i) dt

P(Dn < min
m6=n

(Dm)) =

∑
i∈Nn

βn,i

∫ +∞

−∞
∏
m6=n

(
∑

j∈Nm

βm j

∫ ∞
t

f j(s,dm j)ds

)
fi(t,dn,i) dt

Thus:

P(Dn < min
m6=n

(Dm)) =

∑
i∈Nn

βn,i

∫ +∞

−∞
∏
m6=n

(
∑

j∈Nm

βm, j

∫ ∞
t

f j(s,dm, j)ds

)
fi(t,dn,i) dt

A natural candidate for f would be a normal distribution. Unfor-
tunately this expression would be very costly to compute and does
not have a closed form solution. Instead we use a simple symmetric
triangle distribution of support 2σ, which is easy to evaluate. Ex-
ample plots of these distributions are presented in Fig. 1. This gives
fi:

fi(s,dn,i)ds =

{
σ−|t−x|

σ2 if dn,i−σ < t ≤ dn,i +σ,
0 otherwise
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And:

∫ ∞

t
fi(s,dn,i)ds= T (t,dn,i,σ)=




1 if t < dn,i −σ,
0 if t > dn,i +σ,

1− (x−t+σ)2

2σ2 if dn,i −σ < t ≤ dn,i,
(t+σ−x)2

2σ2 if dn,i < t ≤ dn,i +σ,

P(Dn < min
m�=n

(Dm)) =

∑
i∈Nn

βn,i

∫ dn,i+σ

dn,i−σ
∏
m�=n

(
∑

j∈Nm

βm, jT (t,dm, j,σ)

)
fi(t,dn,i) dt

This functional still has no simple closed form formula, so we ap-
proximate it with numerical integration:

P(Dn < min
m�=n

(Dm))≈

2σ
S ∑

i∈Nn

βn,i

S

∑
t=1

∏
m�=n

(
∑

j∈Nm

βm, jT (s(t),dm, j,σ)

)
fi(s(t),dn,i)

(2)

With:

s(t) = dni −σ+
t

S+1
, and S the number of samples

In our experiments, we found that setting S = 1 provided satisfac-
tory results in all our tests. This computation is done in parallel per
pixel using CUDA.

Figure 1: Simplified example of two pdfs of a pixel for view I0 and
I1. Our soft depth test is the computation of the probability of the
random variable Di drawn by its corresponding PDF, DFDi shown
above, to have a smaller depth than all other D j.

2. Multi-view Harmonization details

In Fig. 2, we illustrate the evolution of the optimization of µi.

3. Additional Results and Comparisons

In Fig. 3 we show comparisons of our method with two baseline
methods, ULR and Textured Mesh.

In Fig. 4 we see that lowering the size of the model often does

Figure 2: The optimization of the µi for each view for 10k itera-
tions during training of "Ponche" scene. Each line with a different
color corresponds to a different input view; we clearly see a group
of three images that are brighter (see Fig. 7 in the main paper).

Figure 3: Left to right: Unstructured Lumigraph Rendering, Tex-
tured Mesh, and our method.

not affect the results substantially and higher number of cameras
used for rendering in the same time/memory budget compensates
for the smaller neural renderer.
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Figure 4: In this challenging indoor scene, we use the small neural
network to use a larger number of cameras.

Table 1: Quantitative analysis for the full rendering pipeline
against the interactive approximation in the paper. For this ex-
periment both methods use a smaller model to allow the latter for
interactive frame-rates and isolate the impact of the point splat-
ting approximation.

MSE ↓

Museum 0.007
Ponche 0.004
Stairs 0.006
Street 0.008
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